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A note on a class of gyrogroups

Marius T rn uceanu

Abstract. We give a necessary and su�cient condition for a gyrogroup to be gyrocommutative.

We also prove that under a suitable assumption two �nite groups central by a 2-Engel group are

isomorphic if and only if their associated gyrogroups are isomorphic.

1. Introduction

Gyrogroups are suitable generalization of groups, whose origin is described in
[7, 8]. They share remarkable analogies with groups. In fact, every group forms a
gyrogroup under the same operation. Many of classical theorems in group theory
also hold for gyrogroups, including the Lagrange theorem [4], the fundamental
isomorphism theorems [5], and the Cayley theorem [5] (for all these theorems
see also [3]). Gyrogroup actions and related results, such as the orbit-stabilizer
theorem, the orbit decomposition theorem, and the Burnside lemma have been
studied in [6].

The present note deals with a connection between groups and gyrogroups,
namely with the gyrogroup associated to any group central by a 2-Engel group
(see [1]). We determine conditions for such a gyrogroup to be gyrocommutative
and for such two gyrogroups to be isomorphic. An interesting conservative functor
between a subcategory of groups and the category of gyrogroups is constructed,
as well.

Recall that a groupoid (G,�) is called a gyrogroup if its binary operation
satis�es the following axioms:

1. There is an element e ∈ G such that e� a = a for all a ∈ G.
2. For every a ∈ G, there is an element a′ ∈ G such that a′ � a = e.

3. For all a, b ∈ G, there is an automorphism gyr[a, b] ∈ Aut(G,�) such that

a� (b� c) = (a� b)� gyr[a, b](c) (left gyroassociative law)
for all c ∈ G.

4. For all a, b ∈ G, gyr[a� b, b] = gyr[a, b]. (left loop property)

Moreover, if
a� b = gyr[a, b](b� a) (gyrocommutative law)

for all a, b ∈ G, then (G,�) is called a gyrocommutative gyrogroup.
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We remark that the axioms in the above de�nition imply the right counterparts.
In particular, any gyrogroup has a unique two-sided identity e, and an element a
of the gyrogroup has a unique two-sided inverse a′. Given two elements a, b of a
gyrogroup G, the map gyr[a, b] is called the gyroautomorphism generated by a and

b. By Theorem 2.10 of [7], the gyroautomorphisms are completely determined by
the gyrator identity

gyr[a, b](c) = (a� b)′ � [a� (b� c)]

for all a, b, c ∈ G. Obviously, every group forms a gyrogroup under the same
operation by de�ning the gyroautomorphisms to be the identity automorphism,
but the converse is not in general true. From this point of view, gyrogroups
suitably generalize groups.

Recall also that gyrogroup homomorphism is a map between gyrogroups that
preserves the gyrogroup operations. A bijective gyrogroup homomorphism is called
a gyrogroup isomorphism. We say that two gyrogroups G1 and G2 are isomorphic,
written G1

∼= G2, if there exists a gyrogroup isomorphism from G1 to G2. Given
a gyrogroup G, a gyrogroup isomorphism from G to itself is called a gyrogroup

automorphism of G.
One of the most interesting purely algebraic classes of gyrogroups is introduced

in [1], as follows. De�ne on a group (G, ·) the binary operation

a� b = a2ba−1,∀ a, b ∈ G.

Then, by Theorem 3.7 of [1], we have:

Theorem 1. (G,�) is a gyrogroup if and only if (G, ·) is central by a 2-Engel
group.

In what follows we will call (G,�) the gyrogroup associated to a given group

(G, ·), which is assumed to be central by a 2-Engel group. Note that in this case
the gyroautomorphism generated by two elements a and b of G is given by

gyr[a, b] = ϕ[a,b−1],

where ϕ[a,b−1] is the inner automorphism of G induced by the commutator [a, b−1]
of a and b−1.

We are now in a position to characterize the gyrocommutativity of (G,�).

Theorem 2. (G,�) is gyrocommutative if and only if the inner automorphism

group of (G, ·) is of exponent 3.

Clearly, if (G, ·) is commutative, then the binary operations · and � coincide,
and (G,�) is gyrocommutative. Note that there is also a non- commutative group,
which is central by a 2-Engel group, such that its associated gyrogroup is gyro-
commutative (e.g. the group of upper triangular matrices over F3 with diagonal
(1,1,1)).

Next, let (G1, ·) and (G2, ·) be two �nite groups central by a 2-Engel group, and
let (G1,�) and (G2,�) be their associated gyrogroups. Clearly, if (G1, ·) ∼= (G2, ·),
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then a group isomorphism from G1 to G2 is also a gyrogroup isomorphism from
(G1,�) to (G2,�), that is, (G1,�) ∼= (G2,�). A su�cient condition for the
converse to be true is given in the following theorem.

Theorem 3. If 3 - |G1|, then (G1, ·) ∼= (G2, ·) if and only if (G1,�) ∼= (G2,�).

From Theorem 3 we obtain the following corollary.

Corollary 4. Let (G, ·) be a group central by a 2-Engel group such that 3 - |G|.
Then the group of all gyrogroup automorphisms of (G,�) coincides with the group

of all automorphisms of (G, ·).

Finally, we observe that there is an interesting conservative functor F between
the category C of �nite groups central by a 2-Engel group whose order is not
divisible by 3 and the category of gyrogroups, which associates to each object
(G, ·) in C the gyrogroup (G,�) and to each homomorphism f in C the gyrogroup
homomorphism F (f) = f .

Much of our notation is standard and will usually not be repeated here. Ele-
mentary notions and results on groups can be found in [2].

2. Proofs of the main results

Proof of Theorem 2. In our case the gyrocommutative law becomes

a2ba−1 = ϕ[a,b−1](b
2ab−1), ∀ a, b ∈ G,

which means
b3a = ab3, ∀ a, b ∈ G,

i.e.,
b3 ∈ Z(G), ∀ b ∈ G.

Obviously, this condition is equivalent to exp(Inn(G)) = 3 in view of the group
isomorphism G/Z(G) ∼= Inn(G).

Proof of Theorem 3. Assume that (G1,�) ∼= (G2,�) and let f : G1 −→ G2 be a
gyrogroup isomorphism. Then f is a bijection and

(1) f(a2ba−1) = f(a)2f(b)f(a)−1, ∀ a, b ∈ G.

If ei is the identity of Gi, i = 1, 2, we infer that f(e1) = e2, by taking a = b = e1
in (1). Also, by taking b = a and b = a−1 in (1), respectively, one obtain

f(a2) = f(a)2 and f(a−1) = f(a)−1, ∀ a ∈ G1.

Next, let us write (1) with a−1ba and a−1b−1 instead of b, respectively. Then

(2) f(ab) = f(a)2f(a−1ba)f(a)−1

and

(3) f(aba−1) = f(a)f(ba)f(a)−2.



154 M. T rn uceanu

Replace a with a−1 in (3). Then f(a−1ba) = f(a)−1f(ba−1)f(a)2, which together
with (2) leads to

f(ab) = f(a)f(ba−1)f(a).

By writing this equality with ba instead of b, we �nd

f(aba) = f(a)f(b)f(a), ∀ a, b ∈ G1.

Finally, replacing in this identity b with a2ba−1, we obtain

(5) f(a3b) = f(a)3f(b), ∀ a, b ∈ G1,

and taking b = e1 in (5) gives

(6) f(a3) = f(a)3, ∀a ∈ G1.

We are now in a position to prove that f is a group homomorphism.
Let x, y ∈ G1. Since 3 - |G1|, we have 3 -o(x) and consequently gcd(3, o(x)) = 1,

i.e., 1 = 3α+ o(x)β for some integers α and β. It follows that

x = x3α+o(x)β = x3αxo(x)β = x3α.

Then (5) and (6) lead to

f(xy) = f(x3αy) = f((xα)3y) = f(xα)3f(y) = f(x3α)f(y) = f(x)f(y),

as desired. Hence f is a group isomorphism, completing the proof.
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