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On topological semi-hoops

Mona Aaly Kologani, Nader Kouhestani and Rajab A. Borzooei

Abstract. We investigate topological structuers on a semi-hoop A and under conditions show

that there exists a topology T on A such that (A, T ) is a topological semi-hoop. We prove

that for each cardinal number α, there exists a topological semi-hoop of order α. Finally, the

separation axioms on topological semi-hoops are study and show that for any in�nite cardinal

number α there exists a Hausdor� topological semi-hoop of order α with non-trivial topology.

1. Introduction

Algebra and topology, the two fundamental domains of mathematics, play com-
plementary roles. Topology studies continuity and convergence and provides a
general framework to study the concept of a limit. Algebra studies all kinds of
operations and provides a basis for algorithms and calculations. Many of the most
important objects of mathematics represent a blend of algebraic and of topological
structures. Topological function spaces and linear topological spaces in general,
topological groups and topological �elds and topological lattices are objects of this
kind. Very often an algebraic structure and a topology come naturally together.
The rules that describe the relationship between a topology and algebraic opera-
tion are almost always transparent and natural the operation has to be continuous,
jointly continuous, jointly or separately. In the 20th century many topologists and
algebraists have contributed to topological algebra. In this paper, we introduce
the notion of topological semi-hoop and derive here conditions that imply a semi-
hoop to be a topological semi-hoop. We prove that for each cardinal number α,
there exists at least a topological semi-hoop of order α. Also, we study separation
axioms on topological semi-hoop and show that for any in�nite cardinal number
α there exists a Hausdor� topological semi-hoop of order α with non-trivial topol-
ogy. We prove that a Hausdor� topological semi-hoop algebra exists and we try
to study some properties of it. Also, we investigate that under what conditions a
topological semi-hoop can be a Hausdor�, connected, T0 and T1-spaces.
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2. Preliminaries

In this section, we recollect some de�nitions and results which will be used in this
paper and we shall not cite them every time they are used.

De�nition 2.1. An algebra (A,�,→,∧, 1) of type (2, 2, 2, 0) is called a semi-hoop

if it satis�es the following conditions:
(SH1) (A,∧, 1) is a ∧-semilattice with upper bound 1,
(SH2) (A,�, 1) is a commutative monoid,
(SH3) (x� y)→ z = x→ (y → z), for all x, y, z ∈ A.

On a semi-hoop A we de�ne x 6 y if and only if x → y = 1. It is easy to see
that ” 6 ” is a partial order relation on A and for any x ∈ A, x 6 1. A semi-hoop
A is bounded if there exists an element 0 ∈ A such that 0 6 x, for all x ∈ A. We
let x0 = 1, xn = xn−1�x, for all n ∈ N. In a bounded semi-hoop A, we de�ne the
negation ′ on A by, x′ = x→ 0, for all x ∈ A. If (x′)′ = x, for all x ∈ A, then the
bounded semi-hoop A is said to have the Double Negation Property, or (DNP) for
short. A semi-hoop A is called a hoop if x�(x→ y) = y�(y → x), for all x, y ∈ A.
A semi-hoop A is called a t-semi-hoop, if xt y = ((x→ y)→ y)∧ ((y → x)→ x)
and t is a join operation on A.

The following proposition provides some properties of semi-hoops.

Proposition 2.2. (cf. [7]) Let A be a semi-hoop. Then the following hold, for all

x, y, z ∈ A:
(i) x� y 6 z if and only if x 6 y → z,

(ii) x� y 6 x, y,
(iii) x 6 y → x,
(iv) x� (x→ y) 6 y,
(v) x 6 y implies z → x 6 z → y,

(vi) x 6 y implies y → z 6 x→ z,
(vii) (x→ y) 6 (y → z)→ (x→ z),
(viii) (x→ y)� (y → z) 6 (x→ z).

Remark 2.3. (cf. [7]) t-semi-hoop (A,t,∧) is a distributive lattice.

De�nition 2.4. Let A be a semi-hoop. A non-empty subset F of A is called a
�lter of A if,

(F1) x, y ∈ F implies x� y ∈ F ,
(F2) x 6 y and x ∈ F imply y ∈ F , for any x, y ∈ A.

We use F(A) to denote the set of all �lters of A. Clearly, 1 ∈ F , for all
F ∈ F(A). F ∈ F(A) is called a proper �lter if F 6= A. It can be easily seen
that, if A is a bounded semi-hoop, then a �lter is proper if and only if it is not
containing 0.

Let (A,�,→,∧, 1) be a semi-hoop and F ∈ F(A). We de�ne a binary relation
∼F on A by x ∼F y if and only if x→ y, y → x ∈ F , for any x, y ∈ A. Then ∼F
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is a congruence on A. Let A/F = {x/F | x ∈ A}, where x/F = {y ∈ A | x ∼F y}.
Then the binary relation 6 on A/F which is de�ned by:

x/F 6 y/F if and only if x→ y ∈ F.

is a partial order relation on A/F . Thus (A/F,⊗, ,u, 1A/F ) is a semi-hoop,
where for any x, y ∈ A:

1A/F = 1/F, x/F ⊗ y/F = (x� y)/F, x/F  y/F = (x→ y)/F

and x/F u y/F = (x ∧ y)/F.

Recall that a set X with a family T of it's subsets is called a topological space,
denoted by (X, T ), if X, ∅ ∈ T and T is closed under �nite intersections and
arbitrary unions. The members of T are called open sets of X and the complement
of U ∈ T , that is U c, is said to be a closed set. If B is a subset of X, the smallest
closed set containing B is called the closure of B and denoted by B. A subfamily
{Uα} of T is said to be a base of U if for each x ∈ U ∈ T , there exists an α such
that x ∈ Uα ⊆ U, or equivalently, each U ∈ T is the union of members of {Uα}. A
subset P of topological space (X, T ) is said to be a neighborhood of x ∈ X if there
exists an open set U such that x ∈ U ⊆ P. Now, let (A, T ) be a topological space.
We have the following separation axioms in (A, T ):

T0: For each x, y ∈ A and x 6= y, at least one of them has an open neighborhood
not containing the other.

T1: For each x, y ∈ A and x 6= y, there exists two open sets U and V such that
x ∈ U and y /∈ U , and y ∈ V and x /∈ V .

T2: For each x, y ∈ A and x 6= y, both have disjoint open neighborhoods U
and V such that x ∈ U and y ∈ V .

3. Topological semi-hoops

De�nition 3.1. Let T be a topology on semi-hoop (A,�,→,∧, 1) and let ∗ be
one of the operations �,→,∧. Then

(i) (A, ∗, 1) is called right topological semi-hoop if for each a ∈ A, the map
ra : A→ A, de�ned by x→ x∗a is continuous, or equivalently, for any x ∈ A
and each open neighborhood U of x ∗ a, there exists an open neighborhood
V of x such that V ∗ a ⊆ U . In this case, we also call that operation ∗ is
continuous in �rst variable.

(ii) (A, ∗, T ) is called topological semi-hoop, if ∗ : A × A ↪→ A is continuous, or
equivalently, if for any x, y ∈ A and any open neighborhoodW of x∗y, there
exist two open sets U and V such that x ∈ U , y ∈ V and U ∗ V ⊆W .

(iii) (A, T ) is called (right)topological semi-hoop, if (A,�,→,∧, T ) is (right) topo-
logical semi-hoop.
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For U, V ⊆ A we de�ne U � V , U → V and U ∧ V as follows:

U � V = {x� y | x ∈ U, y ∈ V }, U → V = {x→ y | x ∈ U, y ∈ V }

and U ∧ V = {x ∧ y | x ∈ U, y ∈ V }

Example 3.1. (cf. [4]) (i) Let A = {0, a, b, c, 1} and

� 0 a b c 1

0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

x∧y = x�(x→ y). By routine calculations, A with these operations is a bounded
semi-hoop. De�ne the topology T = {∅, {0}, {a, b}, {1, c}, {a, b, c, 1}, A}. Then it
is easy to see that (A, T ) is a topological semi-hoop.

(ii) Let A = {a, b, 1} be a chain. Then de�ne, for any x, y ∈ A, x ∧ y =
min{x, y} and the operations � and → on A as follows:

� 1 a b

1 1 a b
a a a a
b b a a

→ 1 a b

1 1 a b
a 1 1 1
b 1 b 1

It is easy to see that A with these operations is a semi-hoop. We de�ne the
topology T = {∅, {a}, A}. Then by routine calculations, (A,�,→,∧, T ) is a right
topological semi-hoop. But (A,→, T ) is not one topological semi-hoop. Because
1 → a = a ∈ {a} such that A and {a} are two open sets of 1 and a, respectively,
such that A→ {a} = A * {a}.

Theorem 3.2. Let (A,→, T ) be a topological semi-hoop. If {1} is an open set,

then (A, T ) is a topological semi-hoop.

Proof. Let {1} be an open set and x ∈ A. Since (A,→, T ) is a topological semi-
hoop and x→ x = 1 ∈ {1}, there is an open sets U such that x ∈ U , x→ U = {1}
and U → x = {1}, which implies that U = {x}. Hence, T is a discrete topology
on A and so (A, T ) is a topological semi-hoop.

Theorem 3.3. Let (A,�,→,∧, 1) be a semi-hoop and F be a family of �lters

which is closed under intersections. Then there exists a topology T on A such that

(A, T ) is a topological semi-hoop.

Proof. De�ne T = {U ⊆ A | ∀x ∈ U, ∃F ∈ F(A) such that x/F ⊆ U}. For
each x ∈ A and F ∈ F , the set x/F ∈ T , because if y is an arbitrary element
of x/F , then y ∈ y/F = x/F . It is easy to see that T is a topology on A. We
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prove that ∗ ∈ {�,→,∧} is continuous. For this, suppose x∗ y ⊆ U ∈ T such that
∗ ∈ {�,→,∧}. Then for some F ∈ F , (x ∗ y)/F ⊆ U , and so x/F ∗ y/F ⊆ U .
Since x/F and y/F are two open neighborhoods of x and y, respectively, such
that x/F ∗ y/F ⊆ (x ∗ y)/F ⊆ U . Hence, ∗ is continuous. Therefore, (A, T ) is a
topological semi-hoop.

Theorem 3.4. Let (A,�,→,∧, T ) be a topological semi-hoop such that, for any

∅ 6= U ∈ T , 1 ∈ U and a /∈ A. Suppose Aa = A∪{a}. Then there exists a topology

Ta on Aa such that (Aa, Ta) is a topological semi-hoop.

Proof. De�ne the operation u, ⊗ and  on Aa as follows,

x⊗ y =

 x� y if x ∈ A, y ∈ A
a if x ∈ Aa, y = a
a if x = a, y ∈ Aa

, x y =

 x→ y if x ∈ A, y ∈ A
a if x ∈ A, y = a
1 if x = a, y ∈ Aa

x u y = x⊗ (x y)

By routine calculation, we can see that (Aa,⊗, ,u, 1) is a semi-hoop. It is easy
to verify that Ta = {U ∪ {a} | U ∈ T } ∪ {∅} is a topology on Aa. Now, we prove
that (Aa, Ta) is a topological semi-hoop. For this, we prove that ⊗ and  are
continuous.

Let x ⊗ y ∈ U ∪ {a}. In the following cases, we �nd two sets V,W ∈ Ta such
that x ∈ V , y ∈W and V ⊗W ⊆ U ∪ {a}.

Case 1. If x, y ∈ A, then x ⊗ y = x � y ∈ U . Since � is continuous,
there exist V,W ∈ T such that x ∈ V , y ∈ W and x � y ∈ V � W ⊆ U . If
z1 ∈ V ∪ {a} and z2 ∈ W ∪ {a}, then z1 ⊗ z2 ∈ {z1 � z2, a} ⊆ U ∪ {a}. Hence,
V ∪ {a} ⊗W ∪ {a} ⊆ U ∪ {a}.

Case 2. If x = a and y ∈ A, then x = a ∈ {a} ∈ Ta, y ∈ Aa ∈ Ta and
{a} ⊗Aa = {a} ⊆ U ∪ {a}.

Case 3. If x = y = a, then x = y = a ∈ {a} ∈ Ta and {a} ⊗ {a} = {a} ∈
U ∪ {a}.

These Cases prove that (Aa,⊗, Ta) is a topological semi-hoop.
Now, we prove that  is continuous. For this, let x  y ∈ U ∪ {a}. In

the following cases, we �nd two sets V,W ∈ Ta such that x ∈ V , y ∈ W and
V  W ⊆ U ∪ {a}.

Case 1. If x, y ∈ A, then x  y = x → y ∈ U . Since → is continuous, there
exist V,W ∈ T such that x ∈ V , y ∈W and x→ y ∈ V →W ⊆ U . If z1 ∈ V ∪{a}
and z2 ∈ W ∪ {a}, since, for any U ∈ T , 1 ∈ U , then z1  z2 ∈ {z1 → z2, a, 1} ⊆
U ∪ {a}. Hence, V ∪ {a} W ∪ {a} ⊆ U ∪ {a}.

Case 2. If x = a and y ∈ A, then x = a ∈ {a} ∈ Ta, y ∈ Aa ∈ Ta and
{a} Aa = {1} ⊆ U ∪ {a}.

Case 3. If x ∈ A and y = a, then x ∈ Aa ∈ Ta, y = a ∈ {a} ∈ Ta and
Aa  {a} = {a, 1} ⊆ U ∪ {a}.

Case 4. If x = y = a, then x = y = a ∈ {a} ∈ Ta and {a}  {a} = {1} ∈
U ∪ {a}.



170 M. Aaly Kologani, N. Kouhestani and R. A. Borzooei

These Cases prove that (Aa, , Ta) is a topological semi-hoop. According to
de�nition of u, since ⊗ and are continuous, it is clear that u is continuous, too.
Therefore, (Aa, Ta) is a topological semi-hoop.

Theorem 3.5. For any n > 2 there exists a topological semi-hoop of order n.

Proof. Let A be a semi-hoop of order n > 1. It is clear that, T = {A, ∅} is a
topology on A, and so (A, T ) is a topological semi-hoop. Now, suppose x /∈ A.
De�ne Ax = A ∪ {x}. Then by Theorem 3.4, there exist the operations u, ⊗,
 and topology Tx on Ax such that (Ax, Tx) is a topological semi-hoop. Since
Tx = {∅, {x}, Ax}, it is clear that Tx is a non-trivial topology on Ax.

Theorem 3.6. For any countable set A such that 1 ∈ A, there exists a topological

semi-hoop algebra on A.

Proof. Consider A = {x0 = 1, x1, x2, . . .} as a countable subset and de�ne the
operation ∧, � and → on A as follows,

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j

xi 6 xj if and only if xi → xj = 1.

By routine calculation, we can see that (A,�,→,∧, 1) is a semi-hoop. The set
Fn = {1, x1, . . . , xn}, for any n > 1 is a �lter of A. Let B = {Fn | n > 1}.
By Theorem 3.3, there is a non-trivial topology T on A such that (A, T ) is a
topological semi-hoop.

Theorem 3.7. Let (A,�,→,∧, 1, T ) be a topological semi-hoop and α be a cardi-

nal number. If | A |6 α, then there exists a topological semi-hoop (B,⊗, ,u, 1,U)
such that | B |> α, 1 ∈ U ∈ U and A is a subalgebra of B.

Proof. Let Γ be a collection of a topological semi-hoops (H, ◦, 99K,∩, 1,U) such
that for any A ⊆ H we have ◦ |A= �, 99K|A=→ and ∩ |A= ∧.

The following relation is a partial order on Γ:

(H,◦,99K,∩,1,U)6(K,?,#,u,1,V)⇔ H⊆K, ?|H =◦,# |H =99K,u|H =∩, U⊆V.

Let
∑

= {(Hi, ◦i, 99Ki,∩i, 1,Ui) | i ∈ I} be a chain in Γ. Put H =
⋃
i∈I Hi and

U =
⋃
i∈I Ui. If x and y are two elements of H, since

∑
is a chain, then for some

i ∈ I, x, y ∈ Hi. De�ne x ◦ y = x ◦i y, x 99K y = x 99Ki y and x ∩ y = x ∩i y.
We prove that ◦, 99K and ∩ are operations on H. Suppose x, y ∈ Hi ∩Hj . Since∑

is a chain, Hi ⊆ Hj or Hj ⊆ Hi. Without the lost of generality, assume that
Hi ⊆ Hj . Let ∗ ∈ {◦, 99K,∩}. Then ∗j |Hi= ∗i. So x∗j y = x∗iy. This proves that
∗ is an operation on H. Now, it is easy to see that (H, ◦, 99K,∩, 1) is a semi-hoop
such that ◦ |A= �, 99K|A=→ and ∩ |A= ∧.

On the other hand, since
∑

is a chain, U is a topology on H. We prove that
(H, ◦, 99K,∩, 1,U) is a topological semi-hoop. Let ∗ ∈ {◦, 99K,∩} and x∗y ∈ U ∈ U .
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Then there exists an i ∈ I such that x∗y = x∗i y ∈ U ∈ Ui. Since ∗i is continuous
in (Hi,Ui), there are V,W ∈ Ui such that x ∈ V , y ∈ W and V ∗i W ⊆ U . This
proves that ∗ is continuous in (H,U). Thus, (H, ◦, 99K,∩, 1,U) is an upper bound
for
∑
. By Zorn's Lemma, Γ has a maximal element. Suppose (B,⊗, ,u, 1,U)

is a maximal element of Γ. We prove that | B |> α. If | B |< α, then for some
non-empty set C, | B ∪ C |= α. Take a ∈ C −B and put H = B ∪ {a}. Then by
Theorem 3.4, it is easy to see that H with the following operations

x • y =

 x⊗ y if x ∈ B, y ∈ B
a if x ∈ H, y = a
a if x = a, y ∈ H

xy y =

 x y if x ∈ B, y ∈ B
a if x ∈ B, y = a
1 if x = a, y ∈ H

and x u1 y = x • (xy y)

is a semi-hoop. The set D = U ∪{{a}} is a subbase for a topology V on H. Similar
to the proof of Theorem 3.4, we can see that, (H,V) is a topological semi-hoop.
But (H, •,y,u1,V) is a member of Γ that (B,⊗, ,u, 1,U) < (H, •,y,u1,V),
which is a contradiction. Therefore, | B |> α and A is a subalgebra of B.

Theorem 3.8. Let α be an in�nite cardinal number. Then there is a topological

semi-hoop of order α.

Proof. Let X be a set of cardinality α, 0, 1 ∈ X, A = {x0 = 1, x1, x2, . . .} �
a countable subset of X such that 0 /∈ A. Similar to Theorem 3.6, de�ne the
operation ∧, �, → and 6 on A as follows,

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j

xi 6 xj if and only if xi → xj = 1.

By routine calculation, we can see that (A,�,→,∧, 1) is a semi-hoop. The set
Fn = {1, x1, . . . , xn}, for any n > 1 is a �lter of A. Let B = {Fn | n > 1}.
By Theorem 3.3, there is a non-trivial topology T on A such that (A, T ) is a
topological semi-hoop. Now, de�ne the binary operation ⊗,  and u on X as
follows,

x⊗y =


x� y if x ∈ A, y ∈ A
x if x /∈ A, y ∈ A
y if x ∈ A, y /∈ A
0 if x /∈ A, y /∈ A

x y =



x→ y if x ∈ A, y ∈ A
y if x ∈ A, y /∈ A
1 if x /∈ A, y ∈ A
1 if x, y /∈ A, x = y
1 if x, y /∈ A ∪ {0}, x 6= y
1 if x = 0, y /∈ A ∪ {0}
0 if x /∈ A ∪ {0}, y = 0

and x u y =

{
0 if x, y /∈ A ∪ {0}, x 6= y

x⊗ (x y) otherwise.



172 M. Aaly Kologani, N. Kouhestani and R. A. Borzooei

By routine calculation, we can see that (X,⊗, ,u, 0, 1) is a bounded semi-hoop
of order α and the set C = T ∪ {{x} | x /∈ A} is a subbase for a topology U on
X. Since {1} /∈ U , U is a non-trivial topology on X. In the following cases we will
show that (X,⊗, ,u,U) is a topological semi-hoop. For this, let x⊗ y ∈ U ∈ C.

Case 1. If x, y ∈ A, then x ⊗ y = x � y ∈ U ∈ T . Since � is continuous in
(A, T ), there are V,W ∈ T containing x, y, respectively, such that V �W ⊆ U .
Hence, V ⊗W ⊆ U , which implies that ⊗ is continuous in (X,U).

Case 2. If x /∈ A and y ∈ A, then x ⊗ y = {x} ⊆ U . Now {x} and A, both,
belong to U and x ∈ {x}, y ∈ A and {x} ⊗A = {x} ⊆ U .

Case 3. If x ∈ A and y /∈ A, then A and {y} are two elements of U such that
x ∈ A, y ∈ {y} and x⊗ y = {y}, and so A⊗ {y} = {y} ⊆ U .

Case 4. If x, y /∈ A, then x ⊗ y = {0} ⊆ U . Then {x} and {y} are two open
sets in U which contains x, y, respectively, and {x} ⊗ {y} = {0} ⊆ U .

These Cases prove that (X,⊗,U) is a topological semi-hoop.
Now, we prove that  is continuous. For this, let x y ∈ U . In the following

cases, we �nd two sets V,W ∈ U such that x ∈ V , y ∈W and V  W ⊆ U .
Case 1. If x, y ∈ A, then x y = x→ y ∈ U ∈ T . Since → is continuous in

(A, T ), there are V,W ∈ T containing x, y, respectively, such that V → W ⊆ U .
Hence, V  W ⊆ U , which implies that  is continuous in (X,U).

Case 2. If x ∈ A and y /∈ A, then x  y = {y} ⊆ U . Thus, A and {y}
are two elements of U such that x ∈ A, y ∈ {y} and x  y = {y}, and so
A {y} = {y} ⊆ U .

Case 3. If x /∈ A and y ∈ A, then x  y = {1} ⊆ U . Now {x} and A, both,
belong to U and x ∈ {x}, y ∈ A and {x} A = {1} ⊆ U .

Case 4. If x, y /∈ A and x = y, then x  y = {1} ⊆ U . Then {x} is an open
set in U which contains x and {x} {x} = {1} ⊆ U .

Case 5. If x, y /∈ A∪{0} and x 6= y, then x y = {1} ⊆ U . Then {x} and {y}
are two open sets in U which contains x, y, respectively, and {x} {y} = {1} ⊆ U .

Case 6. If x = 0 and y /∈ A ∪ {0}, then x y = {1} ⊆ U . Then {0} and {y}
are two open sets in U which contains x, y, respectively, and {x} {y} = {1} ⊆ U .

Case 7. If x /∈ A ∪ {0} and y = 0, then x y = {0} ⊆ U . Then {x} and {0}
are two open sets in U which contains x, y, respectively, and {x} {y} = {0} ⊆ U .

These Cases prove that (X, ,U) is a topological semi-hoop. According to
de�nition of u, since ⊗ and are continuous, then u is continuous, too. Therefore,
there is a topological semi-hoop of order α.

Theorem 3.9. Let α be an in�nite cardinal number. Then there is a right topo-

logical semi-hoop of order α, which is not a topological semi-hoop.

Proof. Let A be a set with cardinal number α such that 0, 1 ∈ A. Consider a
countable subset A1 = {x0 = 1, x1, x2, . . .} of A and de�ne

xi ∧ xj = xi � xj = xmax{i,j} and xi → xj =

{
1 if i > j
xj if i < j
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xi 6 xj if and only if xi → xj = 1

By routine calculations, we can see that (A1,�,→,∧, 1) is a semi-hoop. If
Ui = {xi, xi+1, xi+2, . . .}, then B = {Ui | i = 1, 2, 3, . . .} is a base for a topology
TA1 on A1. We prove that (A1,�,→,∧, 1, TA1) is a right topological semi-hoop.
For this, let xi�xj ∈ U ∈ TA1 . If i 6 j, then xi�xj = xj ∈ U . Since xj ∈ Uj , we
have xj ∈ Uj ∩U , then xi�xj = xi� (Uj ∩U) = Uj ∩U ⊆ U . By the similar way,
if i > j, then xi�xj = xi ∈ U . Since � is commutative, xj �xi ∈ xj � (Ui ∩U) =
Ui∩U ⊆ U . Hence, (A1,�, TA1

), and so (A1,�,∧, TA1
) is a topological semi-hoop.

Now, suppose xi → xj ∈ U ∈ TA1 . If i > j, then xi → xj = 1 ∈ U . Since A1 is
only open neighborhood of {1}, U = A1. Clearly, xj ∈ A1 and xi → A1 ⊆ A1 = U .
If i < j, then xi → xj = xj ∈ U . Since B is a base for TA1

, xj ∈ Uj ⊆ U . Since
i < j, xi → Uj = Uj ⊆ U . Therefore, (A1,→, TA1

) is a right topological semi-
hoop. But this space is not a topological semi-hoop, because x1 ∈ U1, x2 ∈ U2

and x1 → x2 = x2 ∈ U2, but 1 = x2 → x2 ∈ U1 → U2 /∈ U2. Similar to Theorem
3.8, let A with the following operations,

x⊗y =


x� y if x ∈ A1, y ∈ A1

x if x /∈ A1, y ∈ A1

y if x ∈ A1, y /∈ A1

0 if x /∈ A1, y /∈ A1

x y =



x→ y if x ∈ A1, y ∈ A1

y if x ∈ A1, y /∈ A1

1 if x /∈ A1, y ∈ A1

1 if x, y /∈ A1, x = y
1 if x, y /∈ A1 ∪ {0}, x 6= y
1 if x = 0, y /∈ A1 ∪ {0}
0 if x /∈ A1 ∪ {0}, y = 0

and x u y =

{
0 if x, y /∈ A ∪ {0}, x 6= y

x⊗ (x y) otherwise.

Then (A,⊗, ,u, 0, 1) is a bounded semi-hoop. As the proof of Theorem 3.8, we
can prove that B = TA1

∪ {{x} | x /∈ A1} is a subbase for a topology U on A such
that (A,⊗, ,u, 0, 1,U) is a right topological bounded semi-hoop. But  is not
continuous in (A,U), because → is not continuous in (A1, TA1

).

4. Hausdor� topological semi-hoops

Theorem 4.1. Let (A, T ) be a topological semi-hoop and F(A) a basis of T .
Then, for all x ∈ A, x2 = x if and only if (A, T ) is a T0-space.

Proof. (⇒) Let x2 = x, for all x ∈ A. Then xn = x, for all n ∈ N. Suppose
x, y ∈ A and x 6= y. Since F(A) is a basis of T , the �lters 〈x〉 and 〈y〉 are two
open neighborhoods of x and y, respectively. If y ∈ 〈x〉 and x ∈ 〈y〉, then there
exist n,m ∈ N such that xn 6 y and ym 6 x. Hence, x 6 y and y 6 x, and so
x = y, which is a contradiction.
(⇐) Let (A, T ) be a T0-space and x ∈ A. If x2 6= x, then there exists U ∈ F(A)
such that x ∈ U and x2 /∈ U or there exists V ∈ F(A) such that x /∈ V and
x2 ∈ V . But both statements are not correct, because U and V ∈ F(A).
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Theorem 4.2. Let (A, T ) be a topological semi-hoop and U be an open neighbor-

hood of 1. Then,

(i) if for each x ∈ A, U → x is an open neighborhood of x, then (A, T ) is

T0-space,

(ii) if for each x ∈ A, U�x is an open neighborhood of x, then (A, T ) is T0-space.

Proof. (i). Let x, y ∈ A and x 6= y. Then U → x ∈ T and U → y ∈ T . If
x ∈ U → y and y ∈ U → x, then by Proposition 2.2(v), y 6 x and x 6 y. Hence,
x = y, which is a contradiction. Therefore, (A, T ) is T0-space.

(ii). The proof is similar (i).

Theorem 4.3. Let (A,→, T ) be a topological semi-hoop. Then (A,→, T ) is T0-
space if and only if for any 1 6= x ∈ A, there exist U ∈ T such that x ∈ U and

1 /∈ U .

Proof. Let x, y ∈ A and x 6= y. Then x → y 6= 1 or y → x 6= 1. Without the lost
of generality, suppose x→ y 6= 1. Then there exist a U ∈ T such that x→ y ∈ U
and 1 /∈ U . Since→ is continuous, there are P,Q ∈ T such that x ∈ P , y ∈ Q and
P → Q ⊆ U . If x ∈ Q, then 1 = x → x ∈ P → Q ⊆ U , which is a contradiction.
So, x /∈ Q. Hence, (A,→, T ) is T0-space. The proof of converse is clear.

Theorem 4.4. If α is an in�nite cardinal number, then there is a T0 topological

semi-hoop of order α, which it's topology is non-trivial.

Proof. Let (A,�,→,∧, T ) and (X,⊗, ,u,U) be topological semi-hoops in Theo-
rem 3.8. It is clear that U is non-trivial. Let x ∈ X −{1}. If x ∈ A, then for some
n > 1, x /∈ Fn. Hence, x ∈ x/Fn ∈ U and 1 /∈ x/Fn. If x /∈ A, then x ∈ {x} ∈ U
and 1 /∈ {x}. Now, by Theorem 4.3, (X,⊗, ,u,U) is a topological semi-hoop of
order α.

In the next example, we have a topological semi-hoop that is T1-space.

Example 4.2. Let A be a t-semi-hoop such that x2 = x, for all x ∈ A. Suppose
Aa = {x ∈ A | x > a} and B = {Aa | a ∈ A}. We claim that B is a basis of a
topology on A. For this, it is clear that x ∈ Ax, for all x ∈ A. Suppose x ∈ Aa∩Ab,
for a, b ∈ A. Then a 6 x and b 6 x. Since A is a t-semi-hoop, we have a t b 6 x,
and so x ∈ Aatb. Also, if x ∈ Aatb, then a, b 6 a t b 6 x. Hence, x ∈ Aa ∩ Ab.
Thus, Aa ∩ Ab = Aatb. Therefore, B is a basis of a topology T on A. Now, we
prove that (A,�, T ) is a T1 topological semi-hoop. For this, let x, y, c ∈ A such
that x � y ∈ Ac. Then c 6 x � y. By Proposition 2.2(ii), c 6 x � y 6 x, y, then
x, y ∈ Ac. Thus, x � y ∈ Ac � Ac. Let z ∈ Ac � Ac. Then there exist a, b ∈ Ac
such that z = a � b. Since a, b > c, we have a � b > c � c. Then by assumption,
a � b > c. Hence, z = a � b ∈ Ac, and so Ac � Ac ⊆ Ac. Then (A,�, T ) is a
topological semi-hoop. Now, suppose x, y ∈ A such that x 6= y. Then x ∈ Ax and
y ∈ Ay. If y ∈ Ax and x ∈ Ay, then x 6 y and y 6 x. This implies that x = y,
which is a contradiction. Therefore, (A,�, T ) is a T1 topological semi-hoop.
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Theorem 4.5. Let (A,→, T ) be a topological semi-hoop. Then (A, T ) is a T1-
space if and only if it is a T0-space.

Proof. Let (A, T ) be a T0-space and x 6= y. Then x → y 6= 1 or y → x 6= 1.
Without the lost of generality, suppose x → y 6= 1. Then there exist a U ∈ T
such that x → y ∈ U and 1 /∈ U or x → y /∈ U and 1 ∈ U . First assume that
x → y ∈ U and 1 /∈ U . Since → is continuous, there are P,Q ∈ T such that
x ∈ P , y ∈ Q and P → Q ⊆ U . If x ∈ Q, then 1 = x → x ∈ P → Q ⊆ U , which
is a contradiction. Similarly, y /∈ P . Now, if 1 ∈ U and x → y /∈ U , then since
1 = x → x = y → y ∈ U , there are V,W ∈ T such that x ∈ V and y ∈ W such
that V → V ⊆ U and W → W ⊆ U . If y ∈ V , then x→ y ∈ V → V ⊆ U , which
is a contradiction. Similarly, x /∈ W . Therefore, (A, T ) is a T1-space. The proof
of converse is clear.

Corollary 4.6. If α is an in�nite cardinal number, then there is a T1 topological

semi-hoop of order α which it's topology is non-trivial.

Proof. By Theorems 4.4 and 4.5, the proof is clear.

Theorem 4.7. Let (A,→, T ) be a topological semi-hoop. Then the following state-

ments are equivalent:

(i) (A,→, T ) is Hausdor�.

(ii) {1} is closed.

(iii) for any 1 6= x ∈ A, there exist two open sets U and V of 1 and x, respectively,
such that U ∩ V = ∅.

(iv) (A,→, T ) is T1-space.

Proof. (i)⇒ (ii). Since A is Hausdor�, it is clear that {1} is closed.
(ii) ⇒ (iii). Let {1} be closed and x 6= 1. Then 1 → x = x ∈ A − {1} ∈ T .

Since → is continuous, there exist two open neighborhoods U and V of 1 and x,
respectively, such that U → V ⊆ A − {1}. If z ∈ U ∩ V , then 1 = z → z ∈ U →
V ⊆ A− {1}, which is a contradiction. Therefore, U ∩ V = ∅.

(iii)⇒ (iv). Let x, y ∈ A and x 6= y. Then x→ y 6= 1 or y → x 6= 1. Without
the lost of generality, suppose x → y 6= 1. By (iii), there exist two disjoint open
sets U and V which contain x → y and 1, respectively. Since → is continuous,
there are P,Q ∈ T such that x ∈ P , y ∈ Q and P → Q ⊆ U . If x ∈ Q, then
1 = x → x ∈ P → Q ⊆ U , which is a contradiction. So, x /∈ Q. Similarly, y /∈ P .
Hence, (A,→, T ) is T1-space.

(iv) ⇒ (i). Let x, y ∈ A and x 6= y. Then x → y 6= 1 or y → x 6= 1. Without
the lost of generality, suppose x → y 6= 1. Since T is a T1-space, there exist two
open neighborhoods U and V of x → y and 1, respectively, such that 1 /∈ U and
x → y /∈ V . Since → is continuous, there exist P,Q ∈ T such that x ∈ P , y ∈ Q
and P → Q ⊆ U . If z ∈ P ∩ Q, then 1 = z → z ∈ U , which is a contradiction,
and so P ∩Q = ∅. By the similar way, other case is clear. Therefore, (A,→, T ) is
Hausdor�.
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Corollary 4.8. If α is an in�nite cardinal number, then there is a Hausdor�

topological semi-hoop of order α, which it's topology is non-trivial.

Proof. By Corollary 4.6 and Theorem 4.7, the proof is clear.

Suppose A is a semi-hoop algebra and F is a proper �lter of A. De�ne
∑

=
{U ∈ F(A) | ∃ F ∈ F(A) such that F ⊆ U} and f :

∑
↪→ F(A/F ) is a map such

that f(U) = U/F , for all U ∈
∑
. Then it is easy to prove that f is a one to one

corresponding among
∑

and F(A/F ).
Let T be a topology on semi-hoop algebra A, F ∈ F(A) and π : A ↪→ A/F be

canonical epimorphism. Then the set T̃ = {U ⊆ A/F | π−1(U) ∈ T } is a topology
on A/F . T̃ is called quotient topology.

It is easy to see that πF : (A, T ) ↪→ (A/F, T̃ ) is continuous. Also, it is easy to
prove that if ∗ ∈ {�,→,∧} and (A, ∗, T ) is a topological semi-hoop algebra, then

(A/F, ∗, T̃ ) is a topological quotient semi-hoop algebra provided πF : A ↪→ A/F
is an open map.

Proposition 4.9. Let (A,→, T ) be a topological semi-hoop, F ∈ F(A) and T̃ be

quotient topology on A/F . If πF : A ↪→ A/F is an open map, then

(i) F is open if and only if (A/F, T̃ ) is discrete.

(ii) F is closed if and only if (A/F,→, T̃ ) is Hausdor�.

Proof. (i). Let F be open. Since πF : A ↪→ A/F is an open map, the set

πF (F ) = 1/F belongs to T̃ . Since (A/F,→, T̃ ) is a topological semi-hoop, by

Theorem 3.2, (A/F, T̃ ) is discrete. Conversely, suppose (A/F, T̃ ) is discrete. Then
1/F is an open set. Since πF : A ↪→ A/F is continuous, F = πF

−1(1/F ) ∈ T .
(ii). (⇒) By assumption, F is closed, then F c is open. Thus, for any x, y ∈ A,

if x → y ∈ F c, then there are two open neighborhood U and V of x and y,
respectively, such that U → V ⊆ F c, because → is continuous. Also, since π is
open, so π(U) and π(V ) are two open neighborhoods of x/F and y/F , respectively,
such that π(U) → π(V ) ⊆ π(U → V ) ⊆ π(F c). If z/F ∈ π(U) ∩ π(V ), then
1/F = z/F → z/F ∈ π(U)→ π(V ) ⊆ π(F c), which is a contradiction. Therefore,

(A/F,→, T̃ ) is Hausdor�.
(⇐) Since A/F is Hausdor�, the set {1/F} is closed in A/F , and so F =

π−1(1/F ) is closed in A.

5. Connected topological semi-hoop

A topological space A is said to be disconnected if it is the union of two disjoint
non-empty open sets. Otherwise, A is said to be connected. Also, (A, T ) is called
locally connected at x ∈ A, if for every open subset V containing x, there exists
a connected, open subset U with x ∈ U ⊆ V . Connected component, a maximal
subset of a topological space that can not be covered by the union of two disjoint
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open sets. The components of any topological space X form a partition of X,
they are disjoint, non-empty, and their union is the whole space. A topological
space X is totally disconnected if the connected components in X are the one-point
sets. Also, we know that the image of a connected space under a continuous map
is connected and a �nite cartesian product of connected spaces is connected (cf.
[10]).

Proposition 5.1. Let (A, T ) be a topological semi-hoop. If C is connected com-

ponents of 1, then C is a closed �lter of A.

Proof. Let C be connected component of 1 and x ∈ C. Since � is continuous, x�C
is a connected set which contains x. Since x ∈ (x�C)∩C, the set (x�C)∪C is a
connected set containing 1. Hence, (x�C)∪C ⊆ C. This implies that x�C ⊆ C,
so C � C ⊆ C. Now, suppose x 6 y and x ∈ C, then 1 = x → y ∈ C → y.
Since → is continuous, C → y is a connected set. Hence, C → y ⊆ C. So,
y = 1 → y ∈ C → y ⊆ C. Therefore, C is a �lter of A. Since C is component,
clearly it is closed.

Recall a semi-hoop A is locally �nite if only �lters of A are {1} and A.

Theorem 5.2. Let (A, T ) be a topological locally �nite semi-hoop. Then (A, T )
is connected or totally disconnected.

Proof. Suppose (A, T ) is not connected. Let C be connected component of 1.
Then by Proposition 5.1, C is a closed �lter of A. Since (A, T ) is not connected,
C = {1}. Let Cx be connected component of x ∈ A. Since → is continuous,
x → Cx is a connected set containing 1 = x → x. Hence, x → Cx ⊆ C = {1}.
Thus, x→ Cx = 1. By the similar way, Cx → x = 1. This implies that Cx = {x},
and so (A, T ) is totally disconnected.

Lemma 5.3. Let A be a semi-hoop and F ∈ F(A). Then x� a = y� b, for some

a, b ∈ F if and only if x/F = y/F in A/F .

Proof. (⇒) Let x�a = y�b, for some a, b ∈ F . Since x�a 6 y�b, by Proposition
2.2(i), a 6 x → (y � b). Since F ∈ F(A) and a ∈ F , by (F2), x → (y � b) ∈ F .
Moreover, by Proposition 2.2(ii) and (v), y � b 6 y, and so x→ (y � b) 6 x→ y.
Since F ∈ F(A) and x → (y � b) ∈ F , by (F2), x → y ∈ F . By the similar way,
y → x ∈ F . Therefore, x/F = y/F .
(⇐) Let x/F = y/F , for x, y ∈ A. Then x → y ∈ F and y → x ∈ F . Thus,
there exists a ∈ F such that y → x = a. Since a → (y → x) = 1, by (SH3),
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(a� y)→ x = 1, and so a� y 6 x. Then

[a� (x→ y)]→ [x→ (a� y)] by (SH3)

= (x→ y)→ [a→ (x→ (a� y))] by (SH3)

= (x→ y)→ [(x� a)→ (a� y))] by (SH3)

= (x→ y)→ [x→ (a→ (a� y))] by (SH3)

= (x� (x→ y))→ (a→ (a� y)) by Proposition 2.2(iv) and (vi)

> y → (a→ (a� y)) by (SH3)

= (a� y)→ (a� y)

= 1

Then a � (x → y) 6 x → (a � y). Since F ∈ F(A), a, x → y ∈ F , by (F1),
a� (x→ y) ∈ F and by (F2), x→ (a� y) ∈ F . Then there exists b ∈ F such that
x→ (a� y) = b. Thus, b→ [x→ (a� y)] = 1. By (SH3), (b� x)→ (a� y) = 1,
and so b�x 6 a�y. By the similar way, a�y 6 b�x. Therefore, a�y = b�x.

Proposition 5.4. Let (A, T ) be a topological semi-hoop and C be a connected

component of 1 in A. Then the following statements hold,

(i) if D is a closed subset of A/C such that π−1(D) is disconnected, then D is

disconnected,

(ii) if (A, T ) is disconnected, then (A/C, T̃ ) is disconnected.

Proof. (i). π−1(D) = X∪Y , whereX, Y are two non-empty disjoint closed subsets
of π−1(D) and hence, A. It is clear that X ⊆ π−1(π(X)). Let z ∈ π−1(π(X)).
Then there exists x ∈ X such that x/F = z/F . By Lemma 5.3, x � a = z � b,
for some a, b ∈ C. Given Cx and Cz, two connected component of x and z,
respectively. Then x�a ∈ x�C ⊂ Cx and z�b ∈ z�C ⊂ Cz. Since z�b = x�a,
Cx ∩ Cz 6= ∅. Hence, Cx ∪ Cz is connected. This means that Cx = Cz, and so
z ∈ X. Therefore, X = π−1(π(X)). Since X is closed in A, π(X) is closed in A/C.
By the similar way, Y = π−1(π(Y )) and π(Y ) is a closed subset of A/C. On the
other hand, π−1(π(X) ∩ π(Y )) = X ∩ Y = ∅ implies that π(X) ∩ π(Y ) = ∅. So,
D = π(X) ∪ π(Y ), where π(X) and π(Y ) are two disjoint closed subsets of A/C.
Hence, D is disconnected.

(ii). Let (A, T ) be disconnected. Since π−1(A/C) = A, by (i), (A/C, T̃ ) is
disconnected.

Theorem 5.5. Let (A, T ) be a topological semi-hoop, C be a connected component

of 1 in A and π : A→ A/C be open canonical epimorphism. Then A/C is totally

disconnected.

Proof. Let C be the connected component of 1 in A. Then by Proposition 5.1,
C is a closed �lter of A. Let K be a connected component of 1/C in A/C.
If 1/C 6= x/C, for some x/C ∈ A/C, then C is a proper subset of π−1(K).
Hence, π−1(K) is not connected. Since K is closed in A/C, by Proposition 5.4,
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K is disconnected, which is contradiction. Therefore, K = {1}. Suppose Kx is
connected component of x/C in A/C. Since → is continuous in A/C, Kx → x/C
is connected and 1/C ∈ Kx → x/C. Then Kx → x/C ⊆ K = {1/C}. Similarly,
x/C → Kx ⊆ K = {1/C}. Hence, for each y/C ∈ Kx, y/C → x/C = 1/C and
x/C → y/C = 1/C. So, x/C = y/C. This implies that Kx = {x/C}. Therefore,
A/C is totally disconnected.
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