Behrends-Humble simple maps are regular

Lon Mitchell

Abstract. We consider simple binary operations in the sense of Behrends and Humble. We prove that a groupoid (magma) with such a map is regular. As a consequence, a division groupoid with simple binary operation is a quasigroup.

Let G be a groupoid (magma) with binary operation φ . The map φ induces maps $\varphi_n: G^{n+1} \to G^n$ by

$$\varphi_n(s_0, s_1, \dots, s_n) = (\varphi(s_0, s_1), \varphi(s_1, s_2), \dots, \varphi(s_{n-1}, s_n)).$$

Let Φ_n be the composition $\varphi_1 \circ \varphi_2 \circ \cdots \circ \varphi_n$. For an integer $k \ge 2$, we say that φ is *k*-simple if $\Phi_k(s_0, \ldots, s_k) = \varphi(s_0, s_k)$ for all $s_0, \ldots, s_k \in G$ and that φ is simple if it is *k*-simple for some *k*.

Simple maps were first studied by Ehrhard Behrends and Steve Humble [1]. Michael Jones, Brittany Shelton, and the author recently proved that any groupoid with simple binary operation is medial [4]. In this note, we establish that any groupoid with simple binary operation is regular and show that any division groupoid with simple binary operation is a quasigroup. We also offer remarks on cancellation groupoids and 2-simple maps.

Theorem 1. If G is a groupoid with simple binary operation φ , then G is regular.

Proof. Suppose that φ is *n*-simple for some integer $n, a, b \in G$ and $\varphi(a, x) = \varphi(b, x)$ for some $x \in G$. Given any other $y \in G$, we find that

$$\varphi(a,y) = \Phi_n(a,x,\dots,x,y) = \Phi_{n-1}(\varphi(a,x),\varphi(x,x),\dots,\varphi(x,x),\varphi(x,y))$$
$$= \Phi_{n-1}(\varphi(b,x),\varphi(x,x),\dots,\varphi(x,x),\varphi(x,y)) = \Phi_n(b,x,\dots,x,y) = \varphi(b,y).$$

Similarly, $\varphi(x, a) = \varphi(x, b)$ implies $\varphi(y, a) = \varphi(y, b)$ for all $y \in G$.

Theorem 2. A division groupoid with simple binary operation is a quasigroup.

Proof. If (G, \cdot) is a division groupoid with simple binary operation, it is medial [4] and regular. Thus there exists a binary operation + on G such that (G, +) is an Abelian group and there exist commuting surjective endomorphisms f and g of (G, +) and an element $c \in G$ such that xy = f(x) + g(y) + c for all $x, y \in G$ [2].

²⁰¹⁰ Mathematics Subject Classification: 20N02 Keywords: Simple binary operation, groupoid

Let 0 be the identity element of (G, +). For $q_0, \ldots, q_n \in Q$, by simplicity,

$$f(q_0) + g(q_n) + c =$$

$$f^n(q_0) + \binom{n}{1} f^{n-1}g(q_1) + \dots + \binom{n}{n-1} fg^{n-1}(q_{n-1}) + g^n(q_n)$$

$$+ \left((f+g) + (f+g)^2 + \dots + (f+g)^{n-1} \right)(c) + c.$$

If we let the q_i all be 0, we find $((f+g)+(f+g)^2+\cdots+(f+g)^{n-1})(c)=0$. Next, letting all of the q_i except q_0 or q_n be 0, we find $g=g^n$ and $f=f^n$. Since f and g are also surjective, they must be automorphisms. By the Bruck-Murdoch-Toyoda Theorem [3], (G, φ) is a quasigroup.

Theorem 3. If (G, φ) is a groupoid and φ is 2-simple, then (G, φ) is a semigroup. Proof. If φ is 2-simple, (G, φ) is medial [4]. Then, for any $a, b, c \in G$,

$$\varphi(a,\varphi(b,c)) = \Phi_2(a,\varphi(b,b),\varphi(b,c)) = \varphi(\varphi(a,\varphi(b,b)),\varphi(b,c))$$
$$= \varphi(\varphi(a,b),\varphi(\varphi(b,b),c)) = \Phi_2(\varphi(a,b),\varphi(b,b),c) = \varphi(\varphi(a,b),c),$$

so that φ is associative.

If G is a cancellation groupoid with simple binary operation, then G is medial [4]. As a result, there exists a medial quasigroup (Q, \cdot) such that G is a dense subgroupoid of Q; moreover, G and Q satisfy the same identities [5, 2]. In particular, Q has simple binary operation. Let n be a positive integer such that the operation of (Q, \cdot) is n-simple. Define Φ_n as above using $\varphi(x, y) = xy$. If $x, y \in G, q \in Q$, and $xq \in G$, then $yq \in G$, since $yq = \Phi_n(y, x, \ldots, x, q) = \Phi_{n-1}(yx, xx, \ldots, xx, xq)$ and $yx, xx, xq \in G$. Can $G \neq Q$?

References

- E. Behrends and S. Humble, Triangle mysteries, Math. Intelligencer 35 (2013), no.2, 10-15.
- [2] J. Ježek and T. Kepka, Medial groupoids, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 93 (1983), no. 2.
- [3] E.N. Kuz'min and I.P. Shestakov, Non-associative structures, Algebra VI, Encyclopedia Math. Sci. 57 (1995), 197 280.
- [4] L. Mitchell, M.A. Jones and B. Shelton, Abelian and non-Abelian triangle mysteries, Amer. Math. Monthly 123 (2016), 808 - 813.
- [5] M. Sholander, On the existence of the inverse operation in alternation groupoids, Bull. Amer. Math. Soc. 55 (1949), 746 - 757.

Received May 23, 2016 Revised May 23, 2017

American Mathematical Society Ann Arbor, Michigan, USA E-mail: lhm@ams.org