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A note on semisymmetry

Aleksandar Krapeº and Zoran Petri¢

Abstract. J.D.H. Smith showed how to replace homotopies between quasigroups by homo-
morphism between semisymmetric quasigroups. This is a semisymmetrization and it replaces
a quasigroup by a semisymmetric structure de�ned on its Cartesian cube. The reason for a
semisymmetrization is that homomorphisms behave more regularly than homotopies.

A thorough survey of properties of Smith's semisymmetrization is given in this paper. Also,

new semisymmetrizations, which replace a quasigroup by semisymmetric structures de�ned on

its Cartesian square are suggested.

1. Introduction

For a plausible category of quasigroups, it seems that homotopies between quasi-
groups, taken as morphisms, are better choice than homomorphisms (see [3] and
[9]). However, homomorphisms are sometimes easier to work with. For example,
isotopies (bijective homotopies) do not preserve units � every quasigroup is iso-
topic to a loop (quasigroup with a unit) but is not necessarily a loop itself. This
note is about turning homotopies into homomorphisms.

Smith, [6], proved that there is an adjunction from the category of semisymmet-
ric quasigroups with homomorphisms to the category of quasigroups with homo-
topies. Also, he proved in [6] that the latter category is isomorphic to a subcategory
of the former category, and in [7], that every T algebra, for T being the monad
de�ned by the above adjunction, is isomorphic to the image of a semisymmetric
quasigroup under the comparison functor.

These results, especially the embedding of the category of quasigroups with
homotopies into the category of semisymmetric quasigroups with homomorphisms,
could be of interest to a working universal algebraist. Our intention is to make
them more accessible to such a reader and to indicate a possible misusing. Also,
we give a proof that the comparison functor is full, which completes the proof of
monadicity of the adjunction.

At the end of the paper, we show that there is a more economical way to embed
the category of quasigroups with homotopies into the category of semisymmetric
quasigroups with homomorphisms. One could get an impression, due to [6], that
for such an embedding it is necessary to have a semisymmetrization functor that
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is a right adjoint in an adjunction. If one is interested just in this embedding and
not in re�ectivity (see the end of Section 4), then this new semisymmetrization
suits as any other.

We assume that the reader is familiar with the notions of category, functor
and natural transformation. If not, we suggest to consult [5] for these notions.
All other relevant notions from Category theory are introduced at the appropriate
places in the text.

2. Quasigroups

We start by recapitulating a few basic facts about quasigroups.
One way to de�ne a quasigroup is that it is a grupoid (Q; ·) satisfying:

∀ab∃1x (x · a = b) and ∀ab∃1x (a · x = b)

Uniqueness of the solution of the equation x ·a = b (a ·x = b) enables one to de�ne
right (left) division operation x = b/a (x = a\b) which is also a quasigroup (short
for: (Q; /) is a quasigroup). We can de�ne three more operations:

x ∗ y = y · x x//y = y/x x\\y = y\x

dual to ·, /, \ respectively. They are also quasigroups. The six operations ·, /, \, ∗, //
and \\ are parastrophes of · (and of each other).

A function f : Q→ R between the base sets of quasigroups (Q; ·) and (R, ·) is
a homomorphism i�:

f(x) · f(y) = f(x · y)

and isomorphism if f is a bijection as well.
A triple f̄ = (f1, f2, f3) of functions (fi : Q→ R) is a homotopy i�:

f1(x) · f2(y) = f3(x · y)

which implies (and is implied by any of):

f3(x)/f2(y) = f1(x/y) f2(x)//f3(y) = f1(x//y)

f1(x)\f3(y) = f2(x\y) f3(x)\\f1(y) = f2(x\\y)

If all three components of f̄ are bijections, then f̄ is an isotopy.

***

We can also de�ne a quasigroup as an algebra (Q; ·, /, \) with three binary op-
erations: multiplication (·), right and left division. The axioms that a quasigroup
satis�es are (xy is short for (x · y)):

xy/y = x x\xy = y

(x/y)y = x x(x\y) = y
(Q)
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For obvious reasons, such quasigroups are called equational, primitive or equasi-

groups.
Thus, we have the variety of all quasigroups. Another important variety is

the variety of semisymmetric quasigroups, de�ned by one of the following �ve
equivalent axioms (in addition to (Q)):

x · yx = y (2.1)

xy · x = y (2.2)

x/y = yx

x\y = yx

x\y = x/y

Smith, [6], de�ned a semisymmetrization of a quasigroup Q = (Q; ·, /, \) as a
one�operation quasigroup Q∆ = (Q3; ◦) where the binary operation ◦ is de�ned
by:

(x1, x2, x3) ◦ (y1, y2, y3) = (y3/x2, y1\x3, x1y2) (2.3)

and proved that, for any quasigroup Q, the semisymmetrization Q∆ of Q is a
semisymmetric quasigroup.

3. Twisted quasigroups

For our purpose, there is a better way to de�ne a quasigroup. In this de�nition the
twisted quasigroup is an algebra (Q; //, \\, ·) satisfying appropriate paraphrasing of
the above quasigroup axioms (Q):

y//xy = x xy\\x = y

(y//x)y = x x(y\\x) = y

We have the following symmetry result, lacking for quasigroups de�ned as
(Q; ·, /, \).

Proposition 3.1. An algebra (Q; //, \\, ·) is a twisted quasigroup i� (Q; \\, ·, //) is

a twisted quasigroup i� (Q; ·, //, \\) is a twisted quasigroup.

Analogously, we have the paraphrasing of axioms for semisymmetric twisted

semisymmetric quasigroups: (2.1),(2.2) and

x//y = xy

x\\y = xy

x\\y = x//y

The last three identities we shorten to symbolic identities: // = ·, \\ = ·, \\ = //.
There is also a result corresponding to Proposition 3.1:
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Proposition 3.2. An algebra (Q; //, \\, ·) is a semisymmetric twisted quasigroup
i� (Q; \\, ·, //) is a semisymmetric twisted quasigroup i� (Q; ·, //, \\) is a semisym-
metric twisted quasigroup.

***

Using twisted quasigroups we can see how a (twisted) semisymmetrization
(de�ned below), which we call ∇, 'works'.

Let us start with three single�operation quasigroups (Q; ·), (Q; //) and (Q; \\),
where // and \\ are duals of appropriate division operations of ·. We can de�ne
direct (Cartesian) product (Q; //)× (Q; \\)× (Q; ·) and an operation ⊗ on Q3 such
that

(x1, x2, x3)⊗ (y1, y2, y3) = (x1//y1, x2\\y2, x3y3) (3.4)

de�nes multiplication in the direct product. Therefore (Q3;⊗) is a quasigroup.
De�ne also a permutation ′ : Q3 → Q3 by (x1, x2, x3)′ = (x2, x3, x1). It follows

that (x1, x2, x3)′′ = (x3, x1, x2) and (x1, x2, x3)′′′ = (x1, x2, x3). De�ne another
operation ∇3 : Q3 × Q3 → Q3 by x̄∇3ȳ = x̄′ ⊗ ȳ′′, where ū = (u1, u2, u3). The
groupoid (Q3;∇3) is also a quasigroup, so there are appropriate division operations
of ∇3 and their duals ∇1 and ∇2:

x̄∇3ȳ = z̄ i� ȳ∇1z̄ = x̄ i� z̄∇2x̄ = ȳ.

Therefore (Q3;∇1,∇2,∇3) is a twisted quasigroup.
Let us calculate ∇1.

z̄ = (z1, z2, z3) = x̄∇3ȳ = (x1, x2, x3)′ ⊗ (y1, y2, y3)′′

= (x2, x3, x1)⊗ (y3, y1, y2) = (x2//y3, x3\\y1, x1y2).

Therefore

x̄ = (y2//z3, y3\\z1, y1z2) = (y2, y3, y1)⊗ (z3, z1, z2) = ȳ′ ⊗ z̄′′ = ȳ∇3z̄

i.e. ∇1 = ∇3 (and consequently ∇2 = ∇3) hence (Q3;∇1,∇2,∇3) is semisymmet-
ric twisted quasigroup. So we recognize ∇3 as a twisted analogue of Smith's ◦ (see
identity (2.3)). Let us call Q∇ = (Q3;∇1,∇2,∇3) a twisted semisymmetrization

of Q.
For (f1, f2, f3) being a homotopy from Q to R, we also have:

(f1 × f2 × f3) (x̄∇3ȳ) = (f1 × f2 × f3) (x̄′ ⊗ ȳ′′)
= (f1(x2//y3), f2(x3\\y1), f3(x1 · y2))

= (f2x2//f3y3, f3x3\\f1y1, f1x1 · f2y2)

= (f2x2, f3x3, f1x1)⊗ (f3y3, f1y1, f2y2)

= (f1x1, f2x2, f3x3)′ ⊗ (f1x1, f2x2, f3x3)′′

= (f1 × f2 × f3) (x̄)∇3(f1 × f2 × f3) (ȳ),

so f1 × f2 × f3 is a homomorphism.
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4. The categories Qtp and P

This section follows the lines of [6] with some adjustments. The main novelty is
a proof of [6, Corollary 5.3]. We try to keep to the notation introduced in [6].
However, we write functions and functors to the left of their arguments.

For a �xed, large enough universe U , a quasigroup Q = (Q; ·, /, \) is small

when Q belongs to U (see [5, I.2]). Let Qtp be the category with objects all small
quasigroups Q = (Q; ·, /, \) and arrows all homotopies. The identity homotopy
on Q is the triple (1Q,1Q,1Q), where 1Q is the identity function on Q, and the
composition of homotopies (f1, f2, f3) : P → Q and (g1, g2, g3) : Q → R is the
homotopy (g1 ◦ f1, g2 ◦ f2, g3 ◦ f3) : P→ R.

Let P be the category with objects all small semisymmetric quasigroups and
arrows all quasigroup homomorphisms. For every arrow f : Q→ R of P, the triple
(f, f, f) is a homotopy between Q and R.

Let Σ be a functor from P to Qtp, which is identity on objects. Moreover, let
Σf , for a homomorphism f , be the homotopy (f, f, f).

The category P is a full subcategory of the category Q with objects all small
quasigroups and arrows all quasigroup homomorphisms. The functor Σ is just a
restriction of a functor from Q to Qtp, which is de�ned in the same manner.

An adjunction is given by two functors, F : C → D and G : D → C, and two
natural transformations, the unit η : 1C

.→ GF and the counit ε : FG
.→ 1D, such

that for every object C of C and every object D of D

GεD ◦ ηGD = 1GD, and εFC ◦ FηC = 1FC .

These two equalities are called triangular identities. The functor F is a left adjoint

for the functor G, while G is a right adjoint for the functor F .
That Σ : P → Qtp has a right adjoint is shown as follows. Let // and \\ be

de�ned as at the beginning of Section 3. For Q a quasigroup, let∇3 : Q3×Q3 → Q3

be de�ned as in Section 3, i.e., for every x̄ = (x1, x2, x3) and ȳ = (y1, y2, y3)

x̄∇3ȳ = (x2//y3, x3\\y1, x1 · y2).

That (Q3;∇3) is a semisymmetric quasigroup follows from the fact that the struc-
ture (Q3;∇1,∇2,∇3) is a semisymmetric twisted quasigroup, which is shown in
Section 3. The semisymmetric quasigroup (Q3;∇3) is the semisymmetrization Q∆

of Q de�ned at the end of Section 2 (see (2.3)).
Let ∆: Qtp→ P be a functor, which maps a quasigroup Q to the semisymmet-

ric quasigroup (Q3;∇3). A homotopy (f1, f2, f3) is mapped by ∆ to the product
f1 × f2 × f3, which is a homomorphism as it is shown at the end of Section 3. By
the functoriality of product, we have that ∆ preserves identities and composition,
and it is indeed a functor. A proof of the following proposition is given in [6,
Theorem 5.2].

Proposition 4.1. The functor ∆ is a right adjoint for Σ.
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Moreover, every component of the counit of this adjunction is epi (i.e. right
cancellable) and the semisymmetrization is one-one. This is su�cent for Qtp to
be isomorphic to a subcategory of P. This is one way how to establish this fact
using the previous proposition. However, if the goal was just to establish that Qtp
is isomorphic to a subcategory of P, this adjunction is not necessary at all, which
is shown below.

A functor F : C → D is faithful when for every pair f, g : A → B of arrows of
C, Ff = Fg implies f = g. An arrow f : A → B of C is epi when for every pair
g, h : B → C of arrows of C, the equality g ◦f = h◦f implies g = h. The following
lemmas will help us to prove that Qtp is isomorphic to a subcategory of P.

Lemma 4.2. The functor ∆ is faithful.

Proof. For homotopies (f1, f2, f3) and (g1, g2, g3) from Q to R, if f1 × f2 × f3 and
g1 × g2 × g3 are equal as homomorphisms from ∆Q to ∆R in P, then for every
i ∈ {1, 2, 3}, fi = gi. Hence, these homotopies are equal in Qtp.

Alternatively, by [5, IV.3, Theorem 1, Part (i)] (see also [2, Section 4, Proposi-
tion 4.1] for an elegant proof of a related result) one may establish that ∆ is faithful
by relying on Proposition 4.1. It su�ces to prove that for every object Q of Qtp,
the component εQ of the counit of the adjunction established in Proposition 4.1 is
epi. The arrow εQ is de�ned as the triple (π1, π2, π3), where πi : Q3 → Q is the ith
projection. Let g, h : Q→ R be a pair of arrows of Qtp such that g ◦ εQ = h ◦ εQ.
This means that for every i ∈ {1, 2, 3} we have that gi ◦ πi = hi ◦ πi. Hence, the
function gi is equal to the function hi, since the function πi is right cancellable.
(However, the homotopy εQ need not have a right inverse in Qtp.)

Lemma 4.3. If (Q; ·, /, \) and (Q; ·′, /′, \′) are two di�erent quasigroups, then

there are x, y ∈ Q such that

x · y 6= x ·′ y.

Proof. Suppose that for every x, y ∈ Q, x ·y = x ·′ y holds. Then for every z, t ∈ Q
we have

z/t = ((z/t) ·′ t)/′t = ((z/t) · t)/′t) = z/′t.

Analogously, we prove that for every u, v ∈ Q, u\v = u\′v. Hence, (Q; ·, /, \) and
(Q; ·′, /′, \′) are the same, which contradicts the assumption.

Lemma 4.4. The functor ∆ is one-one on objects.

Proof. Suppose that (Q; ·, /, \) and (Q′; ·′, /′, \′) are two di�erent quasigroups. If
Q and Q′ are di�erent sets, then ∆Q and ∆Q′ are di�erent. If Q = Q′, then,
by Lemma 4.3, there are x and y in this set such that x · y 6= x ·′ y. Hence, the
operations ∇3 for ∆Q and ∆Q′ di�er when applied to (x, x, x) and (y, y, y).

As a corollary of these two lemmas we have the following result.
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Proposition 4.5. The category Qtp is isomorphic to a subcategory of P; namely,

to its image under the functor ∆.

As we have shown by the proof of Lemma 4.2, Proposition 4.5 is independent
of Proposition 4.1. The adjunction, together with this embedding of Qtp in P,
says that the category P re�ects in Qtp in the following sense. A subcategory A
of B is re�ective in B, when the inclusion functor from A to B has a left adjoint
called a re�ector (see [5, IV.3]). The adjunction is called a re�ection of B in A.

Propositions 4.1 and 4.5 say that Qtp may be considered as a re�ective sub-
category of P. The functor Σ is a re�ector and the adjunction between Σ and ∆
is a re�ection of P in Qtp. However, this does not mean that the ∆-image of
Qtp is an iso-full subcategory of P, i.e. that two quasigroups are isotopic in Qtp
if and only if their semisymmetrizations are isomorphic in P. Im, Ko and Smith,
[4, �rst paragraph in the introduction], refer to [6] for this iso-fullness. However,
this is not considered at all in [6] and the question of fullness or iso-fullness of the
image of Qtp in P remains open. The reader should be aware of this potential
missusing of these results.

5. Monadicity of ∆

For F : C → D a left adjoint for G : D → C, and η and ε, the unit and counit
of this adjunction, a GF -algebra is a pair (C, h), where C is an object of C and
h : GFC → C is an arrow of C such that the following equalities hold.

h ◦GFh = h ◦GεFC , h ◦ ηC = 1C .

A morphism of GF -algebras (C, h) and (C ′, h′) is given by an arrow f : C → C ′

of C such that f ◦ h = h′ ◦GFf .
The category CGF has GF -algebras as objects and morphisms of GF -algebras

as arrows. The comparison functor K : D→ CGF is given by

KD = (GD,GεD), Kf = Gf.

In many cases the comparison functor is an isomorphism or an equivalence (i.e.
there is a functor fromCGF toD such that both compositions withK are naturally
isomorphic to the identity functors). The right adjoint of an adjunction or an
adjunction are called monadic when the comparison functor is an isomorphism
(see [5, VI.3], also [8, Section 4.2]). Some other authors (see [1, Section 3.3]) call
an adjunction monadic (tripleable) when K is just an equivalence.

In the case of adjoint situation involving Σ and ∆, the comparison functor
K : Qtp → P∆Σ is just an equivalence. To prove this, by [5, IV.4, Theorem 1]
it su�ces to prove that K is full and faithful, and that every GF -algebra is iso-
morphic to KQ for some quasigroup Q. The faithfulness of K follows from 4.2
since the arrow function K coincides with the arrow function ∆. That every GF -
algebra is isomorphic to KQ for some quasigroup Q is proven in [7, Section 10,
Theorem 33].
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A functor F : C→ D is full when for every pair of objects C1 and C2 of C and
every arrow g : FC1 → FC2 of D there is an arrow f : C1 → C2 of C such that
g = Ff . It remains to prove that K is full. For this we use the following lemma.

Lemma 5.1. Every arrow of P∆Σ from KQ to KR is of the form f1 × f2 × f3,

for (f1, f2, f3) a homotopy from Q to R.

Proof. For quasigroups Q and R we have that KQ = (∆Q, π1 × π2 × π3) and
KR = (∆R, π1 × π2 × π3). So, let

f : (∆Q, π1 × π2 × π3)→ (∆R, π1 × π2 × π3)

be an arrow of P∆Σ. Since f is a morphism of ∆Σ-algebras, we have that

f ◦ (π1 × π2 × π3) = (π1 × π2 × π3) ◦ (f × f × f)

as functions from (Q3)3 to R3.
For i ∈ {1, 2, 3} and u ∈ Q, let fi(u) = πi(f(u, u, u)). Moreover, let (x, y, z)

be an arbitrary element of Q3. Apply the both sides of the above equality to
((x, x, x), (y, y, y), (z, z, z)) ∈ (Q3)3 in order to obtain

f(x, y, z) = (π1(f(x, x, x)), π2(f(y, y, y)), π3(f(z, z, z))) = (f1(x), f2(y), f3(z)).

Hence, f = f1× f2× f3 and since it is a homomorphism from ∆Q to ∆R, we have
for every x̄, ȳ ∈ Q3

(f1 × f2 × f3)(x̄) ∇3 (f1 × f2 × f3)(ȳ) = (f1 × f2 × f3)(x̄ ∇3 ȳ).

By restricting this equality to the third component, we obtain f1(x1) · f2(y2) =
f3(x1 · y2), and hence (f1, f2, f3) is a homotopy from Q to R.

6. A new semisymmetrization

De�nition 6.1. An algebra (Q; //, \\) is a biquasigroup i� //(\\) is the dual of the
right (left) division operation of a quasigroup operation · on Q.

A biquasigroup is semisymmetric i� \\ = //.

Proposition 6.2. An algebra (Q; //, \\) is a biquasigroup i� (Q; \\, ·) is a biquasi-

group i� (Q; ·, \\) is a biquasigroup.

Proposition 6.3. An algebra (Q; //, \\) is a semisymmetric biquasigroup i� (Q; \\, ·)
is a semisymmetric biquasigroup i� (Q; ·, \\) is a semisymmetric biquasigroup.

Let us start with three single�operation quasigroups (Q; ·), (Q; //) and (Q; \\),
where // and \\ are duals of appropriate division operations of ·. We can de�ne
direct (Cartesian) product (Q; //)× (Q; \\) and an operation ⊗ on Q2 such that

(x1, x2)⊗ (y1, y2) = (x1//y1, x2\\y2)
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de�nes multiplication in the direct product. Therefore (Q2;⊗) is a quasigroup.
De�ne also a permutation ′ : Q2 → Q2 by (x1, x2)′ = (x2, x1). De�ne an-

other operation ∇ : Q2×Q2 → Q2 by x̂∇ŷ = Rŷ(x̂′)⊗Lx̂(ŷ′), where û is (u1, u2),
Lx̂(ŷ) = (x1 ·y1, y2) and Rŷ(x̂) = (x1, x2 ·y2). The groupoid (Q2;∇) is also a quasi-
group, moreover a semisymmetric one. Therefore (Q2;∇,∇) is a semisymmetric
biquasigroup.

Let us de�ne:

x©1 y = x//y x©2 y = x\\y x©3 y = x · y

Then the de�nition of ∇12, which we abbreviate just by ∇, is:

(x1, x2)∇12(y1, y2) = (x2©1 (x1©3 y2), (x1©3 y2)©2 y1).

There are two more alternative semisymmetrizations with corresponding de�ni-
tions in (Q2; \\, ·) (respectively (Q2; ·, //)):

(x1, x2)∇23(y1, y2) = (x2©2 (x1©1 y2), (x1©1 y2)©3 y1)

(x1, x2)∇31(y1, y2) = (x2©3 (x1©2 y2), (x1©2 y2)©1 y2).

The indexing of operations is used to emphasize the symmetry.
In this section we introduce a new semisymmetrization functor from Qtp to

P. This leads to another subcategory of P isomorphic to Qtp. We start with an
auxiliary result.

Lemma 6.4. The third component f3 of a homotopy is determined by the �rst

two components f1 and f2.

Proof. Let Q be a quasigroup. For every element x ∈ Q there are y, z ∈ Q such
that x = y · z (e.g. x = y · (y\x)). Hence, f3(x) = f1(y) · f2(z).

Let Γ: Qtp→ P be a functor de�ned on objects so that ΓQ is a semisymmetric
quasigroup (Q2;∇) whose elements are pairs (x1, x2), abbreviated by x̂, and ∇ is
de�ned so that

(x1, x2)∇(y1, y2) = (x2//(x1 · y2), (x1 · y2)\\y1).

(It is straightforward to check that (ŷ∇x̂)∇ŷ = ŷ∇(x̂∇ŷ) = x̂, hence ΓQ is a
semisymmetric quasigroup.)

A homotopy (f1, f2, f3) is mapped by Γ to the product f1 × f2, which is a
homomorphism:

(f1 × f2)(x̂) ∇ (f1 × f2)(ŷ) = (f2(x2)//(f1(x1) · f2(y2)), (f1(x1) · f2(y2))\\f1(y1))

= (f1(x2//(x1 · y2)), f2((x1 · y2)\\y1))

= (f1 × f2)(x̂∇ŷ).

By the functoriality of product, we have that Γ preserves identities and composi-
tion, and it is indeed a functor.
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The functor Γ is not a right adjoint for Σ since a right adjoint is unique up to
isomorphism and ΓQ is not isomorphic to ∆Q for every object Q of Qtp. However,
this adjunction is not necessary for the faithfulness of Γ.

Lemma 6.5. The functor Γ is faithful.

Proof. We proceed as in the second proof of Lemma 4.2. If (f1, f2, f3) and
(g1, g2, g3) are two homotopies from Q to R, then Γ(f1, f2, f3) = Γ(g1, g2, g3) means
that f1×f2 = g1×g2. Hence, f1 = g1 and f2 = g2, and by Lemma 6.4, f3 = g3.

The functor Γ, as de�ned, is not one-one on objects. For example,

({0, 1},+,+,+) and ({0, 1},⊕,⊕,⊕),

where + is addition mod 2 and x⊕ y = x + y + 1, are mapped by Γ to the same
object of P. To remedy this matter, one may rede�ne Γ so that

ΓQ = (Q2 × {Q},∇),

where Q, as the third component of every element, guarantees that Γ is one-one on
objects. The operation ∇ is de�ned as above, just neglecting the third component.
Hence, Qtp may be considered as another subcategory of P.

Acknowledgements. We are grateful to J.D.H. Smith for his comments on the
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