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Note on the cyclic subgroup

intersection graph of a �nite group

Elaheh Haghi and Ali R. Ashra�

Abstract. The cyclic subgroup intersection graph of a �nite group G, ΓCSI(G), is a simple

graph with non-trivial cyclic subgroups as vertex set. Two cyclic subgroups are adjacent if and

only if they have a non-trivial intersection. It is easy to see that ΓCSI(G) is a subgraph of the

intersection graph was introduced by Csákány and Pollák many years ago. In this paper the

main properties of this new graph is studied. The graph structure of the cyclic groups, dihedral

groups, generalized quaternion groups and the group Zpα ×Zpβ are completely determined.

1. Introduction

Throughout this paper all groups are assumed to be �nite and graphs will be
�nite and simple. For notations not de�ned here, we refer the reader to [4, 7, 8].
The greatest common divisor and least common multiple of integers a and b are
denoted by (a, b) and [a, b], respectively. The number of positive divisors of an
integer n is denoted by d(n). Our calculations are done with the aid of GAP [2].

The intersection graph of a �nite group G was introduced many years ago by
Csákány any and Pollák [1]. The vertex set of this graph is all proper non-trivial
subgroups of G and two vertices H and K are adjacent if and only if H ∩K 6= 1,
where 1 denotes the trivial subgroup of G. In the mentioned paper, the authors
proved that if G is abelian and there are two subgroups H and K in G such that
there is no chain of subgroups which unites them, then G is the direct product
of two simple cyclic groups. As a consequence, they proved that the diameter of
this graph is at most 2, when G is an abelian group. The diameter of non-abelian,
non-simple groups is at most 4. Some interesting open questions are also included
in [1]. Zelinka [10], continued the study of this graph and conjectured that two
�nite Abelian groups with isomorphic intersection graphs are isomorphic.

Tamizh Chelvam and Sattanathan [9] continued the seminal paper of Csákány
any and Pollák to introduce the subgroup intersection graph of a �nite group G
denoted by ΓSI(G). The vertex set of this graph is G\{e}, and there is an edge

2010 Mathematics Subject Classi�cation: 20D99
Keywords: Cyclic subgroup intersection graph, subgroup intersection graph,
generalized quaternion group.
The research of the authors are partially supported by the University of Kashan under grant
no 364988/121.



246 E. Haghi and A.R. Ashra�

between two distinct vertices x and y if and only if 〈x〉∩〈y〉 6= 1. As a consequence
of a result in this paper, the subgroup intersection graph of a �nite group G is
complete if and only if G is a cyclic p−group or a generalized quaternion 2−group.
Moreover, the subgroup intersection graph of a �nite abelian p−group is a union
of complete graphs.

The cyclic subgroup intersection graph of G, ΓCSI(G), is another simple graph
with proper non-trivial cyclic subgroups as vertex set. Two cyclic subgroups are
adjacent if and only if they have a non-trivial intersection. It is easy to see that
ΓCSI(G) is a subgraph of ΓSI(G).

Suppose ∆ is a simple graph. Following Sabidussi [6], the ∆−join of a family
F = {Tx | x ∈ V (∆)} of simple graphs is another simple graph Γ with the following
vertex and edge sets:

V (Γ) = {(x, y) | x ∈ V (∆) & y ∈ V (Tx)},
E(Γ) = {(x, y)(a, b) | xa ∈ E(∆) or x = a & yb ∈ E(Tx)}.

If V (∆) = {x1, . . . , xn} and F = {T1, . . . , Tn} then the ∆−join of the family F is
denoted by ∆[T1, . . . , Tn].

An independent set of a simple graph Γ is a subset of its vertices, no two of
which are adjacent. The cardinality of an independent set in Γ of largest possible
size is called the independence number of Γ. This number is denoted by α(Γ). We
refer to the famous book of Harary [4] for our graph theory notations.

The aim of this paper is to investigate the main properties of the cyclic sub-
group intersection graph. It is proved, among other things, that if G = Zpα ×Zpβ ,
where p is prime and α, β are two positive integers such that α 6 β then ΓCSI(G)
is a union of the complete graphs K(β−α)pα+ pα−1

p−1
together with p copies of K pα−1

p−1
,

and ΓSI(G) is a union of the complete graphs K
pα+β− p2α+1+1

p+1

together with p

copies of K p2α−1
p+1

.

2. Main results

Suppose G is a non-cyclic group and A = ΓCSI(G). For each 〈a〉 ∈ V (A), we
de�ne T〈a〉 = Kφ(|a|), where φ denotes the Euler totient function. Then one can
easily see that ΓSI(G) is an A−join of {T〈x〉 | 〈x〉 ∈ V (A)}.

Lemma 2.1. Let G be a group of order n. Then |V (ΓCSI(G))| > d(n) − 2 with

equality if and only if G is cyclic.

Proof. By [5], the number of cyclic subgroups of a group G of order n is at least
d(n) with equality if and only if G ∼= Zn, as desired.

By Lemma 2.1, the cyclic subgroup intersection graph of a cyclic group of order
pm+1 has exactly m vertices. This proves that for each positive integer m, there
exists at least a group with an m−vertex cyclic subgroup intersection graph.
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Example 2.2. Suppose SmallGroup(n, i) denotes the i−th group of order n in the
small group library of GAP [2]. De�ne G = SmallGroup(168, 46) = (Z7×A4) : Z2,
H = SmallGroup(168, 38) = (Z42 × Z2) : Z2 and K = SmallGroup(168, 42)
=PSL(3, 2). Then ΓCSI(G)∼= ΓCSI(H)∼= ΓCSI(K), butG,H andK are mutually
non-isomorphic.

The previous example shows that if ΓCSI(G) and ΓCSI(H) are isomorphic then
we cannot deduce that G and H are isomorphic, even in the case that one of these
groups is simple.

Example 2.3. In this example the cyclic subgroup intersection graph of a dihedral
group of order 2n will be computed. The dihedral group of order 2n can be
presented as D2n = 〈xn = y2 = e, y−1xy = x−1〉. Suppose k1, . . . , kd(n) are all
divisors of n. Then

V (ΓCSI(D2n)) = {〈ak1〉, . . . , 〈akd(n)−1〉, 〈b〉, 〈ab〉, . . . , 〈an−1b〉}.

It is easy to see that 〈b〉, 〈ab〉, . . . , 〈an−1b〉 are pendant vertices of ΓCSI(D2n).
Moreover, 〈aki〉 and 〈akj 〉 are adjacent if and only if [ki, kj ] < n.

Theorem 2.4. The cyclic subgroup intersection graph of a �nite group G is com-

plete if and only if G is cyclic or a generalized quaternion 2−group.

Proof. It is well-known that a p−group G has a unique subgroup of order p if and
only if G is cyclic or a generalized quaternion 2−group. By this theorem, if G
is cyclic or a generalized quaternion 2−group then the intersection of non-trivial
subgroups H and K contains the unique subgroup of G and so H ∩K 6= 1. This
proves that ΓCSI(G) is complete. Conversely, if ΓCSI(G) is complete and p, q are
two prime divisors of |G| then there are elements a and b of orders p and q in G,
respectively. Since 〈a〉 ∩ 〈b〉 = 1,we lead to a contradiction. So, G is a p−group.
Since ΓCSI(G) is complete, there is a unique subgroup of order p and by mentioned
well-known result G is cyclic or a generalized quaternion 2−group.

Lemma 2.5. Let G be a �nite group. Then α(ΓCSI(G)) is the number of cyclic

subgroups of a prime order.

Proof. Suppose α = α(ΓCSI(G)), {〈a1〉, . . . , 〈ak〉} is the set of all cyclic subgroups
of G of a prime order and B = {〈b1〉, . . . , 〈bα〉} is a given independent set of largest
possible size for G. Since A is an independent set for ΓCSI(G), k 6 α. Choose
i, 1 6 i 6 α, and element ci of a prime order such that 〈ci〉 ⊆ 〈bi〉. Since B is
an independent set, ci 6= cj , when i 6= j. This shows that α 6 k, proving the
lemma.

Suppose m and n are positive integers. De�ne:

Im,n = {(a, b, t) ∈ N2 ×N0 | a|m, b|n, 0 6 t 6 (a,
n

b
)− 1},

Ha,b,t = {(ia+
jta

(a, nb )
, jb) | 0 6 i 6

m

a
− 1, 0 6 j 6

n

b
− 1}, (a, b, t) ∈ Im,n.
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For the sake of completeness, we mention here a result in [3] which is crucial
in our next result. If ns = 0 then we de�ne (mb, na, ns) = (mb, na).

Theorem 2.6. [3, Theorem 2] Suppose s = ta
(a,nb )

. Then,

1. H 6 Zm×Zn if and only if there exists (a, b, t) ∈ Im,n such that H = Ha,b,t.

2. Ha,b,t is cyclic if and only if ab = (mb, na, ns).

3. The number of cyclic subgroups in Zm × Zn is
∑

a|m,b|n,(ma ,
n
b )=1

(a, b).

Theorem 2.7. Suppose G = Zpα × Zpβ , where p is prime and α, β are two

positive integers such that α 6 β. Then ΓCSI(G) is a union of the complete

graphs K(β−α)pα+ pα−1
p−1

and p copies of K pα−1
p−1

.

Proof. By de�nition of Ha,b,t and Theorem 2.6, it can easily see that for each d,
1 6 d 6 p− 1, the subgroups

Hpα,pβ−1,d;

Hpα,pβ−k,t, 2 6 k 6 α, t = d, p+ d, . . . , (p− 1)p+ d;

Hpα,pβ−k′ ,t, 3 6 k′ 6 α, t = p2 + d, p2 + p+ d, . . . , p2 + (pk
′−1 + p− 1)p+ d,

are cyclic subgroups containing (dpα−1, pβ−1) which gives p−1 cliques isomorphic
to K pα−1

p−1
. These complete subgraphs are denoted by Γ1, . . . ,Γp−1. On the other

hand, the cyclic subgroupsHpk,pβ ,0, 0 6 k 6 α−1 andHpα−l,pβ−k′ ,t, 1 6 k′ 6 α−1,

1 6 l ≤ α − k′, 1 6 t 6 pk
′ − 1, t 6≡ 0(mod p) have a common element (pα−1, 0)

and so we will have another clique of size pα−1
p−1 . Note that for each k′, there are

(α−k′)(pk′−pk′−1) cyclic subgroups Hpα−l,pβ−k′ ,t that gives a clique of size
pα−1
p−1 .

The complete subgraph induced by this clique is denoted by Γp. We now consider
the cyclic subgroups Hpα,pk,t, 0 6 k 6 β − α − 1, 0 6 t 6 pα − 1 and the cyclic
subgroups Hpα,pβ−k,t, 1 6 k 6 α, 0 6 t 6 pk − 1 and t ≡ 0 (mod p). These are

(β − α)pα + pα−1
p−1 cyclic subgroups containing element (0, pβ−1) which gives us a

clique of order (β−α)pα+ pα−1
p−1 . De�ne Γp+1 to be the complete subgraph induced

by the las clique. By Theorem 2.6(3), these are all cyclic subgroups of Zpα × Zpβ
and we have to show that ΓCSI(Zpα × Zpβ ) is the union of Γ1 ∪ Γ2 ∪ . . . ∪ Γp+1.

To complete the proof, we will shows that there is no edge in ΓCSI(Zpα ×Zpβ )
connecting a vertex in Γi to a vertex in Γj , i 6= j. Suppose vertices v1 = 〈a1〉 ∈
V (Γi) and v2 = 〈a2〉 ∈ V (Γj) that are not adjacent in ΓCSI(G). We prove that
there is no vertex u1 = 〈b1〉 in Γi to be adjacent with a vertex u2 = 〈b2〉 in Γj . If
u1 and u2 are adjacent in ΓCSI(G) then b1 and b2 will be adjacent in ΓSI(G) and
since ΓSI(G) is a union of complete graphs, a1 and a)2 will be adjacent in ΓSI(G)
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and so v1 and v2 are adjacent in ΓCSI(G) which is impossible. To complete our
argument, we consider the following cyclic subgroups:

Hpα,pβ−1,d = {(jdpα−1, jpβ−1) | 0 6 j 6 p− 1}; (1 6 d 6 p− 1),

Hpk,pβ ,0 = {(ipk, 0) | 0 6 i 6 pα−k − i},
Hpα,pβ−1,0 = {(0, jpβ−1) | 0 6 j 6 pβ − 1}.

We now prove that these vertices are not adjacent. Suppose (jdpα−1, jpβ−1) ∈
Hpk,pβ ,0 ∩ Hpα,pβ−1,d. Then jpβ−1 = 0, 0 6 j 6 p − 1, and so j = 0. This
shows that (jdpα−1, jpβ−1) = (0, 0). It is also clear that Hpk,pβ ,0 ∩Hpα,pβ−1,0 =
{(0, 0)}. If (jdpα−1, jpβ−1) ∈ Hpα,pβ−1,0, 1 6 j, d 6 p − 1, then j = 0 and so
Hpα,pβ−1,0 ∩Hpα,pβ−1,d = {(0, 0)}.

We now assume that d′ 6= d. Choose a common element in two cyclic subgroups
of the �rst type, say (jdpα−1, jpβ−1) = (j′d′pα−1, j′pβ−1). Then jβp−1 ≡ j′βp−1,
where 0 6 j, j′ 6 p − 1. Thus j = j′ and since jdpα−1 ≡ jd′pα−1 (mod pα).
Therefore, d = d′ which completes our proof.

Theorem 2.8. Suppose G = Zpα × Zpβ , where p is prime and α, β are two

positive integers such that α 6 β. Then ΓSI(G) is a union of the complete graphs

K
pα+β− p2α+1+1

p+1

and p copies of K p2α−1
p+1

.

Proof. By Theorem 2.7, the graph ΓCSI(Zpα × Zpβ ) is a union of p+ 1 complete
graph and by de�nition of ΓSI and ΓCSI , a given component of ΓSI is constructed
from a component of ΓCSI by adding some vertices corresponding to generators of
vertices in ΓCSI . So the components of ΓSI will also be a complete graph. Suppose
1 6 d 6 p − 1. By the proof of Theorem 2.7, the vertices of p − 1 components of
ΓCSI are as follows:

Hpα,pβ−1,d = {(jtpα−1, jpβ−1); 0 6 j 6 p− 1},
Hpα,pβ−k,t = {(jtpα−k, jpβ−t), 0 6 j 6 pk − 1},

Hpα,pβ−k′ ,t′ = {(jt′pα−k
′
, jpβ−k

′
), 0 6 j 6 pk

′
− 1},

where t ∈ A = {d, p+ d, . . . , (p− 1)p+ d}, 2 6 k 6 α and

t′ ∈ B = {p2 + d, . . . , p2 + (pk
′−1 − p− 1)p+ d}, 3 6 k′ 6 α.

On the other hand, |Hpα,pβ−1,d| = p, |Hpα,pβ−k,t| = pk, |A| = p, |Hpα,pβ−k′ ,t′ | =
pk
′
, |B| = pk

′ − p and by considering the number of generators, we will have p− 1
complete graph K p2α−1

p+1

.

By the proof of Theorem 2.7, the cyclic subgroups

Hpk,pβ ,0 = {(ipk, 0), 0 6 i 6 pα−k − 1}, 0 6 k 6 α− 1,

Hpα−l,pβ−k,t = {(ipα−l + jtpα−l−k, jpβ−k), 0 6 i 6 pl − 1, 0 6 j 6 pk − 1}
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constitutes a pα−1
p−1 −vertex component of ΓCSI(Zpα×Zpβ ). By an easy calculation,

one can see that the number of generators of vertices are equal to p2α−1
p+1 . We now

consider the component K(β−α)pα+ pα−1
p−1

of ΓCSI(G) with the following vertices:

Hpα,pk,t = {(jt, jpβ−(α+1)) | 0 6 j 6 pβ−k − 1}

Hpα,pβ−k′ ,t′ = {(jt′pα−k
′
, jpβ−k

′
), 0 6 j 6 pk

′
− 1},

where 0 6 k 6 β − α + 1, 0 6 t 6 pα − 1, 1 6 k′ 6 α, 0 6 t′ 6 pk
′ − 1 and

t′ ≡ 0 (mod p). By counting the number of generators, a component isomorphic
to K

pα+β− p2α+1+1
p+1

is obtained, as desired.
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