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On bi-bases of a semigroup
Pisit Kummoon and Thawhat Changphas

Abstract. Based on the results of bi-ideals generated by a non-empty subset of a semigroup
S, we introduce the concept which is called bi-bases of the semigroup S. Using the quasi-order
defined by the principal bi-ideals of S, we give a characterization when a non-empty subset of S
is a bi-base of S.

1. Preliminaries

Let S be a semigroup. A subset A of the semigroup S is called a two-sided base
(or simply base) of S if it satisfies the following two conditions:

(i) S=AUSAUASUSAS;
(i) if B is a subset of A such that S = BUSBUBSUSBS, then B = A.

This notion was first introduced and studied by I. Fabrici [3]. In fact, using the
quasi-order defined by principal two-sided ideals of S, the author gave a charac-
terization when a non-empty subset of S is a base of S. Moreover, the structure of
semigroups containing two-sided bases was described. Indeed, using the concepts
of left ideals and right ideals generated by a non-empty set, the concepts of left
bases and right bases of a semigroup were introduced by T. Tamura before the
concept of two-sided bases (see [7]). In [2], I. Fabrici studied the structure of a
semigroup containing one-sided bases. In [4], I. Fabrici and T. Kepka showed that
there is a relation between bases and maximal ideals of a semigroup. The results
obtaind by I. Fabrici [3] have been extended to ordered semigroups by T. Chang-
phas and P. Summaprab (see [1]). As in the line of I. Fabrici (3], [2]) mentioned
before, the main purpose of this paper is to introduce the concept which is called
bi-bases of a semigroup. We also define the quasi-order using principal bi-ideals
of S, and give a characterization when a non-empty subset of S is a bi-base of S.

Let S be a semigroup, and A, B non-empty subsets of S. The set product AB
of A and B is defined to be the set of all elements ab with ¢ in A and b in B. That
is

AB ={ab|a € Abe B}.

For a € S, we write Ba for B{a}, and similarly for aB.
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A subsemigroup B of a semigroup S is called a bi-ideal ([5], [6]) of S if
BSB C B.

This notion generalizes the notion of one-sided ideals and two-sided ideals of a
semigroup.

Let S be a semigroup, and B; a bi-ideal of S for each i in an indexed set I. It is
known that if ﬂ B; # 0, then ﬂ B; is a bi-ideal of S. Moreover, for a non-empty

icl icl
subset A of S, the intersection of all bi-ideals of S containing A, denoted by (A)y,
is the smallest bi-ideal of S containing A. And it is of the form
(A, =AUAAUASA.

In particular, for A = {a}, we write ({a}), by (a)y (see [6]).

2. Main Results

We begin this section with the following definition of bi-bases of a semigroup.

Definition 2.1. Let S be a semigroup. A subset B of S is called a bi-base of S
if it satisfies the following two conditions:

(i) S=(B), (i.e. S=BUBBUBSB);
(ii) if A is a subset of B such that S = (A),, then A = B.

Example 2.2. Let S = {r,s,t,u} be a semigroup with the binary operation
defined by:

S T+t »w 3

= 3 »w 33
»w »®W I »w|®»w
S+ » 3|+
~ 2 » 3=

We have that the bi-bases of S are: By = {t} and By = {u}.

Example 2.3. Let S = {p,q,r, s} be a semigroup with the binary operation
defined by:

‘ p q T S8
p,p p P P
q|p p p Pp
rip P q ¢
s|p P q q

It is a routine matter to check that S has only one bi-base: B = {r, s}.
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Example 2.4. Let S = {a,b,¢,d, z,y} be a semigroup with the binary operation
defined by:

8 Q060 oe

8 QLo Q|
QAL 8 2 o
8 A Q2 oo
SN0 Q8 Qe
0O T Q88
Qo0 R

yly

We have that the singleton sets consisting of an element of S are bi-bases of S.
First, we have the following useful lemma:

Lemma 2.5. Let B be a bi-base of a semigroup S, and a,b € B. If a € bb U bSD,
then a = b.

Proof. Assume that a € bb U bSb, and suppose that a # b. We consider
A= B\ {a}.

Then A C B. Since a # b, b € A. We will show that (4), = S. Clearly, (A), C S.
Let x € S. Then, by (B), = S, we have x € BU BB U BSB. There are three
cases to consider:

Case 1: z € B.
SUBCASE 1.1: z # a. Then z € B\ {a} = A C (A)p.
SUBCASE 1.2: z = a. By assumption,

z=acbbUbShbC AAUASA C (A),.

CASE 2: x € BB. Then x = b1by for some by, by € B.
SUBCASE 2.1: b; = a and by = a. By assumption,

x = brby € (bbU bSDH)(bb U bSb) = bbbb U bbbSb U bSbbb U bSbbSbh
C AAAAUAAASAUASAAAU ASAASA C ASA C (A)y.

SUBCASE 2.2: by # a and bs = a. By assumption and A = B\ {a}, we have

2 =biby € (B\ {a})(bbUbSH) = (B\ {a})bbU (B \ {a})bSb
C AAAU AASA C ASA C (A),.

SUBCASE 2.3: by = a and by # a. By assumption and A = B\ {a}, we have

© = biby € (bbUDSH)(B\ {a}) = bb(B \ {a}) UbSH(B \ {a})
C AAAUASAA C ASAC (A),.
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SUBCASE 2.4: by # a and by # a. From A = B\ {a},

CASE 3: z € BSB. Then z = bgsb, for some b3,bs € B and s € S.
SUBCASE 3.1: b3 = a and by = a. By assumption,

o = bssby € (bbU bSH)S(bb U bSb) = bbSbb U bbSbSh U bSbSbb U bSbShSh
C AASAAUAASASAUASASAAU ASASASA
C ASA C (A

SUBCASE 3.2: b3 # a and by = a. By assumption and A = B\ {a}, we have

v = bysby € (B\ {a})S(bbUbSb) = (B \ {a})SbbU (B \ {a})SbSb
C ASAAU ASASA C ASA C (A,

SUBCASE 3.3: b3 = a and by # a. By assumption and A = B\ {a}, we have

z = bysby € (bbUbBSH)S(B\ {a}) = bbS(B\ {a}) UbSHS(B\ {a})
C AASAUASASA C ASA C (A)y.

SUBCASE 3.4: b3 # a and by # a. From A = B\ {a}, hence
x =bssby € (B\ {a})S(B\ {a}) = ASA C (A),.
Hence, (A)p, = S. And this is a contradiction. Thus a = b. O

Lemma 2.6. Let B be a bi-base of a semigroup S. Let a,b,c € B. If a € cbUcSb,
then a ="b or a =c.

Proof. Assume that a € ¢b U ¢Sb, and suppose that a # b and a # ¢. We set
A= B\ {a}.

Then A C B. Since a # b and a # ¢, we have b,c € A. We will show that
(A)y = S. Clearly, (A), CS. Let z € S. By (B), =S, € BUBBUBSB.
We consider three cases:

CAsE 1: z € B.
SUBCASE 1.1: 2 # a. Then z € B\ {a} = A C (A)p.
SUBCASE 1.2: z = a. By assumption, x = a € cbUcSb C AAU ASA C (A)p.

CASE 2: ¢ € BB. Then x = b1by for some bl,bg € B.
SUBCASE 2.1: b; = a and by = a. By assumption,

x = biby € (cbUcSb)(cb U eSb) = ¢beb U cbeSb U ¢Sbeb U ¢SbeSbh
C AAAA U AAASAUASAAAU ASAASA
C ASAC (A)p.
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SUBCASE 2.2: by # a and by = a. By assumption and A = B\ {a}, we have

x =biby € (B\ {a})(cbUcSb) = (B\ {a})cbU (B\ {a})cSb
CAAAUAASA C ASA C (A)y.

SUBCASE 2.3: by = a and by # a. By assumption and A = B\ {a}, we have

x =b1by € (cbUcSH)(B\ {a}) = cb(B\ {a})UcSb(B\ {a})
C AAAUASAA C ASA C (A),

SUBCASE 2.4: by # a and bs # a. From A = B\ {a}, hence
v =biby € (B\ {a})(B\ {a}) = AA C (A).

CASE 3: z € BSB. Then © = bgsb, for some b3,bs € B and s € S.
SUBCASE 3.1: b3 = a and by = a. By assumption we have

x = bssby € (cb U cSb)S(cbU cSb) = cbScbU cbSeSbU cSbSch U ¢SbScSbh
C AASAAUAASASAUASASAAUASASASA
C ASA C (A)p.

SUBCASE 3.2: b3 # a and by = a. By assumption and A = B\ {a}, we have

x = bssbs € (B\{a})S(cbUcSb) = (B\{a})ScbU (B\ {a})ScSb
C ASAAUASASA C ASA C (A)y.

SUBCASE 3.3: b3 = a and by # a. By assumption and A = B\ {a}, we have

x = bsgsby € (cbUcSH)S(B\ {a}) =cbS(B\ {a})UcSbS(B\ {a})
C AASAUASASA C ASA C (A)p.

SUBCASE 3.4: b3 # a and by # a. From A = B\ {a}, hence
x =bssby € (B\ {a})S(B\ {a}) = ASA C (A),.

Hence (A), = S. This is a contradiction, and thus a = b. O

To give a characterization when a non-empty subset of a semigroup is a bi-base
of the semigroup we need the quasi-order defined as follows:

Definition 2.7. Let S be a semigroup. Define a quasi-order on S by, for any
a,bes,
a<p b (a)b - (b)b
The following example shows that the relation <, defined above is not, in
general, a partial order.
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Example 2.8. From Example 2.4, we have that (a), C (b)y (i.e., a <p b) and
B)s C (a)y (i-e., b <p a), but a #b. Thus, < is not a partial order on S.

Lemma 2.9. Let B be a bi-base of a semigroup S. If a,b € B such that a # b,
then neither a <p b, nor b < a.

Proof. Assume that a,b € B such that a # b. Suppose that a <; b; then
a € (a)y C (b)p.

By assumption we have a # b, so a € bb U bSb. By Lamma 2.5, a = b. This is a
contradiction. The case b <; a can be proved similarly. O

Lemma 2.10. Let B be a bi-base of a semigroup S. Let a,b,c € B and s € S:
(1) If a € bc U bcbe U beSbe, then a =b or a = c.
(2) If a € bsc U bscbsc U bscSbsc, then a =b or a = c.

Proof. (1). Assume that a € be U bebe U beSbhe, and suppose that a # b and a # c.
Let
A= B\ {a}.

Then A C B. Since a # b and a # ¢, we have b,c € A. We will show that
(B)p C (A)p, if suffices to show that B C (A). Let « € B. If x # a, then x € A,
and so x € (A). If = a, then by assumption we have

x=a € bcUbcbcUbeSbe C AAU AAAAU AASAA C ASA C (A)p.

Thus, B C (A)p. This implies (B)p C (A)p. Since B is a bi-base of S,
S=(B)y C (A CS.

Therefore S = (A),. This is a contradiction.
(2). Assume that a € bscUbscbscUbscSbsc, and suppose that a # b and a # c.
Let
A= B\ {a}.

Then A C B. Since a # b and a # ¢, we have b,c € A. We will show that
(B)» C (A)p, if suffices to show that B C (A)y. Let € B. If © # a, then x € A,
and so x € (A). If z = a, then by assumption we have

x = a € bscU bscbsc U bscSbsc C ASAU ASAASAU ASASASA
C ASAC (4),
Thus, B C (A)y. This implies (B), C (A),. Since B is a bi-base of .S,
S=(B), C (A CS.
Therefore, S = (A)p. This is a contradiction. O



On bi-bases of a semigroup 93

Lemma 2.11. Let B be a bi-base of a semigroup S.
(1) For any a,b,c € B, if a #b and a # ¢, then a % be.
(2) For any a,b,c€ B and s€ S, if a #b and a # ¢, then a %, bsc.
Proof. (1). For any a,b,c € B, let a # b and a # ¢. Suppose that a <; be, we have
a € (a)p C (be)y = be U bebe U beSbe.

By Lamma 2.10 (1), it follows that a = b or a = ¢. This contradicts to assumption.

(2). For any a,b,c € B and s € S, let a # b and a # c¢. Suppose that a <, bsc,
we have a € (a), C (bsc)p = bscUbscbscUbscSbsc. By Lamma 2.10 (2), it follows
that a = b or @ = ¢. This contradicts to assumption. O

We now prove the main result of this paper.

Theorem 2.12. A non-empty subset B of a semigroup S is a bi-base of S if and
only if B satisfies the following conditions:

(1) For any xz € S,
(1.a) there exists b € B such that x <p b; or
(1.b) there exist by, by € B such that x <p bibs; or
(1.c) there exist b3, by € B, s € S such that x <p b3sby.

(2) For any a,b,c € B, if a #b and a # ¢, then a % be.
(3) For any a,b,c € B and s € S, if a # b and a # ¢, then a £, bsc.

Proof. Assume first that B is a bi-base of S; then S = (B);. To show that (1)
holds, let z € S. Then z € BU BB U BSB.

We consider three cases:

CASE 1: x € B. Then x = b for some b € B. This implies (x), C (b),. Hence
r <p b.

CASE 2: z € BB. Then x = b1bs for some by,bs € B. This implies (z), C
(blbg)b. Hence = <; b1bs.

CASE 3: z € BSB. Then x = bgsby for some b3, by € B,s € S. This implies
(z)p C (bgsbs)p. Hence x < b3sby.

The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and
Lemma 2.11 (2).

Conversely, assume that the conditions (1), (2) and (3) hold. We will show
that B is a bi-base of S. Clearly, (B), C S. By (1), S C (B)s, and S = (B). It
remains to show that B is a minimal subset of S with the property S = (B)p.

Suppose that S = (A), for some A C B. Since A C B, there exists b € B\ A.
Since be BC S = (A), and b ¢ A, it follows that b € AAU ASA.

There are two cases to consider:
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CASE 1: b € AA. Then b = ayay for some a1,as € A. We have ay,as € B.
Since b ¢ A, so b # a; and b # ay. Since b = ajas, so (b), C (ajaz)p. Hence
b < a1az. This contradicts to (2).

CASE 2: b € ASA. Then b = aszsas for some az,a4 € A and s € S. Since
bé¢ A, we have b # a3 and b # ay4. Since A C B, as,aq € B. Since b = azsay, SO
(b)y C (assaq)p. Hence, b < azsay. This contradicts to (3).

Therefore, B is a bi-base of S as required, and the proof is completed. O

In Example 2.2, we have that {u} is a bi-base of S where as it is not a sub-
semigroup of S. So, we find a condition in order that a bi-base is a subsemigroup.

Theorem 2.13. Let B be a bi-base of a semigroup S. Then B is a subsemigroup
of S if and only if B satisfies the following conditions: For any b,c € B, bc =b or
be = c.

Proof. By Lemma 2.6, and B is a subsemigroup of S implies for any b,c € B,
bec = b or bc = c. The opposit direction is clear. O

Question. It was proved in [3] (Theorem 3) that for any two two-sided bases of a
semigroup have the same cardinality. This is hold true for an ordered semigroup
(see [1], Theorem 2.10). Here, we ask for bi-bases of a semigroup. Indeed, is it
true that for any two bi-bases of a semigroup have the same cardinality?
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