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On the lattice of congruences

on completely regular semirings

Rajib Debnath and Anjan Kumar Bhuniya

Abstract. A semiring S is called completely regular if it is the disjunctive union of its subrings.

If S is a completely regular semiring, then the Green's relationH+ is a congruence on S and S/H+

is an idempotent semiring. Let V be a variety of idempotent semirings. Here we characterize the

lattice C(S) of all congruences on S when S is completely regular and S/H+ ∈ V. The lattice

C(S) can be embedded into the product of the lattice V(S) of all V-congruences on S and the

latticeM(S) of all additive idempotent-separating congruences on S if and only if S is τ -modular

completely regular semiring such that S/H+ ∈ V.

1. Introduction

A semigroup is called completely regular if it is the (disjunctive) union of its
subgroups. Completely regular semigroups were introduced in [3] by A. H. Cli�ord,
though he used the terminology `semigroups admitting relative inverses' to refer to
such semigroups. Such semigroups have been studied extensively. For an account
of the theory of completely regular semigroups, we refer to the book [13].

A semiring is a (2, 2) algebra (S,+, ·) such that both the additive reduct (S,+)
and the multiplicative reduct (S, ·) are semigroups and connected by the distribu-
tive laws

x(y + z) = xy + xz, (x+ y)z = xz + yz.

An element e ∈ S is called an additive idempotent if e + e = e. The set of all
additive idempotents of S is denoted by E+(S). A semiring S is called additive

regular if the additive reduct (S,+) is a regular semigroup. By an idempotent

semiring we mean a semiring S such that both the additive reduct (S,+) and
(S, ·) are bands. If moreover, the reduct (S,+) is commutative then S is called a
b-lattice. Also we refer to [5] for the unde�ned terms and notions in semirings and
[6] for background on semigroups.

Let us denote the Green's relations L,R,D and H on the additive reduct (S,+)
by L+, R+, D+ and H+, respectively. Also we denote the L+,R+,D+ and H+

classes of x ∈ S by L+
x , R

+
x , D

+
x and H+

x , respectively. A semiring S is called an
idempotent semiring (b-lattice, distributive lattice) of rings if there is a congruence
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ρ on S such that the quotient semiring S/ρ is an idempotent semiring (b-lattice,
distributive lattice) and each ρ-class is a ring.

Rings and distributive lattices both are semirings with commutative regular
addition. So, it is interesting to consider the semirings which are subdirect pro-
ducts of rings and distributive lattices. Such semirings were studied by Bandelt
and Petrich [1]. The study was continued by Ghosh [4] and he characterized the
Cli�ord semirings, equivalently, the semirings which are strong distributive lattices
of rings. Pastijn and Guo [12] proved that the semirings which are disjoint unions
of rings form a variety and they established various structure theorems for such
semirings. They proved that if S is a disjoint union of its subrings then H+ is an
idempotent semiring congruence on S. The term `completely regular semiring' was
�rst used by Sen, Maity and Shum [16] to mean the semirings which are disjoint
union of skew-rings (rings without commutativity of addition).

In [2], we establish several equivalent characterizations for the semirings which
are the disjunctive unions of rings. Let (S,+, ·) be the disjunctive union of its
subrings. Then the additive reduct (S,+) is the disjunctive union of its subgroups.
For every x ∈ S, denote the zero in the subgroup (H+

x ,+) of (S,+) by xo and
the unique inverse of x in H+

x by x′. Then xo = x + x′ = x′ + x. Hence S can
be treated as an algebra (S,+, ·,′ ) of type (2, 2, 1), where the reduct (S,+, ·) is a
semiring and the reduct (S,+,′ ) is a completely regular semigroup. The following
result is useful.

Lemma 1.1. [2] Let S be a semiring. Then the following conditions are equivalent:

(i) S is the (disjunctive) union of its subrings;

(ii) for every x, y ∈ S there exists unique x′ ∈ S such that

x = x+ x′ + x, x+ x′ = x′ + x, (x′)′ = x, x+ yo + xo + y = xo + y+ x+ yo

and xxo = xo, where xo = x+ x′;

(iii) H+ is an idempotent semiring congruence on S and each H+-class is a ring;

(iv) S is an idempotent semiring of rings.

De�nition 1.2. A semiring S is called completely regular if it satis�es either of
the four equivalent conditions in Lemma 1.1.

Throughout the rest of this article, unless otherwise stated, S stands for a
completely regular semiring.

It follows from a result of Kapp and Schneider [8] that the lattice C(S) of
all congruences on a semigroup S can be embedded in the product of certain
sublattices if the semigroup S is completely simple. The problem of embedding
the lattice C(S) in a product of sublattices, when S is an arbitrary band of groups,
was characterized by C. Spitznagel [17]. The principal tool used in these two texts
is the τ -relation introduced by Reilly and Scheiblich [14]. In this last article, this
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relation is marked with θ ([14], Theorem 3.4). Also there are many other articles
devoted to these directions [6], [7], [11].

The set of all congruences on a semiring S is a complete lattice, which we
denote by C(S). A sublattice L of C(S) is called a modular sublattice if the
lattice L is modular. It is well known that if the congruences in L commute then
L is modular. The trace of a congruence ρ on a completely regular semiring S is
de�ned by:

tr ρ = ρ ∩ (E+(S)× E+(S)).

De�ne a relation τ on the lattice C(S) by: for ρ, σ ∈ C(S),

ρτσ if tr ρ = tr σ.

In Section 2, we characterize completely regular semirings S in terms of the
maximum additive idempotent-separating congruence on S. In Section 3, we show
that each τ -class in the lattice C(S) of all congruences on an additive regular
semiring S contains at most one V-congruence on S, where V is a variety of idem-
potent semirings. We also have a necessary and su�cient condition for the greatest
element of each τ -class to be a V-congruence. In Section 4, we prove that the lat-
tice C(S) of all congruences on a τ -modular completely regular semiring S can be
embedded in a certain product lattice.

Now let us �x the following notations:

C(S): the lattice of all congruences on S;
M(S): the lattice of all additive idempotent-separating congruences on S;
D+(S): the lattice of all congruences on S that are contained in D+;
V(S): the lattice of all V-congruences on S;
ρV : the minimum V-congruence on S;
β: the minimum idempotent semiring congruence on S;
δ: the minimum b-lattice congruence on S;
η: the minimum distributive lattice congruence on S;
µ: the maximum additive idempotent-separating congruence on S.

2. Additive idempotent separating congruences

A congruence ρ on S is called additive idempotent-separating if each ρ-class con-
tains at most one additive idempotent, i.e., for every e, f ∈ E+(S), eρf implies
e = f . In this section, we characterize a completely regular semiring S by the
maximum additive idempotent-separating congruence µ on itself.

In [10], Lallement proved that on a regular semigroup S, a congruence ρ is
idempotent separating if and only if ρ ⊆ H on S. Since S is a completely regular
semiring, the additive reduct (S,+) is a regular semigroup, and so it follows that
µ ⊆ H+.

Now we have the following result.
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Theorem 2.1. Let S be an additive regular semiring and V be a variety of idem-

potent semirings. Then the following statements are equivalent:

(i) S is a completely regular semiring such that S/H+ ∈ V;

(ii) µ = H+ = ρV and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S;

(iii) µ = ρV and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S.

Proof. Equivalence of (ii) and (iii) is trivial and so we omit the proof.

(i) ⇒ (ii): Suppose that aH+b in S. Then aρVH+bρV in S/H+. Since each
H+-class contains at most one additive idempotent, aρV = bρV . Hence H+ ⊆ ρV
and it follows that µ ⊆ H+ ⊆ ρV . Now S/H+ ∈ V implies that ρV ⊆ H+. SinceH+

is an additive idempotent separating congruence, H+ ⊆ µ. Thus µ = H+ = ρV .

(ii)⇒ (i): Suppose that the condition (ii) holds. Then H+ = ρV implies that
S/H+ ∈ V. Let H be an H+-class in S. Since H+ is an idempotent semiring
congruence on S, H is an additive regular subsemiring of S and, by Lallement's
Lemma, contains an additive idempotent. Hence (H,+) is a group. Now for every
x, y ∈ S, x+ yo +xo + y = xo + y+x+ yo implies that (H,+) is an abelian group.
Thus H is a subring of S and so S is a completely regular semiring.

Now we have the following immediate consequence. Though it is a particular
case of the above lemma, but useful.

Corollary 2.2. Let S be any additive regular semiring. Then the following state-

ments are equivalent.

(i) S is a completely regular semiring (b-lattice of rings, distributive lattice of

rings);

(ii) µ = H+ = β ( δ, η ) and x+yo +xo +y = xo +y+x+yo for every x, y ∈ S;

(iii) µ = β ( δ, η ) and x+ yo + xo + y = xo + y + x+ yo for every x, y ∈ S.

3. The relation τ on C(S)

The relation τ on C(S) has many interesting properties when S is a completely
regular semiring. Before coming into the main features let us �rst prove some
lemmas.

The proof of the following result is similar to Lemma 2.1 [15], still for the sake
of completeness we would like to include a proof.

Lemma 3.1. Let S be an additive regular semiring and α be an additive idempo-

tent separating congruence on S. Then for every γ ∈ C(S), (α ∨ γ, γ) ∈ τ .
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Proof. Let γ ∈ C(S). Consider the relation h = {(a, b) ∈ S × S : (aγ, bγ) ∈ H+}
on S. Then h is an equivalence relation on S and H+ ⊆ h and γ ⊆ h. Let
(e, f) ∈ h ∩ (E+(S) × E+(S)). Then (eγ) H+ (fγ). Since H+ is an additive
idempotent separating congruence, eγ = fγ and hence (e, f) ∈ γ ∩ (E+(S) ×
E+(S)). Therefore h ∩ (E+(S) × E+(S)) ⊆ γ ∩ (E+(S) × E+(S)). Since α
separates additive idempotents, γ ⊆ α ∨ γ ⊆ H+ ∨ γ ⊆ h and consequently
γ ∩ (E+(S) × E+(S)) = h ∩ (E+(S) × E+(S)) = (α ∨ γ) ∩ (E+(S) × E+(S)).
Therefore (α ∨ γ, γ) ∈ τ .

Since H+ is an additive idempotent separating congruence on a completely
regular semiring, we have, in particular:

Corollary 3.2. Let S be a completely regular semiring. Then for every α ∈ C(S),
(α ∨H+, α) ∈ τ .

We omit the proof of the following result, since it is similar to the proof of
Theorem 2.2 [15].

Lemma 3.3. If S is an additive regular semiring, then the relation τ is a complete

lattice congruence on C(S).

Let V be a variety of idempotent semirings. Then a congruence σ on an additive
regular semiring S is a V-congruence if and only if σ contains ρV , the minimum
V-congruence on S. Therefore we have:

Theorem 3.4. Let S be an additive regular semiring and V be a variety of idem-

potent semirings. Then each τ -class in C(S) contains at most one V-congruence
on S. In addition, if S is a completely regular semiring such that S/H+ ∈ V, then
each τ -class contains exactly one V-congruence.

Proof. Let α, γ be two V-congruences on S such that (α, γ) ∈ τ . Then ρV ⊆ α and
ρV ⊆ γ. Let xαy. Since S/ρV is an idempotent semiring it follows, by Lallement's
Lemma, that there exist e, f ∈ E+(S) such that eρVx and fρVy. Then eρVxαyρVf
which implies that (e, f) ∈ α. Since (α, γ) ∈ τ it follows that (e, f) ∈ γ, and so
ρV ⊆ γ implies that xγy. Therefore α ⊆ γ. Similarly we have γ ⊆ α, and �nally
α = γ.

Now suppose that S is a completely regular semiring such that S/H+ ∈ V.
Then for every α ∈ C(S), ρV ⊆ H+ ⊆ α ∨ H+ implies that α ∨ H+ is a V-
congruence. Also it follows from Lemma 3.1 that α ∨ H+ is in the τ -class of
α.

In particular, we have:

Corollary 3.5. Let S be an additive regular semiring. Then each τ -class in C(S)
contains at most one idempotent semiring (b-lattice, distributive lattice) congru-

ence. If moreover, S is a completely regular semiring (b-lattice of rings, distribu-

tive lattice of rings), then each τ -class contains exactly one idempotent semiring

(b-lattice, distributive lattice) congruence.
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Following result shows that for every congruence α on S, the join α ∨ H+ in
C(S) gives important information about α.

Theorem 3.6. Let S be a completely regular semiring and α, γ ∈ C(S). Then

(α, γ) ∈ τ if and only if α ∨H+ = γ ∨H+.

Proof. First suppose that (α, γ) ∈ τ . Then, by Corollary 3.2, (α∨H+, α) ∈ τ and
(γ ∨H+, γ) ∈ τ and it follows that (α ∨H+, γ ∨H+) ∈ τ . Also both α ∨H+ and
γ ∨ H+ are idempotent semiring congruences and so, by Theorem 3.4, it follows
that α ∨H+ = γ ∨H+.

Conversely suppose that α ∨ H+ = γ ∨ H+. Then (α ∨ H+, α) ∈ τ and
(γ ∨H+, γ) ∈ τ implies that (α, γ) ∈ τ .

Following result can be proved similarly to Theorem 3.4 (ii) [14]. So we omit
the proof.

Lemma 3.7. Let S be an additive regular semiring. Then each τ -class in C(S)
is a complete modular sublattice of C(S) with the greatest and least elements.

The following theorem gives a necessary and su�cient condition for the greatest
element of each τ -class in C(S) to be a V-congruence on S, where V is a variety
of idempotent semirings.

Theorem 3.8. Let S be a completely regular semiring and V be a variety of

idempotent semirings. Then the greatest element of each τ -class in C(S) is a

V-congruence if and only if S/H+ ∈ V.

Proof. First suppose that S is a completely regular semiring such that S/H+ ∈ V.
Then H+ = ρV , by Theorem 2.1. Let α ∈ C(S) and γ be the greatest element of
the τ -class of α. Now, by Corollary 3.2, (α∨H+, α) ∈ τ and so H+ ⊆ α∨H+ ⊆ γ.
Thus γ is a V-congruence.

Conversely, suppose that the greatest element of each τ -class is a V-congruence.
Since µ is the greatest element of the τ -class of ∆S , µ is a V-congruence. Also,
on every additive regular semiring, µ ⊆ H+ ⊆ ρV . Therefore µ = H+ = ρV and it
follows, by Theorem 2.1, that S/H+ ∈ V.

Now we have the following important corollary.

Corollary 3.9. Let S be a completely regular semiring. Then the greatest element

of each τ -class is an idempotent semiring congruence.

Moreover, the greatest element of each τ -class is a b-lattice (distributive lattice)
congruence if and only if S is a b-lattice (distributive lattice) of rings.

4. Embedding of C(S) in a product lattice

Let V be a variety of idempotent semirings and S be a completely regular semiring
such that S/H+ ∈ V. Then for every α ∈ C(S), H+ ⊆ α ∨ H+ implies that
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α ∨H+ ∈ V(S) and α ∧H+ ⊆ H+ implies that α ∧H+ is an additive idempotent
separating congruence. Thus we have a mapping φ : C(S)→ V(S)×M(S) de�ned
by: for every α ∈ C(S),

φ(α) = (α ∨H+, α ∧H+).

Lemma 4.1. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then φ is one-to-one.

Proof. Suppose that α, γ ∈ C(S) are such that φ(α) = φ(γ). Then α∨H+ = γ∨H+

and α ∧H+ = γ ∧H+. It follows, by Theorem 3.6, (α, γ) ∈ τ . Let (x, y) ∈ α and
e ∈ E+(S)∩H+

x , f ∈ E+(S)∩H+
y . Then e = xo α yo = f implies that (e, f) ∈ α,

and so (e, f) ∈ γ. Now x = (x+ e)γ(x+ f) and y = (f + y)γ(e+ y) together with
eαf imply that (e+ y)α(f + y) = yαx = (x+ e)α(x+ f), and so (e+ y)α(x+ f).
Also e H+ x and y H+ f imply that (e+ y)H+(x+ f). Thus (e+ y)H+ ∧α(x+ f)
and so (e+y)γ∧H+(x+f). Hence xγ(x+f)γ(e+y)γy and it follows that α ⊆ γ.
Similarly γ ⊆ α. Thus α = γ.

Theorem 4.2. Let S be a completely regular semiring and α ∈ C(S). Then

α = ᾱ ∨ (α ∧H+), where ᾱ is the smallest element of τ -class of α.

Proof. Let α ∈ C(S). Then α ∧H+ is an additive idempotent separating congru-
ence, which implies that α ∧ H+τH+ and so, by Corollary 3.2, ᾱ ∨ (α ∧ H+) τ
ᾱ ∨ H+ τ ᾱ τ α. Therefore, by Theorem 3.6, α ∨ H+ = [ᾱ ∨ (α ∧ H+)] ∨ H+.
Now ᾱ, α ∧H+ ⊆ α implies that [ᾱ ∨ (α ∧H+)] ∧H+ ⊆ α ∧H+. Also, α ∧H+ ⊆
ᾱ ∨ (α ∧ H+),H+ and hence α ∧ H+ ⊆ [ᾱ ∨ (α ∧ H+)] ∧ H+. Thus we have
α ∧ H+ = [ᾱ ∨ (α ∧ H+)] ∧ H+. Therefore φ(α) = φ(ᾱ ∨ (α ∧ H+)) and so
α = ᾱ ∨ (α ∧H+).

Theorem 4.3. Let S be a completely regular semiring such that S/H+ ∈ V. Then

φ is ∧-preserving.

Proof. We have (α ∨H+) ∧ (γ ∨H+) τ (α ∧ γ) and (α ∧ γ) ∨H+ τ (α ∧ γ). Then
it follows that (α ∧ γ) ∨ H+ τ (α ∨ H+) ∧ (γ ∨ H+). Since both (α ∧ γ) ∨ H+

and (α ∨ H+) ∧ (γ ∨ H+) are V-congruences it follows, by Theorem 3.4, that
(α∧γ)∨H+ = (α∨H+)∧(γ∨H+). Also we have (α∧γ)∧H+ = (α∧H+)∧(γ∧H+).
Therefore φ is ∧-preserving.

Corollary 4.4. Let S be a completely regular semiring such that S/H+ ∈ V. Then

V(S) is lattice isomorphic with C(S)/τ .

Let V be a variety of idempotent semirings and S be a completely regular
semiring such that S/H+ ∈ V. Denote the restriction of φ to D+(S) by φ̃. Thus

the mapping φ̃ : D+(S)→ V(S)×M(S) is given by: for every α ∈ D+(S),

φ̃(α) = (α ∨H+, α ∧H+).
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Theorem 4.5. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then φ̃ is ∨-preserving.

Proof. Let α, γ ∈ D+(S). Then α ∧ H+, γ ∧ H+ ⊆ (α ∨ γ) ∧ H+ implies that
(α ∧ H+) ∨ (γ ∧ H+) ⊆ (α ∨ γ) ∧ H+. Suppose that (x, y) ∈ (α ∨ γ) ∧ H+. Then
(x, y) ∈ α ∨ γ implies that there exists a positive integer n and xi, yi ∈ S, i =
1, 2, . . . , n such that

xαx1γy1αx2γy2α · · ·αxnγyn = y.

Since α, γ ⊆ D+, it follows that xi, yi ∈ D+
x = D+

y . Also xH+y implies that
H+

x = H+
y . Suppose that e is the identity element in H+

x . Then

x = (e+x+e)α(e+x1+e)τ(e+y1+e)α · · ·α(e+xn+e)γ(e+yn+e) = (e+y+e) = y.

Since D+
x = D+

y is a completely simple semiring, e + xi + e, e + yi + e ∈ e +
D+

x + e = H+
x for each i. Therefore we have (x, y) ∈ (α ∧H+) ∨ (γ ∧H+) and so

(α∨ γ)∧H+ ⊆ (α∧H+)∨ (γ ∧H+). Hence (α∨ γ)∧H+ = (α∧H+)∨ (γ ∧H+).
Also we have (α∨ γ)∨H+ = (α∨H+)∨ (γ ∨H+). This completes the proof.

Let L be a lattice, and ζ a lattice congruence on L. We say that L is ζ- modular

if for every a, b, c ∈ L, the conditions a ≥ b, (a, b) ∈ ζ, a∧c = b∧c and a∨c = b∨c,
imply that a = b. A semiring S is said to be τ -modular if the lattice C(S) of all
congruences on S is τ -modular. Thus:

De�nition 4.6. A semiring S is called τ -modular if for every ρ, σ, ξ ∈ C(S), the
conditions σ ⊆ ρ, στρ, ρ ∧ ξ = σ ∧ ξ and ρ ∨ ξ = σ ∨ ξ imply that ρ = σ.

Lemma 4.7. Let S be a τ -modular completely regular semiring. Then for every

α, γ ∈ C(S), α ∨ [(α ∧H+) ∨ (γ ∧H+)] = α ∨ [(α ∨ γ) ∧H+].

Proof. Let α, γ ∈ C(S). Then (α ∧ H+) ∨ (γ ∧ H+) ⊆ (α ∨ γ) ∧ H+ implies that
α∨ [(α∧H+)∨ (γ ∧H+)] ⊆ α∨ [(α∨ γ)∧H+]. Also α∨ [(α∧H+)∨ (γ ∧H+)] =
[α ∨ (α ∧ H+)] ∨ (γ ∧ H+) = α ∨ (γ ∧ H+). Now (γ ∧ H+)τ(α ∨ γ) ∧ H+ implies
that [α∨ (γ ∧H+)] τ α∨ [(α∨ γ)∧H+]. Thus by τ -modularity, it su�ces to show
γ∨[α∨(γ∧H+)] = γ∨[α∨[(α∨γ)∧H+]] and γ∧[α∨(γ∧H+)] = γ∧[α∨[(α∨γ)∧H+]].
Now γ ∨ α ⊆ γ ∨ [α ∨ (γ ∧ H+)] ⊆ γ ∨ [α ∨ [(α ∨ γ) ∧ H+]] ⊆ γ ∨ [α ∨ (α ∨ γ)] =
γ ∨ (α ∨ γ) = γ ∨ α, implies the �rst equality. For the other equality, we have
γ ∧ [α ∨ (γ ∧ H+)] ⊆ γ ∧ [α ∨ [(α ∨ γ) ∧ H+)]] ⊆ γ ∧ [α ∨ H+]. Hence it su�ces
to show that γ ∧ [α ∨ H+] ⊆ γ ∧ [α ∨ (γ ∧ H+)]. For this, it is su�cient to
show that γ ∧ (α ∨ H+) ⊆ α ∨ (γ ∧ H+). Suppose that (x, y) ∈ γ ∧ (α ∨ H+).
Then (xo, yo) ∈ α ∨ H+. Since (α, α ∨ H+) ∈ τ , we have (xo, yo) ∈ α. Thus
xo = (xo +xo) α (xo +yo) H+ (x+y) H+ (x+y)o, so that (xo, (x+y)o) ∈ α∨H+.
Then (α, α ∨ H+) ∈ τ implies that (xo, (x + y)o) ∈ α, and so (yo, (x + y)o) ∈ α.
Since the D+-classD(x+y) is completely simple, we have ((x+y)o+x+(x+y)o) H+

((x + y)o + y + (x + y)o). Thus x = (xo + x + xo) α ((x + y)o + x + (x + y)o) γ
∧H+((x + y)o + y + (x + y)o) α (yo + y + yo) = y, and so (x, y) ∈ α ∨ (γ ∧ H+).
This completes the proof.
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Theorem 4.8. Let V be a variety of idempotent semirings and S be a τ -modular

completely regular semiring such that S/H+ ∈ V. Then φ is ∨-preserving.

Proof. Let α, γ ∈ C(S). Then (α∧H+)∨(γ∧H+) ⊆ (α∨γ)∧H+. Since both (α∧
H+)∨(γ∧H+), (α∨γ)∧H+ are contained inH+, (α∧H+)∨(γ∧H+) τ (α∨γ)∧H+.
Therefore, by τ -modularity, it su�ces to show that α ∨ [(α ∧ H+) ∨ (γ ∧ H+)] =
α ∨ [(α ∨ γ) ∧ H+] and α ∧ [(α ∧ H+) ∨ (γ ∧ H+)] = α ∧ [(α ∨ γ) ∧ H+]. First
equality holds by Lemma 4.7. Since α ∧ H+ ⊆ (α ∧ H+) ∨ (γ ∧ H+), we have
α ∧ H+ = α ∧ (α ∧ H+) ⊆ α ∧ [(α ∧ H+) ∨ (γ ∧ H+)) ⊆ α ∧ [(α ∨ γ) ∧ H+] =
[α∧ (α∨ γ)]∧H+] = α∧H+. Therefore (ρ∨ γ)∧H+ = (ρ∧H+)∨ (γ ∧H+). Also
we have (ρ ∨ γ) ∨H+ = (ρ ∨H+) ∨ (γ ∨H+). This completes the proof.

Theorem 4.9. Let V be a variety of idempotent semirings and S be a completely

regular semiring. If φ : C(S) −→ V(S) ×M(S) is an embedding, then S is τ -
modular.

Proof. Let σ, ρ be two congruences on S such that σ ⊆ ρ, στρ and ξ is a congruence
such that σ ∨ ξ = ρ ∨ ξ and σ ∧ ξ = ρ ∧ ξ. Clearly σ ∧H+ ⊆ ρ ∧H+, and since φ
is an embedding, we have (σ ∧ H+) ∨ (ξ ∧ H+) = (σ ∨ ξ) ∧ H+ = (ρ ∨ ξ) ∧ H+ =
(ρ∧H+)∨ (ξ ∧H+). Also, (σ ∧H+)∧ (ξ ∧H+) = (σ ∧ ξ)∧H+ = (ρ∧ ξ)∧H+ =
(ρ∧H+)∧(ξ∧H+). Since, by Lemma 3.7, the τ -class of H+ is a modular sublattice
of C(S), we have σ ∧H+ = ρ∧H+. Also σ τ ρ implies that σ ∨H+ = ρ∨H+, by
Theorem 3.6. Since φ is one-to-one, σ = ρ. Thus S is τ -modular.

Now combining Theorem 4.1, 4.3, 4.8 and 4.9, we get the following result.

Theorem 4.10. Let V be a variety of idempotent semirings and S be a completely

regular semiring such that S/H+ ∈ V. Then the function φ : C(S)→ V(S)×M(S)
de�ned by φ(α) = (α∨H+, α∧H+) is an embedding if and only if S is τ -modular.
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