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Normal submultigroups and comultisets

of a multigroup

Paul Augustine Ejegwa and Adeku Musa Ibrahim

Abstract. We study properties of normal submultigroups. It is shown that if A is a multigroup

of a group X and B is a submultigroup of A, the union and intersection of comultisets of B in

A are identical and equal to B.

1. Introduction

The notion of multigroup was �rst mentioned in [3] and de�ned as algebraic system
that satis�ed all the axioms of group except that the binary operation is multi-
valued. This perspective is neither in conformity with the idea of multisets nor in
alignment with other non-classical group studied in [8]. Also, the generalizations
of group theory as multigroup in [5, 7, 9] are not within the framework of multiset.

The perspective of multigroups in [10, 11] seem to be better o� because the
notion of multiset was captured but however, do not de�ne multigroup via count
function of multiset. In [6], the concept of multigroups was introduced via count
function of multiset and some properties were discussed. Further studies on the
concept of multigroups via multisets can be found in [1, 2, 4].

In this paper, we study some properties of normal submultigroups, propose
conjugate and normalizer in multigroups, and obtain some results. The homo-
morphic properties of normal submultigroups are explicated. Finally, we explore
the idea of comultisets of a multigroup mentioned in [6] and deduce some results.
We show that the union and intersection of comultisets of a submultigroup of a
multigroup are identical and equal to the submultigroup.

2. Preliminaries

In this section, we present some existing de�nitions and results that are useful in
the subsequent sections.

De�nition 2.1. Let X = {x1, x2, . . . , xn, . . .} be a set. A multiset A over X is a
cardinal-valued function, that is, CA : X → N such that for x ∈ Dom(A) implies
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A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x) denoted the number of
times an object x occur in A. Whenever CA(x) = 0, implies x /∈ Dom(A). We
denote the set of all multisets over X by MS(X).

A multiset A = [a, a, b, b, c, c, c] can be represented as A = [a, b, c]2,2,3. Di�erent
forms of representing multiset exist other than this.

De�nition 2.2. Let A and B be multisets over X. Then A is called a submultiset
of B written as A ⊆ B if CA(x) 6 CB(x) for all x ∈ X. Also, if A ⊆ B and
A 6= B, then A is called a proper submultiset of B and denoted as A ⊂ B. Thus
A = B means that CA(x) = CB(x) for all x ∈ X. A multiset A with the property
CA(x) = CB(y) for all x, y ∈ X, is called regular. Otherwise it is irregular.

De�nition 2.3. Let A and B be multisets over X. Then the intersection and
union of A and B, denoted by A ∩ B and A ∪ B respectively, are de�ned by the
rules that for any object x ∈ X,

(i) CA∩B(x) = CA(x) ∧ CB(x),

(ii) CA∪B(x) = CA(x) ∨ CB(x),

where ∧ and ∨ denote minimum and maximum respectively.

De�nition 2.4. Let X be a group. A multiset G is called a multigroup of X if it
satis�es the following conditions:

(i) CG(xy) > CG(x) ∧ CG(y) ∀x, y ∈ X,

(ii) CG(x
−1) = CG(x) ∀x ∈ X,

where CG denotes count function of G from X into a natural number N.

For any multigroup A its inverse A−1 is de�ned by

CA−1(x) = CA(x
−1) ∀x ∈ X.

The set of all multigroups of X is denoted by MG(X). It is worthy of note
that every multigroup is a multiset but the converse is not true.

De�nition 2.5. Let A ∈MG(X). A submultiset B of A is called a submultigroup
of A denoted by B v A if B form a multigroup. A submultigroup B of A is a
proper submultigroup denoted by B @ A, if B v A and A 6= B.

De�nition 2.6. Let {Ai}i∈I , I = 1, . . . , n be an arbitrary family of multigroups
of X. Then

C⋂
i∈I Ai

(x) =
∧
i∈I

CAi
(x) ∀x ∈ X

and
C⋃

i∈I Ai
(x) =

∨
i∈I

CAi(x) ∀x ∈ X.

The family of multigroups {Ai}i∈I of X is said to have inf/sup assuming chain if
either A1 ⊆ A2 ⊆ . . . ⊆ An or A1 ⊇ A2 ⊇ . . . ⊇ An respectively.
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De�nition 2.7. Let A,B ∈ MG(X). Then the product of A and B denoted as
A ◦B, is de�ned by

CA◦B(x) =
∨
{CA(y) ∧ CB(z) | x = yz, y, z ∈ X}.

Proposition 2.8. Let A ∈MG(X). Then

(i) A∗ = {x ∈ X | CA(x) > 0},

(ii) A∗ = {x ∈ X | CA(x) = CA(e)},

where e is the identity element of X, are subgroups of X.

De�nition 2.9. Let A and B be multisets over groups X and Y and f : X −→ Y
be a homomorphism. Then

(i) the image of A under f , denoted by f(A), is a multiset of Y de�ned by

Cf(A)(y) =

{ ∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y .

(ii) the inverse image of B under f , denoted by f−1(B), is a multiset of X
de�ned by Cf−1(B)(x) = CB(f(x))∀x ∈ X.

De�nition 2.10. Let X and Y be groups and let A ∈MG(X) and B ∈MG(Y ),
respectively.

(i) A homomorphism f from X to Y is called a weak homomorphism from A to
B if f(A) ⊆ B. If f is a weak homomorphism of A into B, then we say that,
A is weakly homomorphic to B denoted by A ∼ B.

(ii) An isomorphism f from X to Y is called a weak isomorphism from A to B
if f(A) ⊆ B. If f is a weak isomorphism of A into B, then we say that, A is
weakly isomorphic to B denoted by A ' B.

(iii) A homomorphism f from X to Y is called a homomorphism from A to B if
f(A) = B. If f is a homomorphism of A onto B, then A is homomorphic to
B denoted by A ≈ B.

(iv) An isomorphism f from X to Y is called an isomorphism from A to B if
f(A) = B. If f is an isomorphism of A onto B, then A is isomorphic to B
denoted by A ∼= B.

Theorem 2.11. Let X and Y be groups and f : X → Y be an isomorphism. If
A ∈MG(X) and B ∈MG(Y ), then f(A) ∈MG(Y ) and f−1(B) ∈MG(X).
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3. Properties of normal submultigroups

Let A ∈ MG(X) is said to be abelian if CA(xy) = CA(yx) for all x, y ∈ X. If
A,B ∈MG(X) and A ⊆ B, then A is called a normal submultigroup of B if

CA(xyx
−1) > CA(y) ∀x, y ∈ X.

Example 3.1. Let X = {e, a, b, c} be a Klein 4-group such that

ab = c, ac = b, bc = a, a2 = b2 = c2 = e.

Suppose A = [e, a, b, c]3,2,3,2 and B = [e, a, b, c]5,2,4,2 are multigroups of X satisfy-
ing the axioms in De�nition 2.4. Clearly, A ⊆ B. Then A is a normal submulti-
group of B since

CA(aba
−1) = CA(b) = 3 > CA(b), CA(bab

−1) = CA(a) = 2 > CA(a),

CA(cbc
−1) = CA(b) = 3 > CA(b), CA(bcb

−1) = CA(c) = 2 > CA(c).

De�nition 3.2. Let A ∈MG(X) and x, y ∈ X. Then x and y are called conjugate
elements in A if

CA(x) = CA(yxy
−1) ∀x, y ∈ X.

Two multigroups A and B of X are conjugate to each other if for all x, y ∈ X,

CA(y) = CB(xyx
−1) and CB(x) = CA(yxy

−1), i.e.,

CA(y) = CBx(y) and CB(x) = CAy (x).

Remark 3.3. If A,B ∈ MG(X) and A is a normal submultigroup of B. Then
A∗ is a normal subgroup of B∗ and A

∗ is a normal subgroup of B∗. Moreover, A
is normal if and only if A−1 is normal.

Proposition 3.4. Let A,B ∈MG(X). Then the following statements are equiv-
alent.

(i) A is a normal submultigroup of B,

(ii) CA(xyx
−1) = CA(y) ∀x, y ∈ X,

(iii) CA(xy) = CA(yx) ∀x, y ∈ X.

Proof. Straightforward.

Proposition 3.5. Let A,B ∈ MG(X) such that A ⊆ B and CA(x) = CA(y) for
all x, y ∈ X. Then the following assertions are equivalent.

(i) A is a normal submultigroup of B.

(ii) CA(yx) > CA(xy) ∧ CB(y) ∀x, y ∈ X.
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Proof. (i) ⇒ (ii). Since A is a normal submultigroup of B and CA(x) = CA(y),
by Proposition 3.4 we have CA(yx) = CA(y(xy)y

−1) > CA(xy) ∧ CB(y) for all
x, y ∈ X.

(ii) ⇒ (i). Since CA(yx) > CA(xy) ∧ CB(y), CA(xy) > CA(yx) ∧ CB(y), it
implies CA(xy) = CA(yx). Proposition 3.4 completes the proof.

Proposition 3.6. Let X be a group, A a submultigroup of G ∈MG(X) and B a
submultiset of G. If A and B are conjugate, then B is a submultigroup of G.

Proposition 3.7. Let A,B,C ∈MG(X) such that A and B are normal submulti-
groups of C. If A ⊆ B ⊆ C, then A ∩B and A ∪B are normal submultigroups of
C.

Proposition 3.8. Let A be a submultigroup of B ∈MG(X). Then A is a normal
submultigroup of B if and only if x ∈ X is constant on the conjugacy classes of
A.

Proof. Suppose that A is a normal submultigroup of B. Then

CA(y
−1xy) = CA(xyy

−1) = CA(x) ∀x, y ∈ X.

This implies that, x ∈ X is constant on the conjugacy classes of A.
Conversely, let x ∈ X be constant (that is, �xed) on each conjugacy classes of

A. Then CA(xy) = CA(xyxx
−1) = CA(x(yx)x

−1) = CA(yx) ∀x, y ∈ X. Hence,
A is normal.

We now give an alternative formulation of the notion of normal submultigroup
in terms of commutator of a group. First, we recall that if X is a group and
x, y ∈ X, then the element x−1y−1xy is usually depicted by [x, y] and is called the
commutator of x and y.

Theorem 3.9. Let A,B ∈ MG(X) such that A ⊆ B. Then A is a normal
submultigroup of B if and only if

(i) CA([x, y]) > CA(x) ∀x, y ∈ X.

(ii) CA([x, y]) = CA(e) ∀x, y ∈ X, where e is the identity of X.

Proof. (i). Suppose A is a normal submultigroup of B. Let x, y ∈ X, then

CA(x
−1y−1xy) > CA(x

−1) ∧ CA(y
−1xy) = CA(x) ∧ CA(x) = CA(x).

Conversely, assume that A satis�es the inequality. Then for all x, y ∈ X,

CA(x
−1yx) = CA(yy

−1x−1yx) > CA(y) ∧ CA([y, x]) = CA(y).

Thus, CA(x
−1yx) > CA(y) for all x, y ∈ X. Hence A is normal.

(ii). Let x, y ∈ X. Suppose A is a normal submultigroup of B. We know
that A is a normal submultigroup of B ⇔ CA(xy) = CA(yx) ⇔ CA(x

−1y−1x) =
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CA(y
−1) ⇔ CA(x

−1y−1xyy−1) = CA(y
−1) ⇔ CA([x, y]y

−1) = CA(y
−1) for all

x, y ∈ X. Consequently, CA([x, y]) = CA(y
−1y) = CA(e) for all x, y ∈ X.

Conversely, assume CA([x, y]) = CA(e) for all x, y ∈ X. Then CA(x
−1y−1xy) =

CA(e), so, CA((yx)
−1xy) = CA(e). That is, CA(xy) = CA(yx) for all x, y ∈ X.

Thus, A is a normal submultigroup of B.

Theorem 3.10. Let A be a normal submultigroup of G ∈MG(X). Then
⋂

x∈X Ax

is normal and is the largest normal submultigroup of G that is contained in A.

Proof. Suppose Ax ∈ MG(X)∀x ∈ X. Then for all y ∈ X, we observe that
{Ax | x ∈ X} = {Axy | x ∈ X}. Thus,∧

x∈X
CAx(yzy−1) =

∧
x∈X

CA(xyzy
−1x−1) =

∧
x∈X

CA((xy)z(xy)
−1)

=
∧
x∈X

CAxy (z) =
∧
x∈X

CAx(z) ∀y, z ∈ X.

Hence,
⋂

x∈X Ax is a normal submultigroup of G.
Now let B be a normal submultigroup of G such that B ⊆ A. Then B =

Bx ⊆ Ax∀x ∈ X. Thus, B ⊆
⋂

x∈X Ax. Therefore,
⋂

x∈X Ax is the largest normal
submultigroup of G that is contained in A.

De�nition 3.11. Let A be a submultigroup of B ∈ MG(X). Then the it nor-
malizer of A in B is the set given by

N(A) = {g ∈ X | CA(gy) = CA(yg) ∀y ∈ X}.

We now note that

N(A) = {g ∈ X | CAg (y) = CA(y) ∀y ∈ X}.

It su�ces to note that, CA(gy) = CA(yg) for all y ∈ X implies CA(g
−1yg) = CA(y)

for all y ∈ X. Then CA(g
−1yg) = CA(y) gives CA(g

−1(gy)g) = CA(gy), i.e.,
CA(yg) = C(gy) for all y ∈ X.

Example 3.12. Let X = {g1, g2, g3, g4, g5, g6, g7, g8} such that

g1 =

(
1 0
0 1

)
, g2 =

(
0 −1
1 0

)
, g3 =

(
−1 0
0 −1

)
, g4 =

(
0 1
−1 0

)
,

g5 =

(
1 0
0 −1

)
, g6 =

(
−1 0
0 1

)
, g7 =

(
0 1
1 0

)
, g8 =

(
0 −1
−1 0

)
be a group under matrix multiplication, and A ⊆ B ∈MG(X) such that

A = [g101 , g
5
2 , g

7
3 , g

5
4 , g

5
5 , g

5
6 , g

7
7 , g

8
8 ]

satisfying the axioms in De�nition 2.4. Using De�nition 3.11, N(A) = {g1, g3, g7, g8}.
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Theorem 3.13. Let A be a submultigroup of B ∈ MG(X). Then the following
assertions hold.

(i) N(A) is a subgroup of X.

(ii) A is a normal submultigroup of B if and only if N(A) = X.

Proof. (i). Let g, h ∈ N(A). Then CAgh(x) = C(Ah)g (x) = CAh(x) = CA(x) for
all x ∈ X since CAg (x) = CA(g

−1xg) = CA(x). Hence gh ∈ N(A). Again, let
g ∈ N(A). We show that g−1 ∈ N(A). For all y ∈ X, CA(gy) = CA(yg) and so
CA((gy)

−1) = CA((yg)
−1). Thus for all y ∈ X, CA(y

−1g−1) = CA(g
−1y−1) and

so CA(yg
−1) = CA(g

−1y) since CA(y) = CA(y
−1). Thus, g−1 ∈ N(A). Hence,

N(A) is a subgroup of X.

(ii). Let A be a normal submultigroup of B and g ∈ X. Then for all x ∈ X,
we have

CAg (x) = CA(g
−1xg) = CA((g

−1x)g) = CA(g(g
−1x)) = CA(x).

Thus, CAg (x) = CA(x) and so g ∈ N(A). Therefore, N(A) = X.
Conversely, suppose N(A) = X. Let x, y ∈ X. To prove that A is normal, it

is su�cient we show that CA(xy) = CA(yx). Now

CA(xy) = CA(xyxx
−1) = CA(x(yx)x

−1) = CAx−1 (yx) = CA(yx),

where the last equality follows since N(A) = X and so x−1 ∈ N(A). Consequently,
CAx−1 (y) = CA(y). Thus, A is a normal submultigroup of B.

Remark 3.14. Let A be a submultigroup of B ∈MG(X). Then S = N(A) = T ,
if

S = {x ∈ X | CA(xy(yx)
−1) = CA(e) ∀y ∈ X}

and
T = {x ∈ X | CA(xyx

−1) = CA(y) ∀y ∈ X}.

Theorem 3.15. Let A,B and C be multigroups of an abelian group X such that
A ⊆ B ⊆ C. Then

N(A) ∩N(B) ⊆ N(A ∩B).

Proof. Let y ∈ N(A) ∩ N(B). Then for any x, y ∈ X, we get CA∩B(xy) =
CA∩B(yx). thus, CA∩B(xyx

−1) = CA∩B(y). Now

CA∩B(xyx
−1) = CA(xyx

−1) ∧ CB(xyx
−1) = CA(yxx

−1) ∧ CB(yxx
−1)

= CA(y) ∧ CB(y) = CA∩B(y).

Thus, y ∈ N(A ∩B). Hence, N(A) ∩N(B) ⊆ N(A ∩B).

Corollary 3.16. Let A,B,C ∈ MG(X) such that A ⊆ B ⊆ C and CA(e) =
CB(e). Then

N(A) ∩N(B) = N(A ∩B).
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Proof. Recall that

N(A) = {x ∈ X | CA(xy) = CA(yx) ∀y ∈ X}
= {x ∈ X | CA(xyx

−1y−1) = CA(e) ∀y ∈ X}.

Let y ∈ N(A ∩B). Then from the de�nition of N(A), for all x ∈ X we get

CA∩B(xyx
−1y−1) = CA(xyx

−1y−1) ∧ CB(xyx
−1y−1) = CA(e) ∧ CB(e),

implies y ∈ N(A) ∩ N(B). Since CA(xyx
−1y−1) = CA(e) we obtain CA(xy) =

CA(yx). Similarly in the case of B because CA(e) = CB(e). Hence N(A)∩N(B) =
N(A ∩B).

Corollary 3.17. Let A,B,C ∈MG(X) such that A ⊆ B ⊆ C. Then

N(A) ∩N(B) ⊆ N(A ◦B).

Proof. Let y ∈ N(A)∩N(B), that is y ∈ N(A) and y ∈ N(B). Then for all x ∈ X,

CA◦B(y) =
∨

y=ab

{CA(a) ∧ CB(b) | ∀a, b ∈ X}

=
∨

y=ab

{CA(x
−1ax) ∧ CB(x

−1bx) | ∀a, b ∈ X}

6
∨

x−1yx=cd

{CA(c) ∧ CB(d) | ∀c, d ∈ X}

= CA◦B(x
−1yx),

which gives CA◦B(y) 6 CA◦B(x
−1yx). The inequality holds since y = ab ⇒

x−1abx = cd ⇒ ab = xcdx−1 = (xcx−1)(xdx−1) and since a = xcx−1 and b =
xdx−1 imply x−1ax = c and x−1bx = d. Again,

CA◦B(x
−1yx) 6 CA◦B(x(x

−1yx)x−1) = CA◦B(y).

So, CA◦B(y) > CA◦B(x
−1yx). Thus, CA◦B(y) = CA◦B(x

−1yx), which proves,
y ∈ N(A ◦B). Therefore, N(A) ∩N(B) ⊆ N(A ◦B).

Remark 3.18. If A,B,C ∈MG(X) such that A ⊆ B ⊆ C. Then N(A) ⊆ N(B).

4. Homomorphism of normal submultigroups

In this section, we present some results on the homomorphic properties of normal
submultigroups.

Theorem 4.1. Let f be a homomorphism of an abelian group X onto an abelian
group Y . Let A and B be multigroups of X such that A ⊆ B. Then

f(N(A)) ⊆ N(f(A)).
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Proof. Let x ∈ f(N(A)). Then f(u) = x for some u ∈ N(A). So, for all y, z ∈ Y ,

Cf(A)(xyx
−1) = CA(f

−1(xyx−1)) = CA(f
−1(x)f−1(y)f−1(x−1))

= CA(f
−1(x)f−1(y)f−1(x)−1) = CA(f

−1(x)f−1(y)(f−1(x))−1)

= CA(f
−1(f(u))f−1(f(v))(f−1(f(u)))−1) = CA(uvu

−1)

= CA(vuu
−1) = CA(v) = CA(f

−1(y)) = Cf(A)(y),

where v ∈ X such that f(v) = y. Thus, x ∈ N(f(A)), and consequently
f(N(A)) ⊆ N(f(A)).

Theorem 4.2. Let f : X → Y be homomorphism of abelian groups X and Y . Let
A and B be multigroups of Y such that B ⊆ A. Then

f−1(N(B)) = N(f−1(B)).

Proof. Let x ∈ f−1(N(B)). Then for all y ∈ X,

Cf−1(B)(xyx
−1) = CB(f(xyx

−1)) = CB(f(x)f(y)f(x
−1)) = CB(f(x)f(y)(f(x))

−1)

= CB(f(y)f(x)(f(x))
−1) = CB(f(y)) = Cf−1(B)(y).

Thus x ∈ N(f−1(B)). So, f−1(N(B)) ⊆ N(f−1(B)).
Again, let x ∈ N(f−1(B)) and f(x) = u. Then for all v ∈ Y ,

CB(uvu
−1) = CB(f(x)f(y)(f(x))

−1) = CB(f(y)f(x)(f(x))
−1)

= CB(f(y)) = CB(v),

where y ∈ X such that f(y) = v. Clearly, u ∈ N(B), that is, x ∈ f−1(N(B)).
Thus, N(f−1(B)) ⊆ f−1(N(B)). Hence, f−1(N(B)) = N(f−1(B)).

Theorem 4.3. Let f : X → Y be an isomorphism of groups and let A be a
normal submultigroup of B ∈ MG(X). Then f(A) is a normal submultigroup of
f(B) ∈MG(Y ).

Proof. By Theorem 2.11, f(A), f(B) ∈ MG(Y ) and so, f(A) ⊆ f(B). We show
that f(A) is a normal submultigroup of f(B). Let x, y ∈ Y . Since f is an
isomorphism, then for some a ∈ X we have f(a) = x. Thus,

Cf(A)(xyx
−1) =

∨
b∈X

{CA(b) | f(b) = xyx−1} =
∨
b∈X

{CA(a
−1ba) | f(a−1ba) = y}

>
∨

a−1ba∈X

{CA(b) | f(b) = y} =
∨
b∈X

{CA(f
−1(y)) | f(b) = y} = Cf(A)(y).

Hence, f(A) is a normal submultigroup of f(B).

Theorem 4.4. Let Y be a group and A ∈ MG(Y ). If f is an isomorphism
of X onto Y and B is a normal submultigroup of A, then f−1(B) is a normal
submultigroup of f−1(A).
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Proof. By Theorem 2.11, f−1(A), f−1(B) ∈MG(X). Since B is a submultigroup
of A, so f−1(B) ⊆ f−1(A). Let a, b ∈ X, then we have

Cf−1(B)(aba
−1) = CB(f(aba

−1)) = CB(f(a)f(b)(f(a))
−1)

= CB(f(a)(f(a))
−1f(b))

> CB(e) ∧ CB(f(b)) = Cf−1(B)(b),

which completes the proof.

5. Comultisets of a multigroup

In this section, we assume that if G is a multigroup of a group X, then G∗ = X.
That is, every element of X is in G with its multiplicity or count.

De�nition 5.1. Let X be a group. For any submultigroup A of a multigroup G
of X, the submultiset yA of G for y ∈ X de�ned by

CyA(x) = CA(y
−1x)∀x ∈ A∗

is called the left comultiset of A. Similarly, the submultiset Ay of G for y ∈ X
de�ned by

CAy(x) = CA(xy
−1)∀x ∈ A∗

is called the right comultiset of A.

Example 5.2. Let X = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5} be a permutation group of {1, 2, 3}
such that ρ0 = (1), ρ1 = (123), ρ2 = (132), ρ3 = (23), ρ4 = (13), ρ5 = (12) and
G = [ρ70, ρ

5
1, ρ

5
2, ρ

3
3, ρ

3
4, ρ

3
5] be a multigroup of X. Then H = [ρ60, ρ

3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] is

a submultigroup of G.

Now, we �nd the left comultisets of H by pre-multiplying each element of G
by H.

ρ0H = [ρ60, ρ
3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] ρ1H = [ρ32, ρ

6
0, ρ

3
1, ρ

2
5, ρ

2
3, ρ

2
4]

ρ2H = [ρ31, ρ
3
2, ρ

6
0, ρ

2
4, ρ

2
5, ρ

2
3] ρ3H = [ρ23, ρ

2
5, ρ

2
4, ρ

6
0, ρ

3
2, ρ

3
1]

ρ4H = [ρ24, ρ
2
3, ρ

2
5, ρ

3
1, ρ

6
0, ρ

3
2] ρ5H = [ρ25, ρ

2
4, ρ

2
3, ρ

3
2, ρ

3
1, ρ

6
0]

Similarly, the right comultisets of H are

Hρ0 = [ρ60, ρ
3
1, ρ

3
2, ρ

2
3, ρ

2
4, ρ

2
5] Hρ1 = [ρ32, ρ

6
0, ρ

3
1, ρ

2
4, ρ

2
5, ρ

2
3]

Hρ2 = [ρ31, ρ
3
2, ρ

6
0, ρ

2
5, ρ

2
3, ρ

2
4] Hρ3 = [ρ23, ρ

2
4, ρ

2
5, ρ

6
0, ρ

3
1, ρ

3
2]

Hρ4 = [ρ24, ρ
2
5, ρ

2
3, ρ

3
2, ρ

6
0, ρ

3
1] Hρ5 = [ρ25, ρ

2
3, ρ

2
4, ρ

3
1, ρ

3
2, ρ

6
0]

From Example 5.2, we notice that H = yH for all y ∈ X because a multigroup is
an unordered collection. Consequently, xH = yH for all x, y ∈ X.
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Proposition 5.3. Let X be a group. If A is a submultigroup of a multigroup G
of X, then yA = Ay for all y ∈ X.

Proof. Assume A is a submultigroup of G. Then ∀x ∈ A∗ we have

CyA(x) = CA(y
−1x) > CA(y) ∧ CA(x) = CA(x) ∧ CA(y) = CA(x) ∧ CA(y

−1).

Suppose by hypothesis, CA(x)∧CA(y) = CA(xy). Then CyA(x) > CAy(x). Again,

CAy(x) = CA(xy
−1) > CA(x) ∧ CA(y) = CA(y) ∧ CA(x) = CA(y

−1) ∧ CA(x).

By the same hypothesis, we get CAy(x) > CyA(x). Hence, CyA(x) = CAy(x), that
is, yA = Ay.

Remark 5.4. If A is a submultigroup of a multigroup G of a group X, then each
yA (and Ay) are submultigroups of G.

Proposition 5.5. If H is a submultigroup of A ∈ MG(X), then the number of
comultisets of H equals the cardinality of H∗.

Proof. Recall that H∗ = {x ∈ X | CH(x) > 0}, that is, H∗ is a set. Since
comultisets of H is formed by pre-multiplying each element of X (since A∗ = X)
by H and CyH(x) = CH(y−1x)∀y ∈ X must exist, hence the result follows.

Proposition 5.6. Let H be a submultigroup of A ∈ MG(X). The union and
intersection of the comultisets of H are comparable to H.

Proof. H = yH for all y ∈ X. Hence, the union and intersection of yH for all
y ∈ X are equal to H.

Proposition 5.7. Let X be a group. Any submultigroup A of a multigroup G and
for any z ∈ X, the submultiset zAz−1, where CzAz−1(x) = CA(z

−1xz) for each
x ∈ X is a submultigroup of G.

Proof. Let x, y ∈ X, then we have CzAz−1(e) = CA(e) and

CzAz−1(xy−1) = CA(z
−1xy−1z) = CA(z

−1xzz−1y−1z)

> CA(z
−1xz) ∧ CA(z

−1y−1z) = CzAz−1(x) ∧ CzAz−1(y−1)

= CzAz−1(x) ∧ CzAz−1(y)

for all z ∈ X. Hence zAz−1 is a submultigroup of G.

Corollary 5.8. Let {Ai}i∈I ∈MG(X), then

(i)
⋂

i∈I zAiz
−1 ∈MG(X) for all z ∈ X,

(ii)
⋃

i∈I zAiz
−1 ∈MG(X) for all z ∈ X provided {Ai}i∈I have sup/inf assum-

ing chain.
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Proposition 5.9. Let A ∈ MG(X) and for all g, h ∈ X, then the following
statements hold:

(i) Ag ◦Ag = Ag,

(ii) Ag ◦Ah = Ah ◦Ag,

(iii) (Ag ◦Ah)−1 = (Ah)−1 ◦ (Ag)−1,

(iv) (Ag ◦Ah)−1 = Ag ◦Ah.

Proof. Let g, h ∈ X.
(i). From De�nition 2.7, we have

CAg◦Ag(x) =
∨
{CAg(y) ∧ CAg(z) | x = yz,∀y, z ∈ X}

=
∨
y∈X
{CAg(xy

−1) ∧ CAg(y) | x ∈ X} = CAg(x).

Hence, Ag ◦Ag = Ag.

(ii). CAg◦Ah(x) =
∨
{CAg(y) ∧ CAh(z) | x = yz,∀y, z ∈ X}

=
∨
{CAh(z) ∧ CAg(y) | x = yz, y, z ∈ X} = CAh◦Ag(x).

Hence, Ag ◦Ah = Ah ◦Ag.
(iii). We show that, the left and right hand sides are equal. By De�nition 2.4

C(Ag◦Ah)−1(x) = CAg◦Ah(x
−1) = CAg◦Ah(x).

Again, from the right hand side we get

C(Ah)−1◦(Ag)−1(x) =
∨
y∈X
{C(Ah)−1(y−1) ∧ C(Ag)−1(yx) | x ∈ X}

=
∨
y∈X
{CAh(y

−1) ∧ CAg(yx) | x ∈ X}

= CAh◦Ag(x) = CAg◦Ah(x).

Hence, (Ag ◦Ah)−1 = (Ah)−1 ◦ (Ag)−1.

(iv). Straightforward from (iii).

Proposition 5.10. Let A be a commutative multigroup of a group X. Then

(i) Ay ◦Az = Ayz for all y, z ∈ X,

(ii) yA ◦ zA = yzA for all y, z ∈ X.
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Proof. (i). Let A ∈MG(X) and x ∈ X, then we have

CAy◦Az(x) =
∨

x=zy

{CAy(z) ∧ CAz(y) | ∀y, z ∈ X}

=
∨

x=zy

{CA(zy
−1) ∧ CA(yz

−1) | ∀y, z ∈ X}

= {CA∩A((zy
−1)(yz−1)) | ∀y, z ∈ X}

= {CA(xz
−1y−1) | x = yz,∀y, z ∈ X} = {CAyz(x) | x = yz,∀y, z ∈ X}.

Hence, Ay ◦Az = Ayz.

(ii). Similar to (i).

Corollary 5.11. Let A be a multigroup of a group X and y, z ∈ X. The following
statements are equivalent.

(i) (Ay ◦Az)−1 = Ay ◦Az,

(ii) Ay ◦Az = Ayz.

Proof. Combining Proposition 5.9 and Proposition 5.10, the result follows.

Theorem 5.12. Let A be a commutative multigroup of a group X and g, h ∈ X,
then Ag ◦Ah = Agh if and only if gA ◦ hA = ghA. Consequently, Agh = ghA.

Proof. Let A ∈MG(X) and g, h ∈ X. Suppose Ag ◦Ah = Agh. Then

CAgh(x) = CAg◦Ah(x) =
∨
y∈X

(CAg(y)∧CAh(y
−1x)) =

∨
y∈X

(CA(yg
−1)∧CA(y

−1xh−1))

=
∨
y∈X

(CA(g
−1y)∧CA(h

−1y−1x)) =
∨
y∈X

(CgA(y)∧ChA(y
−1x))

= CgA◦hA(x) = CghA(x).

So, gA ◦ hA = ghA.
Conversely, let gA ◦ hA = ghA. Then

CghA(x) = CgA◦hA(x) =
∨
y∈X

(CgA(y)∧ChA(y
−1x)) =

∨
y∈X

(CA(g
−1y)∧CA(h

−1y−1x))

=
∨
y∈X

(CA(yg
−1)∧CA(y

−1xh−1)) =
∨
y∈X

(CAg(y)∧CAh(y
−1x))

= CAg◦Ah(x) = CAgh(x).

Thus, Ag ◦ Ah = Agh. Hence, Ag ◦ Ah = Agh⇔ gA ◦ hA = ghA. It follows that
Agh = ghA.

Proposition 5.13. Let A be a normal submultigroup of B ∈ MG(X). Then
CxA(xz) = CxA(zx) = CA(z) for all x, z ∈ X.
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Proof. Let x, z ∈ X. Suppose A is a normal submultigroup of B, then by Propo-
sition 3.4 and the fact that CA(xz) = CA(zx), we get CxA(xz) = CxA(zx) =
CA(x

−1zx) = CA(z). Hence, CxA(xz) = CxA(zx) = CA(z) for all z ∈ X.

Theorem 5.14. Let A,B ∈ MG(X) such that A ⊆ B. Then A is a normal
submultigroup of B if and only if for all x ∈ X, Ax = xA.

Proof. Suppose A is a normal submultigroup of B. Then for all x ∈ X, we have
CAx(y) = CA(yx

−1) = CA(x
−1y) = CxA(y) for all y ∈ X. Thus, Ax = xA.

Conversely, let Ax = xA for all x ∈ X. Then, CA(xy) = Cx−1A(y) =
CAx−1(y) = CA(yx) for all y ∈ X. Hence A is a normal submultigroup of B
by Proposition 3.4.
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