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Semi-prime and meet weak closure operations

in lower BCK-semilattices

Hashem Bordbar, Mohammad Mehdi Zahedi and Young Bae Jun

Abstract. The notion of semi-prime (resp., meet) weak closure operation is introduced, and

related properties are investigated. Characterizations of a semi-prime (resp. meet) closure oper-

ation are discussed. Examples which show that the notion of semi-prime weak closure operation

is independent to the notion of meet weak closure operation.

1. Introduction

Semi-prime closure operations on ideals of BCK-algebras are introduced in the
paper [2], and a �nite type of closure operations on ideals of BCK-algebras are
discussed in [1]. As a general form of closure operations on ideals of BCK-algebras,
Bordbar et al. [3] introduced the notion of weak closure operations on ideals of
BCK-algebras. Regarding weak closure operation, they de�ned �nite type and
(strong) quasi-primeness, and investigated related properties. They also discussed
positive implicative (resp., commutative and implicative) weak closure operations,
and provided several examples to illustrate notions and properties.

In this paper, we introduce the notion of semi-prime (resp., meet) weak clo-
sure operation in lower BCK-semilattices, and investigate their properties. We
discuss characterizations of a semi-prime (resp. meet) closure operation. We pro-
vide examples to show that the notion of semi-prime weak closure operation is
independent to the notion of meet weak closure operation.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K.
Iséki and was extensively investigated by several researchers. We refer the reader
to the books [5, 6] for further information regarding BCK/BCI-algebras.

Suppose that X is a BCK-algebra. De�ne a binary relation 6 on X as follows:

x 6 y if and only if x ∗ y = 0
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for any x, y ∈ X. Then (X,6) is a partially ordered set (see [5]), and we say that
6 is the BCK-ordering on X.

A partially ordered set (X,6) is called a lower (resp., upper) semilattice if any
two elements in X have the greatest lower bound (resp., least upper bound). If
(X,6) is both a lower semilattice and an upper semilattice, we call it a lattice (see
[5]).

A BCK-algebra X is called a lower BCK-semilattice (see [6]) if X is a lower
semilattice with respect to the BCK-order.

In what follows, let X be a lower BCK-semilattice and I(X) a set of all ideals
of X unless otherwise speci�ed.

De�nition 1 ([3]). An element x of X is called a zeromeet element of X if the
condition

(∃ y ∈ X \ {0}) (x ∧ y = 0)

is valid. Otherwise, x is called a non-zeromeet element of X.

For a subset A of a BCK-algebra X, denote by 〈A〉 the generated ideal by A.
If A = {a}, then 〈A〉 is denoted by 〈a〉.

Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.

De�nition 2 ([4]). For any nonempty subsets A and B of X, we de�ne a set

(A :∧ B) := {x ∈ X | x ∧B ⊆ A}

which is called the relative annihilator of B with respect to A.

Lemma 1 ([4]). If A and B are ideals of X, then the relative annihilator (A :∧ B)
of B with respect to A is an ideal of X.

De�nition 3 ([3]). Amapping cl : I(X)→ I(X) is called a weak closure operation

on I(X) if the following conditions are valid.

(∀A ∈ I(X)) (A ⊆ cl(A)) , (1)

(∀A,B ∈ I(X)) (A ⊆ B ⇒ cl(A) ⊆ cl(B)) . (2)

In what follows, we use Acl instead of cl(A).

3. Semi-prime and meet weak closure operations

De�nition 4. For any nonempty subsets A and B of X, we denote

A ∧B := 〈{a ∧ b | a ∈ A, b ∈ B}〉

which is called the meet ideal of X generated by A and B. In this case, we say
that the operation �∧� is a meet operation. If A = {a}, then {a} ∧ B is denoted
by a ∧B. Also, if B = {b}, then A ∧ {b} is denoted by A ∧ b.
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Theorem 1. If A and B are ideals of X, then so is the meet set

A ∧B = {a ∧ b | a ∈ A, b ∈ B}

based on A and B.

Proof. Obviously, 0 ∈ A∧B. Let x ∈ A∧B and y ∗x ∈ A∧B for x, y ∈ X. Then
x = a ∧ b and y ∗ x = a′ ∧ b′ where a, a′ ∈ A and b, b′ ∈ B. Since a ∧ b 6 a and A
is an ideal, we have x = a ∧ b ∈ A. Similarly, we have

y ∗ x = a′ ∧ b′ 6 a′ ∈ A.

Since A is an ideal of X, it follows that y ∈ A. By the similar way, we get y ∈ B.
Therefore,

y = y ∧ y ∈ {a ∧ b | a ∈ A, b ∈ B} = A ∧B

and A ∧B is an ideal of X.

Obviously, A ∧B = B ∧A for any nonempty subsets A and B of X. If A and
B are ideals of X, then

A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

Given ideals A and B of X, we consider two ideals

A ∧Bcl and (A ∧B)cl,

and investigate their relations where �cl� is a weak closure operation on I(X).
The following example shows that there exist ideals A and B of X such that

A ∧Bcl * (A ∧B)cl.

Example 1. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

Note that X has �ve ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2}
and A4 = X. De�ne a map cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A3, A

cl
2 = A3,

Acl
3 = A4 and Acl

4 = A4. Then �cl� is a weak closure operation on I(X), and

A1 ∧Acl
2 = A1 ∧Acl

3 = A1 * A0 = Acl
0 = (A1 ∧A2)

cl.
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Proposition 1. For any element a of X, we have

〈a〉 = a ∧X. (3)

Proof. Suppose that p ∈ a ∧X. Then there exist b1, b2, . . . , bn ∈ {a ∧ x | x ∈ X}
such that (. . . ((p ∗ b1) ∗ b2) ∗ . . .) ∗ bn = 0. Let bi = a ∧ ai where ai ∈ X for
i = 1, 2, . . . , n. Since b1 6 a, it follows from (a2) that

(p ∗ a) ∗ b2 6 (p ∗ b1) ∗ b2. (4)

Since b2 6 a, we have
(p ∗ a) ∗ a 6 (p ∗ a) ∗ b2. (5)

By (4) and (5), we have

(p ∗ a) ∗ a 6 (p ∗ b1) ∗ b2.

Continuing this way, we get

p ∗ an = (. . . ((p ∗ a) ∗ a) ∗ . . .) ∗ a 6 (. . . ((p ∗ b1) ∗ b2) ∗ . . .) ∗ bn = 0.

Hence p ∗ an = 0, that is, p ∈ 〈a〉. Therefore a ∧X ⊆ 〈a〉.
Conversely, suppose that p ∈ 〈a〉. Then there exists n ∈ N such that p∗an = 0,

that is, (. . . ((p ∗ a) ∗ a) ∗ . . .) ∗ a = 0. Since a = a ∧ a, we conclude that

(. . . ((p ∗ (a ∧ a)) ∗ (a ∧ a)) ∗ . . .) ∗ (a ∧ a) = 0.

Also a ∧ a ∈ {a ∧ x | x ∈ X}, and so p ∈ 〈{a ∧ x | x ∈ X}〉 = a ∧X. Therefore
a ∧X = 〈a〉.

De�nition 5. A weak closure operation �cl� on I(X) is said to be semi-prime if

(∀A,B ∈ I(X))(A ∧Bcl ⊆ (A ∧B)cl). (6)

Example 2. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that X has �ve ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, A3 = {0, 1, 2, 3}
and A4 = X. De�ne a map cl : I(X) → I(X) by Acl

0 = A0, A
cl
1 = A2, A

cl
2 = A2,

Acl
3 = A4 and Acl

4 = A4. It is routine to check that �cl� is a semi-prime weak
closure operation on I(X).
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Proposition 2. If �cl� is a semi-prime weak closure operation on I(X), then

(∀a ∈ X)(∀A ∈ I(X))
(
a ∧Acl ⊆ (a ∧A)cl

)
. (7)

Proof. Suppose that �cl� is a semi-prime weak closure operation on I(X). Then

a ∧Acl ⊆ 〈a〉 ∧Acl ⊆ (〈a〉 ∧A)cl = (a ∧A)cl

for any a ∈ X and A ∈ I(X) by using Proposition 1.

In Proposition 2, if �cl� is a weak closure operation on I(X) which is not semi-
prime, then (7) is not true in general, that is, there exist a ∈ X and A ∈ I(X)
such that a ∧Acl * (a ∧A)cl as seen in the following example.

Example 3. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Then Z(X) = {0} and X has nine ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 3},
A3 = {0, 1, 2}, A4 = {0, 1, 4}, A5 = {0, 1, 2, 3}, A6 = {0, 1, 3, 4}, A7 = {0, 1, 2, 4}
and A8 = X. Let cl : I(X)→ I(X) be a function de�ned by Acl

4 = A6, A
cl
7 = A8

and Acl
i = Ai for i = 1, 2, 3, 5, 6, 8. Then �cl� is a weak closure operation on I(X).

But it is not semi-prime since

Acl
4 ∧A2 = A6 ∧A2 = A2 * A1 = Acl

1 = (A4 ∧A2)
cl.

On the other hand, we have

3 ∧Acl
4 = 3 ∧A6 = A2 * A1 = Acl

1 = (3 ∧A4)
cl

for a non-zeromeet element 3 of X.

We provide conditions for a weak closure operation to be semi-prime.

Theorem 2. If a weak closure operation �cl� on I(X) satis�es the condition (7),
then it is semi-prime.

Proof. We �rst show that

(〈b1〉+ 〈b2〉) ∧A ⊆ 〈b1〉 ∧A+ 〈b2〉 ∧A (8)
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for all A ∈ I(X) and b1, b2 ∈ X. If z ∈ (〈b1〉 + 〈b2〉) ∧ A, then there exist
x ∈ 〈b1〉+ 〈b2〉 and a ∈ A such that z = x∧a. Since x ∈ 〈b1〉+ 〈b2〉 = 〈〈b1〉∪ 〈b2〉〉,
we have

(. . . ((x ∗ s1) ∗ s2) ∗ . . .) ∗ sn = 0 (9)

for some si ∈ 〈b1〉∪〈b2〉, 1 6 i 6 n. Since si ∈ 〈b1〉 or si ∈ 〈b2〉 for i ∈ {1, 2, . . . , n},
it follows from (9) that x ∈ 〈b1〉 or x ∈ 〈b2〉. Hence

z = x ∧ a ∈ 〈b1〉 ∧A or z = x ∧ a ∈ 〈b2〉 ∧A,

and thus z ∈ 〈b1〉 ∧ A+ 〈b2〉 ∧ A. Therefore (8) is valid. Let B be an ideal of X.
Then B =

∑
b∈B

〈b〉 and 〈b〉∧Acl = b∧X ∧Acl = b∧Acl by Proposition 1. It follows

from (8) and (7) that

B ∧Acl =

(∑
b∈B

〈b〉

)
∧Acl ⊆

∑
b∈B

(
〈b〉 ∧Acl

)
=
∑
b∈B

(
b ∧Acl

)
⊆
∑
b∈B

(b ∧A)
cl
.

Since b ∈ B =
∑
b∈B

〈b〉, we have b ∧A ⊆
∑
b∈B

〈b〉 ∧A and so

(b ∧A)cl ⊆

(∑
b∈B

〈b〉 ∧A

)cl

.

Hence
∑
b∈B

(b∧A)cl ⊆
(∑

b∈B

〈b〉 ∧A

)cl

= (B ∧A)cl. Therefore B ∧Acl ⊆ (B ∧A)cl

and �cl� is a semi-prime weak closure operation on I(X).

De�nition 6. A weak closure operation �cl� on I(X) is said to be meet if it
satis�es:

(∀A ∈ I(X)) (∀a ∈ X \ Z(X))
(
(a ∧A)cl = a ∧Acl

)
. (10)

Example 4. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 2 1 0 0
4 4 4 4 4 0

Note that X has �ve ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3}
and A4 = X. Let cl : I(X)→ I(X) be a function de�ned by Acl

0 = A0, A
cl
1 = A3,

Acl
2 = A3, A

cl
3 = A3 and Acl

4 = A4. By routine calculations, we know that �cl� is a
meet weak closure operation on I(X).
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The following example shows that there exists a weak closure operation that
is not meet.

Example 5. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 2
3 3 2 1 0 2
4 4 4 4 4 0

Recall that X has six ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 1, 2, 3},
A4 = {0, 1, 4} and A5 = X. Let cl : I(X) → I(X) be a function de�ned by
Acl

0 = A0, A
cl
1 = A3, A

cl
2 = A4, A

cl
3 = A3, A

cl
4 = A4 and Acl

5 = A5. Then �cl� is a
weak closure operation on I(X), but it is not meet since

3 ∧Acl
1 = 3 ∧A3 = A1 6= A3 = Acl

1 = (3 ∧A1)
cl

for a non-zeromeet element 3 of X.

We consider relations between (z ∧ A :∧ z) and A for any ideal A and z ∈
X \ Z(X). We can easily prove that A ⊆ (z ∧ A :∧ z). But the reverse inclusion
is not true in general as seen in the following example.

Example 6. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For a non-zeromeet element 2 and an ideal A = {0, 1, 2} of X, we have

(2 ∧ {0, 1, 2} :∧ 2) = X * A.

In the following proposition, we discuss conditions for the inclusion (z ∧ A :∧
z) ⊆ A to be true. We �rst consider the following condition:

(∀a, b ∈ X)(∀z ∈ X \ Z(X))((a ∗ b) ∧ z ≤ (a ∧ z) ∗ (b ∧ z)), (11)

The following examples show that the inequality (11) does not hold in general.

Example 7. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.
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∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 1
3 3 3 3 0

Note that 1 is a non-zeromeet element of X and

(2 ∗ 3) ∧ 1 = 1 � 0 = (2 ∧ 1) ∗ (3 ∧ 1),

which shows that the inequality (11) is not true.

Proposition 3. If X satis�es the condition (11), then (z∧A :∧ z) ⊆ A and hence

(z ∧A :∧ z) = A for every A ∈ I(X) and z ∈ X \ Z(X).

Proof. Suppose that a ∈ (z ∧ A :∧ z). Then a ∧ z ∈ z ∧ A, and so there exist
a1, a2, . . . , an ∈ A such that

(. . . ((a ∧ z) ∗ (a1 ∧ z)) ∗ (a2 ∧ z)) ∗ . . . ∗ (an ∧ z) = 0.

It follows from the condition (11) that

(. . . ((a ∗ a1) ∗ a2) ∗ . . . ∗ an) ∧ z

6 (. . . ((a ∧ z) ∗ (a1 ∧ z)) ∗ (a2 ∧ z)) ∗ . . . ∗ (an ∧ z) = 0

and so that (. . . ((a ∗ a1) ∗ a2) ∗ . . . ∗ an) ∧ z = 0. Since z ∈ X \ Z(X), it follows
that

(. . . ((a ∗ a1) ∗ a2) ∗ . . .) ∗ an = 0.

Hence a ∈ A, and therefore (z ∧A :∧ z) ⊆ A.

The following example illustrates Proposition 3.

Example 8. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that 4 is the only non-zeromeet element of X and there are nine ideals:
A0 = {0}, A1 = {0, 1}, A2 = {0, 2}, A3 = {0, 3}, A4 = {0, 1, 2}, A5 = {0, 1, 3},
A6 = {0, 2, 3}, A7 = {0, 1, 2, 3} and A8 = X. We know that

(4 ∧Ai :∧ 4) = (Ai :∧ 4) = Ai

for i = 0, 1, 2, . . . , 8.
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We consider a characterization of a meet weak closure operation.

Theorem 3. Let X satisfy the condition (11) and let �cl� be a weak closure

operation on I(X). Then �cl� is meet if and only if it satis�es the following

properties:

〈a〉cl = 〈a〉 and Acl = ((a ∧A)cl :∧ a) (12)

for any a ∈ X \ Z(X) and any ideal A of X.

Proof. Suppose that �cl� is a meet weak closure operation on I(X). Let a be a
non-zeromeet element and A be an ideal of X. Then, by Propositions 1 and 3, we
have

〈a〉cl = (a ∧X)cl = a ∧Xcl = a ∧X = 〈a〉

and
((a ∧A)cl :∧ a) = (a ∧Acl :∧ a) = Acl,

respectively.
Conversely, suppose that the condition (12) is valid. For a non-zeromeet ele-

ment a and an ideal A of X, we have

a ∧Acl = a ∧ ((a ∧A)cl :∧ a) ⊆ (a ∧A)cl.

If z ∈ (a ∧A)cl, then z ∈ 〈a〉cl = 〈a〉 since a ∧A ⊆ 〈a〉. Thus

z ∈ 〈a〉cl = 〈a〉 = a ∧X,

and so z = a ∧ b for some b ∈ X. Hence a ∧ b ∈ (a ∧ A)cl, i.e., b ∈ ((a ∧ A)cl :∧
a) = Acl. Therefore z = a ∧ b ∈ a ∧Acl and the proof is complete.

The notion of semi-prime weak closure operation is independent to the notion
of meet weak closure operation as seen in the following examples.

Example 9. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Note that Z(X) = {0, 1, 2, 3} and X has �ve ideals: A0 = {0}, A1 = {0, 1, 2},
A2 = {0, 3}, A3 = {0, 1, 2, 3} and A4 = X. Let �cl : I(X)→ I(X)� be a mapping
de�ned by Acl

0 = A1, A
cl
1 = A3, A

cl
2 = A3, A

cl
3 = A3 and Acl

4 = A4. Then �cl� is a
meet weak closure operation on I(X). But it not semi-prime since

Acl
1 ∧A2 = A3 ∧A2 = A2 * A1 = Acl

0 = (A1 ∧A2)
cl.
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Example 10. Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4} with the fol-
lowing Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 2
3 3 3 2 0 3
4 4 4 4 4 0

Then Z(X) = {0} and X has �ve ideals: A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2, 3},
A3 = {0, 1, 4} and A4 = X. Let �cl : I(X) → I(X)� be a mapping de�ned by
Acl

0 = A1, A
cl
1 = A4, A

cl
2 = A4, A

cl
3 = A4 and Acl

4 = A4. Then �cl� is a semi-prime
weak closure operation on I(X). But it is not meet since

4 ∧Acl
2 = 4 ∧A4 = A3 6= A4 = (4 ∧A2)

cl.
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