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The congruence Y ∗

on completely regular semirings

Sunil Kumar Maity

Abstract. We investigate the congruence generated by Y on completely regular semirings and

get that Y ∗ ∈ [ε, ν] on completely regular semirings.

1. Introduction

The study of the structure of semigroups and semirings are essentially in�uenced
by the study of the congruences de�ned on them. We know that the set of all
congruences de�ned on a semiring or a semigroup is a partially ordered set with
respect to inclusion and relative to this partial order it forms a lattice, the lattice
of congruences C (S) on S. In 1999, Petrich and Reilly [8] de�ned a relation Y on
a completely regular semigroup S by: for a, b ∈ S;

aY b if and only if V (a) = V (b).

Under certain special conditions of semigroups, Y was proved to be the least
Cli�ord congruence on S. It was proposed by them as an open problem that, what
can be said about Y ∗, the congruence generated by Y on a completely regular
semigroup. Recently, in 2011, C. Guo, G. Liu and Y. Guo solved this open problem
in their paper [1]. They proved that Y ∗ ∈ [ε, ν] on completely regular semigroups.
Furthermore, they gave a description of Y ∗ on completely simple semigroups and
normal cryptogroups, respectively. The main aim of this paper is to further extend
these ideas on completely regular semirings.

The preliminaries and prerequisites we need for this paper are discussed in
Section 2. In Section 3 we study some properties of orthodox completely regular
semirings and �nally in Section 4 we characterize the relation Y ∗ on completely
regular semirings.

2. Preliminaries

A semiring (S,+, ·) is a type (2, 2)-algebra such that the semigroup reducts (S,+)
and (S, ·) are connected by distributive laws, i.e., a(b+ c) = ab+ac and (b+ c)a =
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ba+ ca for all a, b, c ∈ S. Here the additive reduct (S,+) of the semiring (S,+, ·)
is not necessarily commutative. An element a in a semiring (S,+, ·) is said to be
additively regular if there exists an element x ∈ S such that a+ x+ a = a.

Following [5], we say that an element a of a semiring (S,+, ·) is completely
regular if there exists x ∈ S such that a = a+x+a, a+x = x+a and a(a+x) = a+x.
A semiring S is said to be completely regular if every element of S is completely
regular.

Let τ be a relation on a semiring S. De�ne the relation τe on S by: for a, b ∈ S;
aτeb if and only if a = x+ c+ y, b = x+ d+ y for some x, y ∈ S0 and cτd.

Also, we de�ne τ \ by τ \ =
(

(τ ∪τ−1∪ ε)e
)t
, where ε is the equality congruence

and ηt denotes the transitive closure of η.
Following [5], a semiring (S,+, ·) is called a skew-ring if its additive reduct

(S,+) is a group, not necessarily an abelian group. A semiring (S,+, ·) is said to be
a b-lattice [5] if (S, ·) is a band and (S,+) is a semilattice. If (S,+, ·) is a semiring,
we denote Green's relations on the semigroup (S,+) by L +, R+, J +, D+ and
H +. In fact, the relations L +, R+, J +, D+ and H + are all congruences on the
multiplicative reduct (S, ·). Thus, if any one of these happens to be a congruence
on the additive reduct (S,+), it will be a congruence on the semiring (S,+, ·). A
completely regular semiring S is said to be completely simple [5] if J + = S×S. A
congruence ξ on a semiring S is called a b-lattice congruence (idempotent semiring
congruence) if S/ξ is a b-lattice (respectively, an idempotent semiring). A semiring
S is said to be a b-lattice (idempotent semiring) Y of semirings Sα(α ∈ Y ) if S
admits a b-lattice congruence (respectively, an idempotent semiring congruence)
ξ on S such that Y = S/ξ and each Sα is a ξ-class. We write S = (Y ;Sα).

First we prove the following result.

Theorem 2.1. The following conditions on a semiring are equivalent:
(i) S is completely regular;

(ii) every H +-class is a skew-ring;
(iii) S is union (disjoint) of skew-rings;
(iv) S is a b-lattice of completely simple semirings;
(v) S is an idempotent semiring of skew-rings.

Proof. From [5, Theorem 3.6], it follows that �rst four conditions are equivalent.
(i)⇒ (v): Let S be a completely regular semiring. Then by [5, Theorem 3.6],

it follows that each H +-class is a skew-ring. Let x0 be the zero of the skew-ring
Hx, where Hx is the H +-class containing the element x ∈ S. To complete the
prove it su�ces to show that H + is an idempotent semiring congruence on S.
For this let aH + b and c ∈ S. Then a0 = b0. Now (a + c)0 = (a + c)(a + c)0 =
a(a+c)0 +c(a+c)0 = a0(a+c)0 +c(a+c)0 = (a0 +c)(a+c)0 = (a0 +c)0(a+c)0 =
(a0 + c)0(a + c) = (a0 + c)0a + (a0 + c)0c = (a0 + c)0a0 + (a0 + c)0c = (a0 +
c)0(a0 + c) = (a0 + c)0. Similarly, we can show that (b + c)0 = (b0 + c)0. Thus,
(a + c)0 = (a0 + c)0 = (b0 + c)0 = (b + c)0. This implies a + cH + b + c. Dually,
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c+ aH + c+ b. Hence H + is a congruence on (S,+). Since H + is a congruence
on (S, ·), it follows that H + is a congruence on the semiring S. Clearly, 2aH + a
and a2 H + a. Hence S/H + is an idempotent semiring. Consequently, S is an
idempotent semiring of skew-rings.

(v)⇒ (i): This is obvious.

Throughout this paper, we always let E+(S) be the set of all additive idempo-
tents of the semiring S. Observe that the distributive laws imply that whenever
the set E+(S) is non-empty, it forms an ideal of the multiplicative reduct (S, ·) of
S. If a ∈ S is additively regular, we denote the set of all inverse elements of a in
the semigroup (S,+) by V +(a). Also we denote the least skew-ring congruence by
σ and the least b-lattice of skew-ring congruence by ν on a semiring S. We always
let S = (Y ;Sα) be a completely regular semiring, where Y is a b-lattice and Sα
(α ∈ Y ) is a completely simple semiring. For other notation and terminology not
given in this paper, the reader is referred to the texts of Howie [3], Golan [4], and
Petrich and Reilly [8].

Next we introduce some results which can be proved in a similar way as com-
pletely regular semigroup (see for example Theorem II.4.5 in [8]).

Theorem 2.2. Let S = (Y ;Sα) be completely regular semiring. Then J + = D+.

Lemma 2.3. For any completely regular semiring S,

ν = {(f, g) | f, g ∈ E+(S) and f D+ g}\.

Proof. Let η = {(f, g) | f, g ∈ E+(S), f D+ g}\.
Clearly, η ⊆ D+ and each D+- class of S/η contains a unique additive idempo-

tent. Hence S/η is a b-lattice of skew-rings and ν ⊆ η. On the other hand, S/ν is
a b-lattice of skew-rings so that {(f, g) | f, g ∈ E+(S), f D+ g} ⊆ ν, which implies
{(f, g) | f, g ∈ E+(S), f D+ g}e⊆ν. Thus, ν={(f, g) | f, g ∈ E+(S), f D+ g}\.

Lemma 2.4. Let S = (Y ;Sα) be a completely regular semiring and a ∈ Sα,
b ∈ Sβ, where β 6 α. Then,

(i) aL + (b+ a), aR+ (a+ b),
(ii) a = a+ (b+ a)0 = (a+ b)0 + a.

Proof. Follows similarly from [8, Corollary II.4.3.].

3. The relation Y

We call a semiring (S,+, ·) an orthodox semiring if the additive reduct (S,+) is
orthodox, i.e., E+(S) forms an ideal of S. We show that the relation Y and ν are
equivalent on an orthodox completely regular semiring.

Let S be a completely regular semiring. De�ne a relation Y on S by: for
a, b ∈ S;

aY b if and only if V +(a) = V +(b).
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We need the following result.

Lemma 3.1. Let S = (Y ;Sα) be an orthodox completely regular semiring, where Y

is a b-lattice and Sα(α ∈ Y ) is a completely simple semiring. Then
(
E+(Sα),+

)
is

a rectangular band for all α ∈ Y and for any two elements a, b ∈ Sα, e ∈ E+(Sβ),
a+ b = a+ e+ b, where α, β ∈ Y such that β 6 α.

Proof. Follows similarly from [8, Lemma II.5.2].

Theorem 3.2. Let S = (Y ;Sα) be an orthodox completely regular semiring and
a, b ∈ S. Then the following conditions are equivalent:

(i) aY b.
(ii) There exists e, f, g, h ∈ E+(S) with a = e+ b+ f and b = g + a+ h.
(iii) a = a0 + b+ a0 and b = b0 + a+ b0.

Proof. (i) ⇒ (ii): At �rst we suppose that aY b for a, b ∈ S. Then V +(a) =
V +(b). Let x ∈ V +(a). Then x ∈ V +(b), i.e., a = a + x + a, x + a + x = x and
b = b+ x+ b, x+ b+ x = x.

Thus, a = (a+x)+b+(x+a) = e+b+f , where e = a+x, f = x+a ∈ E+(S).
Similarly, b = g + a+ h, for some g, h ∈ E+(S).

(ii)⇒ (iii): We have a0+e+b+f+a0 = a0+a+a0 = a for some e, f ∈ E+(S).
Then aD+ b. Let a, b ∈ Sα, e ∈ Sβ and f ∈ Sγ . Then β, γ 6 α. Now, by Lemma
3.1, a0 + e+ b = a0 + b. Similarly, b+ f + a0 = b+ a0. Hence, we have, a0 + b+ a0

= a. Similarly, b0 + a+ b0 = b.
(iii)⇒ (i): Let, x ∈ V +(a). Then, using Lemma 3.1, we have

b = b0 + a+ b0 = b0 + a+ x+ a+ b0

= (b0 + a+ b0) + x+ (b0 + a+ b0) = b+ x+ b.

Similarly, x+ b+ x = x. Hence, x ∈ V +(b) and thus, V +(a) ⊆ V +(b).
By symmetry, it follows that V +(b) ⊆ V +(a). Thus, aY b.

Theorem 3.3. Let S = (Y ;Sα) be a completely regular semiring. Then Y is the
least b-lattice of skew-rings congruence on S if and only if S is orthodox.

Proof. By [1, Theorem 1.6], we have Y is the least semilattice of groups congruence
on the semigroup reduct (S,+) if and only if (S,+) is orthodox. To complete the
proof it remains to show that Y is a congruence on (S, ·). For this let aY b and
c ∈ S. Then a = a0 +b+a0 and b = b0 +a+b0. This implies ca = ca0 +cb+ca0 =
(ca)0 + cb+ (ca)0 and cb = cb0 + ca+ cb0 = (cb)0 + ca+ (cb)0 and hence caY cb.
Similarly, we can show that acY bc. Consequently, Y is a congruence on S. Since
S is completely regular, it follows that S/Y is also completely regular. Moreover,
since (S/Y ,+) is semilattice of groups, one can easily prove that S/Y is a b-lattice
of skew-rings, i.e., Y is the least b-lattice of skew-ring congruence on S.

Theorem 3.4. Let S = (Y ;Sα) be an orthodox completely regular semiring. Then
D+ = H + Y .
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Proof. Let aD+ b for a, b ∈ S. Now, we have, by Lemma 3.1, b = b0 + b + b0 =
b0+(a0+b+a0)+b0. Again, (a0+b+a0)0+b+(a0+b+a0)0 = a0+b+a0. Hence,
(a0 + b + a0) Y b. Again, since a0 = (a0 + b + a0)0 we have aH + (a0 + b + a0).
Thus we have, a (H + Y ) b and hence D+ ⊆ H + Y . The reverse inclusion is
obvious. This completes the proof.

We highlight a very interesting result based on the congruences that we have
discussed so far.

Theorem 3.5. Let S = (Y ;Sα) be a completely regular semiring, where Y is
a b-lattice and Sα (α ∈ Y ) is a completely simple semiring. Then the following
conditions are equivalent:

(i) S is orthodox,
(ii) S is a spined product of an idempotent semiring and a b-lattice of skew-

rings,
(iii) S satis�es the identity a0 + b0 = (a+ b)0.

Proof. (i) ⇒ (ii): Let π1 (respectively, π2) be the natural projection of S/H +

(respectively, S/Y ) onto Y . Let A be the spined product of S/H + and S/Y .
Then, for any a ∈ Sα, π1(aH +) = π2(aY ) = α.

We de�ne a mapping, φ : S → A by φ(a) = (aH +, aY ) for all a ∈ S. Clearly,
φ is a semiring homomorphism.

Let a, b ∈ S such that φ(a) = φ(b). This implies (aH +, aY ) = (bH +, bY ),
i.e., aH + b and aY b, i.e., a0 = b0 and a = a0 + b+a0, b = b0 +a+ b0. Therefore,
a = a0 + b+ a0 = b0 + b+ b0 = b and hence φ is injective.

To show φ is surjective, let b, c ∈ S such that (bH +, cY ) ∈ A. Then, π1(bH +)
= π2(cY ) = α, say, so that b, c ∈ Sα. Hence, bD+ c. Now, by Theorem 3.4,
b (H + Y ) c. This implies bH + aY c for some a ∈ S, i.e., bH + = aH + and
aY = cY .

Hence, φ(a) = (aH +, aY ) = (bH +, cY ), which implies that φ is surjective.
Consequently, φ is an isomorphism.

(ii) ⇒ (iii): Let S be a spined product of an idempotent semiring I and a
b-lattice of skew-rings T . Since every idempotent semiring and every b-lattice of
skew-rings satis�es the identity x0 + y0 = (x+ y)0 and therefore so does S.

(iii) ⇒ (i): If S satis�es the identity a0 + b0 = (a + b)0, then for any two
elements e, f ∈ E+(S), we have e0 + f0 = (e+ f)0, i.e., e+ f = (e+ f)0 ∈ E+(S).
Hence S is orthodox.

Corollary 3.6. Let S be an orthodox completely regular semiring. Then H + ∩
Y = ε, where ε is the equality relation on S.

4. The interval which Y ∗ belongs to

So far we have discussed the nature and properties of the relation Y on a special
kind of completely regular semirings. In the following section, we try to describe
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Y ∗ on completely regular semirings without any other special conditions.
Following [6, Theorem 3.1] we describe the structure of completely simple

semiring.

Let R be a skew-ring, (I, ·) and (Λ, ·) are bands such that I ∩ Λ = {o} and
P = (pλ,i) be a matrix over R, i ∈ I, λ ∈ Λ under the assumptions

(i) pλ,o = po,i = 0,
(ii) pλµ,kj = pλµ,ij − pνµ,ij + pνµ,kj ,

(iii) pµλ,jk = pµλ,ji − pµν,ji + pµν,jk,
(iv) apλ,i = pλ,ia = 0,
(v) ab+ poµ,io = poµ,io + ab,

(vi) ab+ pλo,oj = pλo,oj + ab, for all i, j, k ∈ I, λ, µ, ν ∈ Λ and a, b ∈ R.

On S = I ×R× Λ, we de�ne ‘+' and ‘·' by
(i, a, λ) + (j, b, µ) = (i, a+ pλ,j + b, µ)

and
(i, a, λ) · (j, b, µ) = (ij,−pλµ,ij + ab, λµ).

Then (S,+, ·) is a semiring which is called a Rees matrix semiring and is
denoted by M (I,R,Λ;P ). The authors in [6] proved (Theorem 3.1) that a semiring
S is a completely simple semiring if and only if S is isomorphic to a Rees matrix
semiring.

Next, we give a description of least skew-ring congruence to determine the
interval of Y ∗ on completely regular semirings.

Lemma 4.1. Let S = (Y ;Sα) be a completely regular semiring, where Y is a
b-lattice and Sα (α ∈ Y ) is a completely simple semiring and a, b ∈ Sα. Then the
following statements are equivalent.

(i) aY b,
(ii) a = e+b+f and b = g+a+h for any e, f, g, h ∈ E+(S) with eR+ aL +f

and gR+ bL + h,
(iii) a = (a+x)0 + b+ (x+ a)0 and b = (b+x)0 + a+ (x+ b)0 for any x ∈ Sα.

Proof. (i) ⇒ (ii): Let a = (i, s, λ), b = (j, t, µ) ∈ Sα and aY b. For any e =
(i,−pδ,i, δ), f = (k,−pλ,k, λ) ∈ E+(Sα), we have eR+ aL + f .

Let c = (k,−pλ,k − s− pδ,i, δ) ∈ Sα. Then

a+ c+ a = (i, s, λ) + (k,−pλ,k − s− pδ,i, δ) + (i, s, λ)
= (i, s+ pλ,k − pλ,k − s− pδ,i + pδ,i + s, λ)
= (i, s, λ) = a.

Since, Sα is a completely simple semiring, we have c+ a+ c = c. This implies,
c ∈ V +(a).

Since aY b, we have c ∈ V +(b). Hence b+ c+ b = b, i.e., (j, t, µ) + (k,−pλ,k −
s− pδ,i, δ) + (j, t, µ) = (j, t+ pµ,k − pλ,k − s− pδ,i + pδ,j + t, µ) = (j, t, µ).

So we get, t = −pδ,j + pδ,i + s+ pλ,k − pµ,k. Then
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e+ b+ f = (i,−pδ,i, δ) + (j,−pδ,j + pδ,i + s+ pλ,k − pµ,k, µ) + (k,−pλ,k, λ)
= (i,−pδ,i + pδ,j − pδ,j + pδ,i + s+ pλ,k − pµ,k + pµ,k − pλ,k, λ)
= (i, s, λ) = a.

Similarly, we can prove for any g, h ∈ E+(Sα) with gR+ bL + h, b = g+a+h.
(ii)⇒ (iii): For x, a, b ∈ Sα, by Lemma 2.4(i), we have (a+x) R+ aL + (x+

a) and (b + x) R+ bL + (x + b). This implies (a + x)0 R+ aL + (x + a)0 and
(b + x)0 R+ bL + (x + b)0. Hence by (ii), a = (a + x)0 + b + (x + a)0 and b =
(b+ x)0 + a+ (x+ b)0.

(iii)⇒ (i): Let c ∈ V +(a) for a, b ∈ Sα. Then, c ∈ Sα, (a+c), (c+a) ∈ E+(Sα).
By (iii),

b = (b+ c)0 + a+ (c+ b)0

= (b+ c)0 + a+ c+ a+ (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ (c+ a)0 + c+ (a+ c)0 + b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ (c+ a) + c+ (a+ c) + b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + (a+ c)0 + b+ c+ b+ (c+ a)0 + (c+ b)0

= (b+ c)0 + b+ c+ b+ (c+ b)0 [by Lemma 2.4 and Lemma 3.1]
= b+ c+ b.

This implies c ∈ V +(b) and hence V +(a) ⊆ V +(b). By symmetry, we get V +(a) =
V +(b). This completes the proof.

Following [6, De�nition 5.1] a normal subgroup N of (R,+) (where R is a
skew-ring) is said to be a skew-ideal of R if a ∈ N implies ca, ac ∈ N for all c ∈ R.

Notation 4.2. Let S = M (I,R,Λ;P ) be a Rees matrix semiring over a skew-ring
R. Let 〈P 〉 denote the smallest skew-ideal of R generated by the elements of P.

Lemma 4.3. Let S = M (I,R,Λ;P ) be a completely simple semiring. De�ne a
relation σ on S as: for all a, b ∈ S;

a σ b if and only if (g − h) ∈ 〈P 〉,

where a=(i, g, λ), b=(j, h, µ) ∈ S. Then σ is the least skew-ring congruence on S.

Proof. The relation σ is obviously re�exive and symmetric.
Let a σ b and b σ c where a, b, c ∈ S. Also, let a = (i, g, λ), b = (j, h, µ) and

c = (k, t, δ) ∈ S. Then (g−h) ∈ 〈P 〉 and (h− t) ∈ 〈P 〉. This implies (g− t) ∈ 〈P 〉.
Hence a σ c. Thus, σ is transitive and hence σ is an equivalence relation on S.

Next we prove that σ is compatible with respect to the operations in S. Let
a, b ∈ S such that a σ b. Then we have, (g − h) ∈ 〈P 〉, where a = (i, g, λ),
b = (j, h, µ) ∈ S. Let c = (k, t, δ) ∈ S be arbitrary. Therefore, a + c = (i, g, λ) +
(k, t, δ) = (i, g+pλ,k+t, δ). Similarly, b+c = (j, h, µ)+(k, t, δ) = (j, h+pµ,k+t, δ).

Now, (g + pλ,k + t) − (h + pµ,k + t) = g + pλ,k − pµ,k − h. Again, (g − h) ∈
〈P 〉 implies −h + g ∈ 〈P 〉, i.e., pλ,k − pµ,k − h + g + pµ,k − pλ,k ∈ 〈P 〉, i.e.,
g + pλ,k − pµ,k − h + g + pµ,k − pλ,k − g ∈ 〈P 〉. Also, g + pµ,k − pλ,k − g ∈ 〈P 〉.



286 S. K. Maity

Thus, g+pλ,k−pµ,k−h ∈ 〈P 〉. Hence, (a+ c)σ (b+ c). Similarly, it can be shown
that (c+ a)σ (c+ b).

Again, ac = (i, g, λ)(k, t, δ) = (ik,−pλδ,ik + gt, λδ) and bc = (jk,−pµδ,jk +
ht, µδ). Now, (g−h) ∈ 〈P 〉 implies (gt−ht) ∈ 〈P 〉, i.e., −pλδ,ik+gt−ht+pλδ,ik ∈
〈P 〉, i.e., −pλδ,ik+gt−ht+pµδ,jk−pµδ,jk+pλδ,ik ∈ 〈P 〉. Since, −pµδ,jk+pλδ,ik ∈ 〈P 〉
it follows that −pλδ,ik + gt − ht + pµδ,jk ∈ 〈P 〉. Therefore, (ac)σ (bc). Similarly,
(ca)σ (cb). Consequently, σ is a congruence on (S,+, ·).

Next we show that σ is a skew-ring congruence on S. If we can show that there
is a unique additive idempotent in S/σ, then we are done. For this it is enough to
prove that all additive idempotents of S are σ related.

Let e, f ∈ E+(S). Then e = (i,−pλ,i, λ) and f = (j,−pµ,j , µ). Now, −pλ,i +
pµ,j ∈ 〈P 〉 implies that e σ f . This proves that σ is a skew-ring congruence on S.

At last, we prove that σ is the least skew-ring congruence on S. For this let
ξ be any skew-ring congruence on S. Then both σ and ξ are group congruences
on (S,+). Moreover, by [1, Lemma 2.3], it follows that σ is the least group
congruence on (S,+). Thus, we must have σ ⊆ ξ. Consequently, σ is the least
skew-ring congruence on S. This completes the proof.

Lemma 4.4. Let S = (Y ;Sα) be a completely regular semiring where Y is a b-
lattice and Sα (α ∈ Y ) is a completely simple semiring. If ν is the least b-lattice
of skew-rings congruence on S, then Y ∗ ⊆ ν.

Proof. Let a, b ∈ S and aY b. Then there exists some α ∈ Y such that a, b ∈ Sα.
Let a = (i, g, λ), b = (j, h, µ). By Lemma 4.1, we get

(i, g, λ) = (i,−pδ,i, δ) + (j, h, µ) + (k,−pλ.k, λ),

since (i,−pδ,i, δ)R+ (i, g, λ)L+ (k,−pλ,k, λ).
It follows that g = −pδ,i + pδ,j + h+ pµ,k − pλ,k whence g + pλ,k − pµ,k − h−

pδ,j + pδ,i = 0, where 0 is the zero of R. Taking k = δ = o, we have (g − h) = 0 ∈
〈P 〉. Then by Lemma 4.3, it follows that a σα b, where σα is the least skew-ring
congruence on Sα. Hence Y |Sα ⊆ σα for all α ∈ Y .

Let ν|Sα
= να . Then ν =

⋃
α∈Y

να . Since Sα/να is a skew-ring, it follows that

σ
α
⊆ ν

α
for all α ∈ Y . Therefore, Y |Sα

⊆ σα ⊆ ν
α
for all α ∈ Y and hence

Y ∗ ⊆ ν.

De�nition 4.5. A congruence ξ on a semiring S is said to be an additive idem-
potent pure congruence if a ξ e with a ∈ S and e ∈ E+(S) implies that a ∈ E+(S).

Theorem 4.6. Let S = M (I,R,Λ;P ) be a completely simple semiring. Then Y
is the greatest additive idempotent pure congruence on S.

Proof. Clearly, Y is an equivalence relation. Let a, b ∈ S and aY b. By Lemma
4.1, for any x, c ∈ S, a = (a+ x+ c)0 + b+ (x+ c+ a)0 and b = (b+ x+ c)0 + a+
(x+ c+ b)0.



The congruence Y ∗ on completely regular semirings 287

Hence, c+a = c+(a+x+c)0+b+(x+c+a)0 = (c+a+x)0+c+b+(x+c+a)0,
by Lemma 2.4 (ii). Similarly, c+ b = (c+ b+ x)0 + (c+ a) + (x+ c+ b))0. This
implies (c+ a) Y (c+ b). Dually, it follows that (a+ c) Y (b+ c).

We now show that (ac) Y (bc). Let a, b, c ∈ S and aY b. Then there exists
some α ∈ Y such that a, b ∈ Sα. Let a = (i, x, λ), b = (j, y, µ) and c = (k, z, ν).

By Lemma 4.1, a = e1 + b+f1 for all e1, f1 ∈ E+(S) with e1 R+ aL + f1, i.e.,
(i, x, λ) = (i,−pt,i, t) + (j, y, µ) + (s,−pλ,s, λ), for all t ∈ Λ and for all s ∈ I, i.e.,
(i, x, λ) = (i,−pt,i + pt,j + y + pµ,s − pλ,s, λ), for all t ∈ Λ and for all s ∈ I, i.e.,
x = −pt,i + pt,j + y + pµ,s − pλ,s for all t ∈ Λ and for all s ∈ I. ...(1)

We also note that xz = yz for any z ∈ S. ...(2)
Again, (i, x, λ)(k, z, ν) = (i,−pt,i, t)(k, z, ν)+(j, y, µ)(k, z, ν)+(s,−pλ,s, λ)(k, z, ν),
i.e., (ik,−pλν,ik+xz, λν)=(ik,−ptν,ik, tν)+(jk,−pµν,jk+yz, µν)+(sk,−pλν,sk, λν),
i.e., (ik,−pλν,ik +xz, λν) = (ik,−ptν,ik + ptν,jk− pµν,jk + yz+ pµν,sk− pλν,sk, λν),
i.e., −pλν,ik + xz = −ptν,ik + ptν,jk − pµν,jk + yz + pµν,sk − pλν,sk,
i.e., −pλν,ik + xz = −ptν,ik + ptν,jk − pµν,jk + pµν,sk − pλν,sk + yz. ...(3)
Now, let e = (ik,−pδ,ik, δ), f = (l,−pλν,l, λν) ∈ E+(S). Then eR+ (ac) L + f .
Now,

e+ bc+ f = (ik,−pδ,ik, δ) + (jk,−pµν,jk + yz, µν) + (l,−pλν,l, λν)
= ik,−pδ,ik + pδ,jk − pµν,jk + yz + pµν,l − pλν,l, λν)
= (ik,−pδν,ik + pδν,i − pδ,i + pδ,j − pδν,j + pδν,jk − pµν,jk+

yz + pµν,lk − pµ,lk + pµ,l − pλ,l + pλ,lk − pλν,lk, λν)

i.e., e+ bc+ f = (ik,−pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk, λν), ...(4)
[By putting once t = δ and t = δν and equating in (1) and again by putting

s = l and s = lk and equating in (1) we obatin (4)]
Now, by substituting t = δ and s = l in (3) we can obtain

−pλν,ik + xz = −pδν,ik + pδν,jk − pµν,jk + pµν,lk − pλν,lk + yz
= −pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk.

Therefore,

e+ bc+ f = (ik,−pδν,ik + pδν,jk − pµν,jk + yz + pµν,lk − pλν,lk, λν)
= (ik,−pλν,ik + xz, λν)
= ac.

Thus, we see that ac = e+ bc+f for any e, f ∈ E+(S) with eR+ (ac) L + f . Sim-
ilarly, we can show that bc = g+ac+h for any g, h ∈ E+(S) with gR+ (bc) L + h.
Consequently, Y is a congruence on the semiring S.

Next we show that Y is an additive idempotent pure congruence on S. Let
a ∈ S with a = (i, g, λ) ∈ S, e = (k,−pλ,k, λ) ∈ E+(S) and aY e. Then V +(a) =
V +(e). By Lemma 4.1, for f = (i,−pλ,i, λ), h = (k,−pλ,k, λ) ∈ E+(S) with
f R+ aL+ h, we have a = f + e+ h = (i,−pλ,i, λ) + (k,−pλ,k, λ) + (k,−pλ,k, λ) =
(i,−pλ,i, λ) ∈ E+(S). Thus Y is an additive idempotent pure congruence on S.

Let η be any additive idempotent pure congruence on S. Let a, b ∈ S such
that a η b. Then by [1, Theorem 2.5], it follows that aY b. Hence, η ⊆ Y , which
proves that Y is the greatest additive idempotent pure congruence on S.
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Theorem 4.7. Let S = (Y ;Sα) be a completely regular semiring, where Y is a
b-lattice and Sα (α ∈ Y ) is a completely simple semiring. Then Y ∗ = ε on S if
and only if for each α ∈ Y , εα is the unique additive idempotent pure congruence
on Sα, where ε is the trivial congruence.

Proof. First suppose that for each α ∈ Y , εα is the unique additive idempotent
pure congruence on Sα. Since Y is the greatest additive idempotent pure congru-
ence on S, it follows that Y |Sα

= εα on Sα. Hence Y ∗ = ε.
Conversely, let Y ∗ = ε. Now since Y ⊆ Y ∗ = ε and Y is re�exive on S, it

follows that Y = ε on S. This implies Y |Sα = εα and hence by Theorem 4.6, it
follows that εα is the unique additive idempotent pure congruence on Sα for each
α ∈ Y .

Combining Theorem 3.4, Lemma 4.4 and Theorem 4.7 we get the following
result.

Theorem 4.8. Let S be a completely regular semiring. Then Y ∗ ∈ [ε, ν], where
ε is the equality congruence and ν is the least b-lattice of skew-ring congruence on
S.
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