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Normal submultigroups and comultisets

of a multigroup
Paul Augustine Ejegwa and Adeku Musa Ibrahim

Abstract. We study properties of normal submultigroups. It is shown that if A is a multigroup
of a group X and B is a submultigroup of A, the union and intersection of comultisets of B in
A are identical and equal to B.

1. Introduction

The notion of multigroup was first mentioned in [3] and defined as algebraic system
that satisfied all the axioms of group except that the binary operation is multi-
valued. This perspective is neither in conformity with the idea of multisets nor in
alignment with other non-classical group studied in [8]. Also, the generalizations
of group theory as multigroup in [5, 7, 9] are not within the framework of multiset.

The perspective of multigroups in [10, 11] seem to be better off because the
notion of multiset was captured but however, do not define multigroup via count
function of multiset. In [6], the concept of multigroups was introduced via count
function of multiset and some properties were discussed. Further studies on the
concept of multigroups via multisets can be found in [1, 2, 4].

In this paper, we study some properties of normal submultigroups, propose
conjugate and normalizer in multigroups, and obtain some results. The homo-
morphic properties of normal submultigroups are explicated. Finally, we explore
the idea of comultisets of a multigroup mentioned in [6] and deduce some results.
We show that the union and intersection of comultisets of a submultigroup of a
multigroup are identical and equal to the submultigroup.

2. Preliminaries

In this section, we present some existing definitions and results that are useful in
the subsequent sections.

Definition 2.1. Let X = {z1,22,...,%,,...} be a set. A multiset A over X is a
cardinal-valued function, that is, C4 : X — N such that for € Dom(A) implies
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A(x) is a cardinal and A(z) = Ca(z) > 0, where C4(x) denoted the number of
times an object x occur in A. Whenever C4(x) = 0, implies © ¢ Dom(A). We
denote the set of all multisets over X by MS(X).

A multiset A = [a,a,b,b, ¢, c,c] can be represented as A = [a, b, ¢|2 2,3. Different
forms of representing multiset exist other than this.
Definition 2.2. Let A and B be multisets over X. Then A is called a submultiset
of B written as A C B if Cy(x) < Cp(x) for all z € X. Also, if A C B and
A # B, then A is called a proper submultiset of B and denoted as A C B. Thus

A = B means that C4(z) = Cp(z) for all x € X. A multiset A with the property
Ca(z) = Cpl(y) for all z,y € X, is called regular. Otherwise it is irregular.

Definition 2.3. Let A and B be multisets over X. Then the intersection and
union of A and B, denoted by AN B and A U B respectively, are defined by the
rules that for any object = € X,

(1) Canp(x) = Ca(z) A Cp(),
(1i) Caup(x) = Ca(z)V Cp(z),
where A and V denote minimum and maximum respectively.

Definition 2.4. Let X be a group. A multiset G is called a multigroup of X if it
satisfies the following conditions:

(i) Calzy) = Calz) ACa(y) Yo,y € X,
(ii) Cg(z~t) = Cg(x) Vr € X,
where Cg denotes count function of G from X into a natural number N.
For any multigroup A its inverse A~! is defined by
Cyui(z)=Ca(z™) VazeX.

The set of all multigroups of X is denoted by MG(X). It is worthy of note
that every multigroup is a multiset but the converse is not true.

Definition 2.5. Let A € MG(X). A submultiset B of A is called a submultigroup
of A denoted by B C A if B form a multigroup. A submultigroup B of A is a
proper submultigroup denoted by B A, if BC A and A # B.

Definition 2.6. Let {A;};cr,I = 1,...,n be an arbitrary family of multigroups
of X. Then
Ch,,a(@) = /\ Cy,(x) VeeX
icl
and
Cy,., 4. () =\/ Ca,(z) VzeX.
iel
The family of multigroups {A;};cr of X is said to have inf/sup assuming chain if
either Ay C A, C...C A,or A1 D Ay D ... D A, respectively.
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Definition 2.7. Let A, B € MG(X). Then the product of A and B denoted as
Ao B, is defined by

Caop(z) = \/{Ca(y) ACB(2) |z = yz,y,2 € X}.
Proposition 2.8. Let A € MG(X). Then
(i) Av ={z € X | Ca(x) >0},
(17) A* ={x € X | Ca(z) = Cale)},
where e is the identity element of X, are subgroups of X. O

Definition 2.9. Let A and B be multisets over groups X and Y and f: X — Y
be a homomorphism. Then

(1) the image of A under f, denoted by f(A), is a multiset of Y defined by

_ [V, f—l(r)CA(I)a fHy) #0
Crenly) = { 0, o otherwise

for each y € Y.

(ii) the inverse image of B under f, denoted by f~1(B), is a multiset of X
defined by Cy-1(p)(z) = Ca(f(z))Vr € X.

Definition 2.10. Let X and Y be groups and let A € MG(X) and B € MG(Y),
respectively.

(1) A homomorphism f from X to Y is called a weak homomorphism from A to
Bif f(A) C B. If f is a weak homomorphism of A into B, then we say that,
A is weakly homomorphic to B denoted by A ~ B.

(74) An isomorphism f from X to Y is called a weak isomorphism from A to B
if f(A) C B. If f is a weak isomorphism of A into B, then we say that, A is
weakly isomorphic to B denoted by A ~ B.

(#7) A homomorphism f from X to Y is called a homomorphism from A to B if
f(A) = B. If f is a homomorphism of A onto B, then A is homomorphic to
B denoted by A ~ B.

(iv) An isomorphism f from X to Y is called an isomorphism from A to B if
f(A) = B. If f is an isomorphism of A onto B, then A is isomorphic to B
denoted by A = B.

Theorem 2.11. Let X and Y be groups and f : X — Y be an isomorphism. If
A€ MG(X) and B € MG(Y), then f(A) € MG(Y) and f~Y(B) € MG(X). O
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3. Properties of normal submultigroups

Let A € MG(X) is said to be abelian if Cy(xy) = Ca(yx) for all z,y € X. If
A, B e MG(X) and A C B, then A is called a normal submultigroup of B if

Ca(zyz™") = Caly) Va,y € X.

Example 3.1. Let X = {e,a,b, c} be a Klein 4-group such that

ab=c,ac=b, bc=a, a> =b>=c =e.

Suppose A = [e,a,b,c|32,32 and B = [e,a,b, c]5,2.4,2 are multigroups of X satisfy-
ing the axioms in Definition 2.4. Clearly, A C B. Then A is a normal submulti-
group of B since
Calaba™') = C4(b) =
CA(CbC_l) = CA(b) =

Ca(b), CA(babfl) =Cyula) =22 Cala),
CA(b) CA(be_l)ZCA(C): }CA( )

\\/ \\/

Definition 3.2. Let A € MG(X) and 2,y € X. Then x and y are called conjugate
elements in A if
Ca(z) = Calyzy™) Va,yec X.

Two multigroups A and B of X are conjugate to each other if for all x,y € X,
Ca(y) = Cp(zyz~"') and Cp(x)= Calyzy™'), ie.,
Ca(y) = Cp=(y) and Cpg(z) = Cav(x).

Remark 3.3. If A,B € MG(X) and A is a normal submultigroup of B. Then
A, is a normal subgroup of B, and A* is a normal subgroup of B*. Moreover, A
is normal if and only if A~! is normal.

Proposition 3.4. Let A, B € MG(X). Then the following statements are equiv-
alent.

(i) A is a normal submultigroup of B,
(i1) Ca(zyz™") = Caly) Va,y € X,
(13i) Ca(xy) = Calyx) Vr,y € X.
Proof. Straightforward. O

Proposition 3.5. Let A,B € MG(X) such that A C B and Ca(x) = Ca(y) for
all z,y € X. Then the following assertions are equivalent.

(i) A is a normal submultigroup of B.

(i1) Ca(yx) = Calay) ANCp(y) Va,y € X.
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Proof. (i) = (ii). Since A is a normal submultigroup of B and C(z) = Ca(y),
by Proposition 3.4 we have Ca(yz) = Ca(y(zy)y~1) = Ca(zy) A Cp(y) for all
z,y € X.

(#7) = (4). Since Ca(yz) = Ca(zy) A Cp(y), Ca(zy) = Calyz) A Cg(y), it
implies C'4(zy) = Ca(yx). Proposition 3.4 completes the proof. O

Proposition 3.6. Let X be a group, A a submultigroup of G € MG(X) and B a
submultiset of G. If A and B are conjugate, then B is a submultigroup of G. [

Proposition 3.7. Let A, B,C € MG(X) such that A and B are normal submulti-
groups of C. If AC B C C, then AN B and AU B are normal submultigroups of
C. O

Proposition 3.8. Let A be a submultigroup of B € MG(X). Then A is a normal
submultigroup of B if and only if x € X is constant on the conjugacy classes of

A. O

Proof. Suppose that A is a normal submultigroup of B. Then
Ca(y 'zy) = Ca(ryy™") = Calz) Yo,y € X.

This implies that, x € X is constant on the conjugacy classes of A.

Conversely, let x € X be constant (that is, fixed) on each conjugacy classes of
A. Then Ca(xy) = Ca(zyzx=?) = Ca(z(yz)z™!) = Ca(yx) Vz,y € X. Hence,
A is normal. O

We now give an alternative formulation of the notion of normal submultigroup
in terms of commutator of a group. First, we recall that if X is a group and
x,y € X, then the element x~1y~lzy is usually depicted by [z, ] and is called the
commutator of x and y.

Theorem 3.9. Let A,B € MG(X) such that A C B. Then A is a normal
submultigroup of B if and only if

(1) Ca([z,y]) = Ca(z) Vr,y € X.
(1) Ca(lz,y]) = Cale) Va,y € X, where e is the identity of X.
Proof. (i). Suppose A is a normal submultigroup of B. Let z,y € X, then
Ca(z 'y ay) > Ca(z™') A Caly'ay) = Calz) A Ca(x) = Ca().
Conversely, assume that A satisfies the inequality. Then for all x,y € X,
Caz™'yz) = Calyy 'z~ yz) = Caly) A Ca(ly,z]) = Caly).

Thus, Ca(z~tyx) > Ca(y) for all z,y € X. Hence A is normal.

(ii). Let =,y € X. Suppose A is a normal submultigroup of B. We know
that A is a normal submultigroup of B < Ca(zy) = Ca(yz) & Ca(z "ty tz) =



236 P.A. Ejegwa and A.M. Ibrahim

Caly™) & Calzlytayy™) = Caly™') & Callz,yly™") = Ca(y™!) for all
z,y € X. Consequently, Ca([z,y]) = Caly~ty) = Cale) for all 2,y € X.
Conversely, assume C 4 ([x,y]) = Ca(e) forallz,y € X. Then C4(z~ly~lay) =
Cal(e), so, Ca((yx)~tay) = Cale). That is, Ca(zy) = Ca(yz) for all x,y € X.
Thus, A is a normal submultigroup of B. O

1

Theorem 3.10. Let A be a normal submultigroup of G € MG(X). Then (), A"
is mormal and is the largest normal submultigroup of G that is contained in A.

Proof. Suppose A* € MG(X)Vx € X. Then for all y € X, we observe that
{A% |z € X} = {A* |z € X}. Thus,

N Cas(yzy™) = N Calwyzy™ ') = )\ Cal(zy)z(ay)™)

zeX zeX zeX
= /\ Caev(z) = /\ Ca=(2) Yy,z € X.
zeX reX

Hence, (,cx A” is a normal submultigroup of G.

Now let B be a normal submultigroup of G such that B C A. Then B =
B* C A*x € X. Thus, B C(),cx A”. Therefore, [, .y A® is the largest normal
submultigroup of G that is contained in A. O

Definition 3.11. Let A be a submultigroup of B € MG(X). Then the it nor-
malizer of A in B is the set given by

N(A) ={g € X | Calgy) = Calyg) Yy € X}.
We now note that
N(A)={g€ X [Cas(y) = Caly) Vy € X}.

It suffices to note that, C'a(gy) = Ca(yg) for all y € X implies Cx (g~ yg) = Ca(y)

for all y € X. Then Ca(g~'yg) = Caly) gives Calg'(gy)g) = Calgy), ie.,
Ca(yg) =C(gy) for all y € X.

Example 3.12. Let X = {g1, 92,93, 94, 95, 96, g7, gs } such that

(10 (0 -1 (-1 0 (0 1
g1 = 0 1 92 = 1 0 ;93 = 0 -1 ,d4 = -1 0)°
(10 (-1 0\ (01 (0 -1
g5 = 0 -1 » g6 = 0 1 y g1 = 10 » 98 = 1 0

be a group under matrix multiplication, and A C B € MG(X) such that

A=191°,95,9%.95. 95,93, 97, 93]

satisfying the axioms in Definition 2.4. Using Definition 3.11, N(A) = {g1, 93, 97, 9s }-
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Theorem 3.13. Let A be a submultigroup of B € MG(X). Then the following
assertions hold.

(i) N(A) is a subgroup of X.
(1) A is a normal submultigroup of B if and only if N(A) = X.

Proof. (i). Let g,h € N(A). Then Cyon(z) = Canys(x) = Cpn(z) = Ca(z) for
all x € X since Cas(z) = Ca(g twg) = Ca(x). Hence gh € N(A). Again, let
g € N(A). We show that g~ € N(A). For all y € X, Ca(gy) = Ca(yg) and so
Ca((gy)™") = Ca((yg)~"). Thus for all y € X, Ca(y 'g~") = Calg~'y™") and
so Ca(yg™!) = Ca(g~'y) since Cx(y) = Ca(y~'). Thus, g~' € N(A). Hence,
N(A) is a subgroup of X.

(7i). Let A be a normal submultigroup of B and g € X. Then for all z € X,
we have

Cas(z) = Calg'zg) =Cal((g~'2)g) = Caly(g'x)) = Ca(x).

Thus, Cas(z) = Ca(x) and so g € N(A). Therefore, N(A) = X.
Conversely, suppose N(A) = X. Let z,y € X. To prove that A is normal, it
is sufficient we show that C4(zy) = Ca(yz). Now

Ca(zy) = Ca(zyze™) = Ca(x(yx)z™") = C o1 (yx) = Ca(yx),

where the last equality follows since N(A4) = X and so 2~ ! € N(A). Consequently,

C4o-1(y) = Ca(y). Thus, A is a normal submultigroup of B. O
Remark 3.14. Let A be a submultigroup of B € MG(X). Then S =N(A) =T,
if

§ = {x € X | Calay(yz)™!) = Cale) ¥y € X}
and

T={xcX|Calzyz™") = Cu(y) Yy € X}.

Theorem 3.15. Let A, B and C' be multigroups of an abelian group X such that
AC BCC. Then
N(A)NN(B)C N(ANB).

Proof. Let y € N(A) N N(B). Then for any z,y € X, we get Canp(zy) =
Canp(yx). thus, Canp(ryz=1) = Canp(y). Now

C’AQB(zy:cfl) = C’A(xyx7 ) A C’B(xymfl) = CA(yx:zfl) A CB(yx:cfl)
= Ca(y) NCB(y) = Canp(y).
Thus, y € N(AN B). Hence, N(A)NN(B) C N(ANB). O

Corollary 3.16. Let A, B,C € MG(X) such that A C B C C and Cyle) =
Cp(e). Then
N(A)NN(B) = N(ANB).
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Proof. Recall that
N(A) ={z € X | Ca(zy) = Calyz) Vy € X}
={2€ X |Calzyr ty™!) = Cale) Vye X}.
Let y € N(AN B). Then from the definition of N(A), for all z € X we get
Canp(aya™'y™") = Calzyz™'y™") ACp(ayz™'y™") = Cale) A Cp(e),

implies y € N(A) N N(B). Since Ca(zyz~ly=1) = Ca(e) we obtain Cy(zy) =
C(yz). Similarly in the case of B because Cy(e) = Cp(e). Hence N(A)NN(B) =
N(ANB). O

Corollary 3.17. Let A, B,C € MG(X) such that AC B C C. Then
N(A)NN(B) C N(Ao B).
Proof. Let y € N(A)NN(B), that isy € N(A) and y € N(B). Then for all z € X,

Caos(y) = \/ {Cala) ACp(b)|Va,be X}

y=ab

= \/ {Ca(z az) A Cp(z~ bx) | Va,b € X}

y=ab

<V {Ca(0)ACp(d) | Ve, de X}

x~lyr=cd
- CAOB(x_ly(E)v

which gives Cuop(y) < Caop(x~lyr). The inequality holds since y = ab =
r7tabr = cd = ab = zedr™! = (zex!)(xdr™1) and since a = xez~! and b =
xdx~! imply 2 'ax = ¢ and 27 'bx = d. Again,

Caop(z'yz) < Caopla(z'yz)z™") = Cusn(y).

So, Caop(y) = Caop(x~tyx). Thus, Caop(y) = Caop(x~lyz), which proves,
y € N(Ao B). Therefore, N(A)N N(B) C N(Ao B). O

Remark 3.18. If A, B,C € MG(X) such that A C B C C. Then N(A) C N(B).

4. Homomorphism of normal submultigroups

In this section, we present some results on the homomorphic properties of normal
submultigroups.

Theorem 4.1. Let f be a homomorphism of an abelian group X onto an abelian
group Y. Let A and B be multigroups of X such that A C B. Then

f(N(A)) € N(f(4)).
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Proof. Let x € f(N(A)). Then f(u) = z for some v € N(A). So, for all y,z € Y,

A(fHaya™h)) = Calf 7 (@) f T W) @)

(@) W @)™ = CalfH @) f T ) (F )™
(f 1( @) F @) F @) ™) = Caluvu™)
alvuu™) = Ca(v) = Ca(f~ (1)) = Ca(v),

where v € X such that f(v) = y. Thus, x € N(f(A)), and consequently
F(N(A)) € N(f(A)). O

|
Q

Cf(A)(xyx_l)

I
s

Theorem 4.2. Let f : X — Y be homomorphism of abelian groups X and Y. Let
A and B be multigroups of Y such that B C A. Then

fTHN(B)) = N(f~1(B)).
Proof. Let x € f~1(N(B)). Then for all y € X,
Cr-1(p)(wyz™) = Cp(f(zyz™")) = Cp(f(x ) W) f(27) = Co(f(2)f(y)(f(2))7)
= Ca(fW)f(@)(f(@)™") = C(f(y)) = Cr-1(m) ().

Thus z € N(f~(B)). So, f~H(N(B)) € N(f~}(B)).
Again, let z € N(f~!(B)) and f(x) = u. Then for allv € Y,

Cp(uvu™) = Cp(f(2)f()(f(2)™") = Co(f (W) f (@) (f()7")
= Cs(f(y)) = Cp(v),

where y € X such that f(y) = v. Clearly, u € N(B), that is, x € f~}(N(B)).
Thus, N(f~1(B)) € f~'(N(B)). Hence, f~1(N(B)) = N(f~(B)). ]

Theorem 4.3. Let f : X — Y be an isomorphism of groups and let A be a
normal submultigroup of B € MG(X). Then f(A) is a normal submultigroup of
f(B) e MG(Y).

Proof. By Theorem 2.11, f(A), f(B) € MG(Y) and so, f(A) C f(B). We show
that f(A) is a normal submultlgroup of f(B). Let z,y € Y. Since f is an
isomorphism, then for some a € X we have f(a) = z. Thus,

Creay(zyz™) \/ {Ca(b) =ayr '} = \/ {Ca(a™"ba) | fla™ " ba) =y}
beX beX
> \/{Ca) | F(0) =y} =\/{Ca(S " W) | F(b) =y} = Cyay ()-
a=lbaeX beX
Hence, f(A) is a normal submultigroup of f(B). O

Theorem 4.4. Let Y be a group and A € MG(Y). If f is an isomorphism
of X onto Y and B is a normal submultigroup of A, then f~'(B) is a normal
submultigroup of f~1(A).
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Proof. By Theorem 2.11, f~1(A), f~1(B) € MG(X). Since B is a submultigroup
of A, s0 f~Y(B) C f~*(A). Let a,b € X, then we have
Cy-1py(aba™) = Cp(f(aba™)) = C(f(a) f(0)(f(a)™")

= Cp(f(a)(f(a)) "' f(b)
> Cp(e) NCp(f(D) = Cp-1(m)(b),

which completes the proof. O

5. Comultisets of a multigroup

In this section, we assume that if G is a multigroup of a group X, then G, = X.
That is, every element of X is in G with its multiplicity or count.

Definition 5.1. Let X be a group. For any submultigroup A of a multigroup G
of X, the submultiset yA of G for y € X defined by

CyA(m) = CA(yflx)V{E € A,

is called the left comultiset of A. Similarly, the submultiset Ay of G for y € X
defined by

Cay(x) = Ca(zy ')Va € A,
is called the right comultiset of A.
Example 5.2. Let X = {pq, p1, p2, p3, p4, p5} be a permutation group of {1,2,3}
such that po = (1),p1 = (123),p> = (132), ps = (28),ps = (13),p5 = (12) and
G = [p5, 3, 5, p3, p3, p3] be a multigroup of X. Then H = [pf, p}, 3, p3, p3, p3] is
a submultigroup of G.

Now, we find the left comultisets of H by pre-multiplying each element of G
by H.

poH = [p0, 1. P35, p3,p3. 03] prH = [p3, p5, P, 03, P35, 3]
poH = (03,03, 05, 3. P2, 3] psH = [p3, 3. P31, P, 3, 03
psH = [p3, 3. 03,0300, 03] psH = [p2, 03, p3, P3, p3, PG

Similarly, the right comultisets of H are

Hpo = (05, 01,5, 3,03, 03)  Hp1 =[5, 05, 01, P3, 03 93]
Hp2 [plap27p07p57p37p4] Hp = [pgap?hpg?p&p?vpg}
Hps = [p3, 3. 03, 0% P4, 03] Hps = [p2, 03, p1, P3, p3, PY)]

From Example 5.2, we notice that H = yH for all y € X because a multigroup is
an unordered collection. Consequently, xtH = yH for all z,y € X.
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Proposition 5.3. Let X be a group. If A is a submultigroup of a multigroup G
of X, then yA = Ay for all y € X.

Proof. Assume A is a submultigroup of G. Then Vz € A, we have
Cya(z) = Caly™'x) = Ca(y) A Ca(z) = Ca(z) A Caly) = Calz) ACaly™").
Suppose by hypothesis, Ca(xz) ACa(y) = Ca(zy). Then Cya(z) > Cay(z). Again,
Cay(x) = Calzy™) = Calx) ACa(y) = Caly) A Calx) = Caly™") A Cal).

By the same hypothesis, we get Cay(z) > Cya(x). Hence, Cya(z) = Cay(x), that
is, yA = Ay. O

Remark 5.4. If A is a submultigroup of a multigroup G of a group X, then each
yA (and Ay) are submultigroups of G.

Proposition 5.5. If H is a submultigroup of A € MG(X), then the number of
comultisets of H equals the cardinality of H.,.

Proof. Recall that H, = {z € X | Cy(x) > 0}, that is, H, is a set. Since
comultisets of H is formed by pre-multiplying each element of X (since 4, = X)
by H and Cyy(z) = Cy(y~'z)Vy € X must exist, hence the result follows. O

Proposition 5.6. Let H be a submultigroup of A € MG(X). The union and
intersection of the comultisets of H are comparable to H.

Proof. H = yH for all y € X. Hence, the union and intersection of yH for all
y € X are equal to H. O

Proposition 5.7. Let X be a group. Any submultigroup A of a multigroup G and
for any z € X, the submultiset zAz=1, where C, 4,1 (z) = Ca(z7122) for each
z € X is a submultigroup of G.

Proof. Let z,y € X, then we have C, 4,-1(e) = Ca(e) and
Cope1(zy™) = Calzray t2) = Calz tazzty ™ 12)
> Ca(zle2) ANCa(zly 2) = Coaz1(2) AConaa(y ™)
=Coaz1(2) NCoaz1(y)
for all z € X. Hence zAz~! is a submultigroup of G. O
Corollary 5.8. Let {A;}icr € MG(X), then
(1) Mg 2Aiz™' € MG(X) for all z € X,

(1) Usep 2Aiz™! € MG(X) for all z € X provided {A;}ic; have sup/inf assum-
ing chain. O
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Proposition 5.9. Let A € MG(X) and for all g,h € X, then the following
statements hold:

(i) Ago Ag= Ay,
(ii) Ago Ah = Aho Ag,

) (Ago Ah)~! = (Ah)~' o (Ag)!,
(iv) (Ago Ah)~' = Ago Ah.

(iii

Proof. Let g,h € X.
(7). From Definition 2.7, we have

Cagong(®) = \/{Cug(y) A Cag(2) | & = yz,¥y, 2 € X}

- \/ {CAg(xyil) NCag(y) |z € X} =Cay(x).
yeX

Hence, Ago Ag = Ag.

(i1). Cagoan(z) = \/{CAg(y) ANCan(z) |z =yz,Vy,z € X}
= \V{Can(2) A Cag(y) | & = yz,y,2 € X} = Canoag(2).
Hence, Ago Ah = Ah o Ag.
(7i7). We show that, the left and right hand sides are equal. By Definition 2.4
Clagoan-1(x) = Cagoan(z™") = Cagoan(x).

Again, from the right hand side we get

Ciany-1o(ag)—1(x) = \/ {Clany-1(y™") A Crag—1 (yz) |z € X}
yeX

= \/ {CAh(yil) /\CAg(yx) |z € X}
yeX

= Cahoag(x) = Cagoan(x).
Hence, (Ago Ah)~!' = (Ah)~1o (Ag)~'.
(iv). Straightforward from (#4i). O
Proposition 5.10. Let A be a commutative multigroup of a group X. Then
(1) Ayo Az = Ayz forally,z€ X,
(1i) yAozA=yzA forally,ze€ X.
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Proof. (i). Let A€ MG(X) and z € X, then we have

Cayoaz (@) = \/ {Cay(2) A Casly) | Vy, z € X}

T=2yY

= \/ {Ca(zy™ YA Ca(yz™") | Vy, 2 € X}

T=2yY
= {Cana((zy™)(yz™")) | ¥y, 2 € X}
= {OA(mzilyil) | T = yZ,Vy,Z € X} = {CAyZ(x) | L= yzvvyaz € X}

Hence, Ay o Az = Ayz.
(¢4). Similar to (7). O

Corollary 5.11. Let A be a multigroup of a group X andy,z € X. The following
statements are equivalent.

(i) (Ayo Az)~t = Ayo Az,
(i1) Ayo Az = Ayz.
Proof. Combining Proposition 5.9 and Proposition 5.10, the result follows. O

Theorem 5.12. Let A be a commutative multigroup of a group X and g,h € X,
then Ag o Ah = Agh if and only if gA o hA = ghA. Consequently, Agh = ghA.

Proof. Let A€ MG(X) and g,h € X. Suppose Ag o Ah = Agh. Then

Coagh () = Cagorn(@) =\/(Cagn)ACan(y™" ) =\/(Calyg™)ACaly'ah ")

yeX yeX
=\/(Calg 'y)ACa(h 'y 7)) =\/(Coa(y) A Chaly'2))
yeX yeX

= nghA(x) :CghA(x)'

So, gA o hA = ghA.
Conversely, let gA o hA = ghA. Then

Cyna(@) = Cyaona(@) =\/(Cya(y) AChaly™'2)) =\/(Calg™"y)ACa(h 'y x))

yeX yeX
=\/(Calyg ™ HACaly™ wh™")) =\/(Cag(y) A\Can(y~ "))
yeXx yeX

= Cagoan(z) = Cagn(z).

Thus, Ag o Ah = Agh. Hence, Ago Ah = Agh < gA o hA = ghA. It follows that
Agh = ghA. O

Proposition 5.13. Let A be a normal submultigroup of B € MG(X). Then
Cypa(xz) = Cya(zx) = Ca(2) for all z,z € X.
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Proof. Let x,z € X. Suppose A is a normal submultigroup of B, then by Propo-
sition 3.4 and the fact that Ca(zz) = Ca(zz), we get Cpoa(zz) = Cra(zz) =
Ca(z7'zx) = Ca(z). Hence, Cpa(x2) = Cpa(zx) = Ca(z) for all z € X. O

Theorem 5.14. Let A,B € MG(X) such that A C B. Then A is a normal
submultigroup of B if and only if for all x € X, Ax = zA.

Proof. Suppose A is a normal submultigroup of B. Then for all x € X, we have
Caz(y) = Ca(yz™!) = Ca(z~ty) = Cra(y) for all y € X. Thus, Az = zA.

Conversely, let Az = zA for all x € X. Then, Ca(zy) = Cp-14(y) =
Caz—1(y) = Ca(yx) for all y € X. Hence A is a normal submultigroup of B
by Proposition 3.4. O
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