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Regularity of ternary semihypergroups

Krisanthi Naka and Kostaq Hila

Abstract. We study some properties of regular ternary semihypergroups, completely regular

ternary semihypergroups, intra-regular ternary semihypergroups and characterize them by using

various hyperideals of ternary semihypergroups.

1. Introduction and preliminaries

In 1965, Sioson [14] studied ideal theory in ternary semigroups. In [4, 5] Dudek et.
al. studied the ideals in n-ary semigroups. In 1995, Dixit and Dewan [3] introduced
and studied some properties of ideals and quasi-(bi-)ideals in ternary semigroups.
Other important results on ternary semigroups are obtained in [12, 13, 16, 15].

Hyperstructure theory was introduced in 1934, when F. Marty [11] de�ned hy-
pergroups based on the notion of hyperoperation, began to analyze their properties
and applied them to groups. In the following decades and nowadays, a number
of di�erent hyperstructures are widely studied from the theoretical point of view
and for their applications to many subjects of pure and applied mathematics by
many mathematicians. In a classical algebraic structure, the composition of two
elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Davvaz et al. in [2] considered a class of algebraic hypersys-
tems which represent a generalization of semigroups, hypersemigroups and n-ary
semigroups.

In this paper we extend the notion of regularity in ternary semihypergroups and
we study some properties of regular ternary semihypergroups, completely regular
ternary semihypergroups, intra-regular ternary semihypergroups and characterize
them by using various hyperideals of ternary semihypergroups extending those for
ternary semigroups.

Recall �rst the basic terms and de�nitions from the ternary semihypergroups
theory.

De�nition 1.1. A map f : H ×H ×H → P∗(H) is called ternary hyperoperation
on the set H, where H is a nonempty set and P∗(H) denotes the collection of all
nonempty subsets of H.

A ternary hypergroupoid is called the pair (H, f) where f is a ternary hyper-
operation on the set H.
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If A,B,C are nonempty subsets of H, then we de�ne

f(A,B,C) =
⋃

a∈A,b∈B,c∈C
f(a, b, c).

A ternary hypergroupoid (H, f) is called a ternary semihypergroup if for all
a1, a2, . . . , a5 ∈ H, we have

f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)).

A nonempty subset T of H is called a ternary subsemihypergroup of H if and
only if f(T, T, T ) ⊆ T .

De�nition 1.2. Let (H, f) be a ternary semihypergroup. Then H is called a
ternary hypergroup if for all a, b, c ∈ H, there exist x, y, z ∈ H such that:

c ∈ f(x, a, b) ∩ f(a, y, b) ∩ f(a, b, z).

De�nition 1.3. Let (H, f) be a ternary hypergroupoid. Then

1. (H, f) is (1, 3)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a3, a2, a1);

2. (H, f) is (2, 3)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a1, a3, a2);

3. (H, f) is (1, 2)-commutative if for all a1, a2, a3 ∈ H, f(a1, a2, a3) = f(a2, a1, a3);

4. (H, f) is commutative if for all a1, a2, a3 ∈ H and for all σ ∈ S3, f(a1, a2, a3) =
f(aσ(1), aσ(2), aσ(3).

De�nition 1.4. A ternary semihypergroup (H, f) is said to have a zero element
if there exists an element 0 ∈ H such that for all a, b ∈ H, f(0, a, b) = f(a, 0, b) =
f(a, b, 0) = {0}. An element e ∈ H is called left (right) identity element of H if
for all a ∈ H, f(a, e, e) = {a}(f(e, e, a) = {a}). An element e ∈ H is called an
identity element of H if for all a ∈ H, f(a, e, e) = f(e, e, a) = f(e, a, e) = {a}.

De�nition 1.5. Let (H, f) be a ternary semihypergroup. A nonempty subset I
of a ternary semihypergroup H is called a left (right, lateral) hyperideal of H if

f(H,H, I) ⊆ I(f(I,H,H) ⊆ I, f(H, I,H) ⊆ I).

A nonempty subset I of H is called a hyperideal of H if it is a left, right and
lateral hyperideal of H. A nonemtpy subset I of H is called two-sided hyperideal
of H if it is a left and right hyperideal of H. A lateral hyperideal I of H is called
a proper lateral hyperideal of H if I 6= H. A left hyperideal I of H is called
idempotent if f(I, I, I) = I.
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Example 1.6. LetH = {a, b, c, d, e, g} and f(x, y, z) = (x∗y)∗z for all x, y, z ∈ H,
where ∗ is de�ned by the table:

∗ a b c d e g
a a {a, b} c {c, d} e {e, g}
b b b d d g g
c c {c, d} c {c, d} c {c, d}
d d d d d d d
e e {e, g} c {c, d} e {e, g}
g g g d d g g

Then (H, f) is a ternary semihypergroup. Clearly, I1 = {c, d}, I2 = {c, d, e, g} and
H are lateral hyperideals of H.

Let (H, f) be a ternary semihypergroup. It is clear that the intersection of all
lateral hyperideals of a ternary subsemihypergroup T of H containing a nonempty
subset A of T is the lateral hyperideal of H generated by A.

For every element a ∈ H, the left, right, lateral, two-sided and hyperideal
generated by a are respectively given by

〈a〉l = {a} ∪ f(H,H, a),
〈a〉r = {a} ∪ f(a,H,H),

〈a〉m = {a} ∪ f(H, a,H) ∪ f(H,H, a,H,H),

〈a〉t = {a} ∪ f(H,H, a) ∪ f(a,H,H) ∪ f(H,H, a,H,H),

〈a〉 = {a} ∪ f(H,H, a) ∪ f(a,H,H) ∪ f(H, a,H) ∪ f(H,H, a,H,H).

De�nition 1.7. Let (H, f) be a ternary semihypergroup. A proper hyperideal P
of H is called prime hyperideal of H if f(A,B,C) ⊆ P implies A ⊆ P or B ⊆ P
or C ⊆ P for any three hyperideals A,B,C of H.

A proper hyperideal P of H is said to be strongly irreducible, if for hyperideals
T and K of H, T ∩K ⊆ P implies that T ⊆ P or K ⊆ P

A proper hyperideal A of a ternary semihypergroup H is called a semiprime
hyperideal of H if f(I, I, I) ⊆ A implies I ⊆ A for any hyperideal I of H.

A proper hyperideal A of a ternary semihypergroup H is called completely
semiprime hyperideal of H if f(x, x, x) ⊆ A implies that x ∈ A for any element
x ∈ A.

De�nition 1.8. A ternary subsemihypergroup B of a ternary semihypergroup H
is called a bi-hyperideal of H if f(B,H,B,H,B) ⊆ B.

2. Regular ternary semihypergroups

De�nition 2.1. A ternary semihypergroup H is said to be regular if for each
a ∈ H, there exists an element x ∈ H such that a ∈ f(a, x, a).



294 K. Naka and K. Hila

A ternary semihypergroup H is called regular if all of its elements are regular.
It is clear that every ternary hypergroup is a regular ternary semihypergroup.
The ternary semihypergroup of the Example 1.6 is regular ternary semihyper-

group.
We note that every left and right hyperideal of a regular ternary semihyper-

group may not be a regular ternary semihypergroup; however, for a lateral hyper-
ideal of a regular ternary semihypergroup, we have the following lemma:

Lemma 2.2. Every lateral hyperideal of a regular ternary semihypergroup H is a
regular ternary semihypergroup.

Proof. Let L be a lateral hyperideal of a regular ternary semihypergroup H. Then
for every a ∈ L, there exists x ∈ H such that a ∈ f(a, x, a). Now a ∈ f(a, x, a) ⊆
f(a, x, f(a, x, a)) ⊆ f(a, f(x, a, x), a) ⊆ f(a, L, a). So there exists b ∈ L such that
a ∈ f(a, b, a). This implies that L is a regular ternary semihypergroup.

Obviously, every hyperideal of a regular ternary semihypergroup H is a regular
ternary semihypergroup.

Theorem 2.3. Let (H, f) be a ternary semihypergroup. Then the following state-
ments are equivalent:

(1) H is regular.

(2) For any right hyperideal R, lateral hyperideal M and left hyperideal L of H,
f(R,M,L) = R ∩M ∩ L.

(3) For a, b, c ∈ H, f(〈a〉r , 〈b〉m , 〈c〉l) = 〈a〉r ∩ 〈b〉m ∩ 〈c〉l.

(4) For a ∈ H, f(〈a〉r , 〈a〉m , 〈a〉l) = 〈a〉r ∩ 〈a〉m ∩ 〈a〉l.

Proof. (1) ⇒ (2). Let H be a regular ternary semihypergroup. Let R,M and L
be a right hyperideal, a lateral hyperideal and a left hyperideal of H respectively.
Then clearly, f(R,M,L) ⊆ R∩M∩L. Now for a ∈ R∩M∩L, we have a ∈ f(a, x, a)
for some x ∈ H. This implies that a ∈ f(a, x, a) ⊆ f(f(a, x, a), x, f(a, x, a)) ⊆
f(R,M,L). Thus we have R∩M ∩L ⊆ f(R,M,L). So we �nd that f(R,M,L) =
R ∩M ∩ L.

Clearly, (2)⇒ (3) and (3)⇒ (4).
It remains to show that (4)⇒ (1).
Let a ∈ H. Clearly, a ∈ 〈a〉r∩〈a〉m∩〈a〉l = f(〈a〉r , 〈a〉m , 〈a〉l). Then we have,

a ∈ f(f(a,H,H) ∪ {a}, f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪ {a}) ⊆
f(a,H, a). So we �nd that a ∈ f(a,H, a) and hence there exists an element x ∈ H
such that a ∈ f(a, x, a). This implies that a is regular and hence H is regular.

Corollary 2.4. Let (H, f) be a ternary semihypergroup. Then the following state-
ments are equivalent:

(1) H is regular.
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(2) For any right hyperideal R and left hyperideal L of H, f(R,H,L) = R ∩ L.

(3) For a, b ∈ H, f(〈a〉r , H, 〈b〉l) = 〈a〉r ∩ 〈b〉l.

(4) For a ∈ H, f(〈a〉r , H, 〈a〉l) = 〈a〉r ∩ 〈a〉l.

Theorem 2.5. A ternary semihypergroup H is regular if and only if every hyper-
ideal of H is idempotent.

Proof. Let H be a regular ternary semihypergroup and I be any hyperideal of H.
Then f(I, I, I) ⊆ f(H,H, I) ⊆ I. Let a ∈ I. Then there exists x ∈ H such that
a ∈ f(a, x, a) ⊆ f(a, x, f(a, x, a)). Since I is a hyperideal and a ∈ I, f(x, a, x) ⊆ I.
Thus a ∈ f(a, x, a) ⊆ f(a, x, f(a, x, a)) ⊆ f(I, I, I). Consequently, I ⊆ f(I, I, I)
and hence f(I, I, I) = I, that is I is idempotent.

Conversely, suppose that every hyperideal of H is idempotent. Let A,B and
C be three hyperideals of H. Then f(A,B,C) ⊆ f(A,H,H) ⊆ A, f(A,B,C) ⊆
f(H,B,H) ⊆ B and f(A,B,C) ⊆ f(H,H,C) ⊆ C. This implies that f(A,B,C) ⊆
A ∩B ∩ C. Also, f(A ∩B ∩ C,A ∩B ∩ C,A ∩B ∩ C) ⊆ f(A,B,C). Again, since
A∩B ∩C is a hyperideal of H, f(A∩B ∩C,A∩B ∩C,A∩B ∩C) = A∩B ∩C.
Thus A ∩ B ∩ C ⊆ f(A,B,C) and hence A ∩ B ∩ C = f(A,B,C). Therefore, by
Theorem 2.3, H is a regular ternary semihypergroup.

Theorem 2.6. A commutative ternary semihypergroup H is regular if and only
if every hyperideal of H is semiprime.

Proof. Let H be a commutative regular ternary semihypergroup and I be any
hyperideal of H such that f(A,A,A) ⊆ I for any hyperideal A of H. From
Theorem 2.3, it follows that f(A,A,A) = A. Consequently, A ⊆ I and hence I is
a semiprime hyperideal of H.

Conversely, suppose that every hyperideal of a commutative ternary semihy-
pergroup H is semiprime. Let a ∈ H. Then f(a,H, a) is a hyperideal of H. Now
by hypothesis, f(a,H, a) is a semiprime hyperideal of H. If f(a,H, a) = H, then
we are done. Now suppose that f(a,H, a) 6= H. Then

f(〈a〉 , 〈a〉 , 〈a〉) = f(f(H,H, a) ∪ f(a,H,H) ∪ f(H, a,H) ∪
∪f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪ f(a,H,H) ∪
∪f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a}, f(H,H, a) ∪
∪f(a,H,H) ∪ f(H, a,H) ∪ f(H,H, a,H,H) ∪ {a})

⊆ f(a,H, a)

that is, f(〈a〉 , 〈a〉 , 〈a〉) ⊆ f(a,H, a). This implies that 〈a〉 ⊆ f(a,H, a), since
f(a,H, a) is a semiprime hyperideal of H. Consequently, a ∈ f(a, x, a) for some
x ∈ H and hence H is a regular ternary semihypergroup.

Let N be the nuclear hyperideal of a ternary semihypergroup (H, f), that is
the intersection of all hyperideals in H, Nr the intersection of all right hyperideals
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in H, Nm the intersection of all lateral hyperideals of H, and Nl the intersection
of all left hyperideals of H.

Theorem 2.7. Let (H, f) be a ternary semihypergroup and let N = Nr = Nm =
Nl 6= ∅. Then H is regular if and only if N is regular ternary semihypergroup.

Proof. If H is regular, then clearly N is also regular as a hyperideal.

Conversely, suppose that N is a regular hyperideal of H, so that for any right
hyperideal R, lateral hyperideal M , and left hyperideal L of H,

N ∪ f(R,M,L) = R ∩M ∩ L.

Since f(N,N,N) is both a right and left hyperideal, then

f(R,M,L) ⊆ f(N,N,N) ⊆ N .

Whence f(R,M,L) = R ∩M ∩ L.

Corollary 2.8. Let (H, f) be a ternary semihypergroup and let N = Nr = Nm =
Nl 6= ∅. Then H is regular if and only if every hyperideal of H is regular.

Proof. If H is regular, then N is a regular hyperideal. Hence any hyperideal I
which necessary contains N is also a regular hyperideal.

Conversely, if every hyperideal of H is regular, then N is regular. Thus by the
previous Theorem 2.7, H is regular ternary semihypergroup.

Theorem 2.9. Let (H, f) be a ternary semihypergroup and I a hyperideal of H.
The following statements are equivalent:

(1) I is a regular hyperideal of H;

(2) For every a ∈ H, I ∪ f(〈a〉r , 〈a〉m , 〈a〉l) = I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l);

(3) For every a ∈ H\I, either a ∈ f(a, a1, a, a2, a) or a ∈ f(a, b1, b2, a, b3, b4, a),
for some a1, a2, b1, b2, b3, b4 ∈ H.

Proof. (1)⇒ (2). Suppose that I is a regular hyperideal. Then for each a ∈ H,

I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l) ⊆ 〈I ∪ 〈a〉r〉r , 〈I ∪ 〈a〉m〉m , 〈I ∪ 〈a〉l〉l.

Moreover, since each of the three sets on the right side contains I, then we have

I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l) ⊆ 〈I ∪ 〈a〉r〉r ∩ 〈I ∪ 〈a〉m〉m ∩ 〈I ∪ 〈a〉l〉l
= I ∪ f(I ∪ 〈a〉r, I ∪ 〈a〉m, I ∪ 〈a〉l)
= I∪f(I,I∪〈a〉m, I∪〈a〉l)∪f(〈a〉r, I, I∪〈a〉l)∪f(〈a〉r,〈a〉m, I)∪f(〈a〉r, 〈a〉m,〈a〉l)
= I ∪ f(〈a〉r, 〈a〉m, 〈a〉l) ⊆ I ∪ (〈a〉r ∩ 〈a〉m ∩ 〈a〉l).
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(2)⇒ (3). We note that

〈I ∪ 〈a〉r〉r = 〈I ∪ 〈a〉r〉r ∩H ∩H = I ∪ f(〈I ∪ 〈a〉r〉r , H,H)

= I ∪ f(I,H,H) ∪ f(〈a〉r , H,H) ∪ f(I,H,H,H,H) ∪
∪f(〈a〉r , H,H,H,H)

= I ∪ f(I,H,H) ∪ f(a,H,H,H) ∪ f(a,H,H,H,H) ∪
∪f(I,H,H,H,H) ∪
∪f(a,H,H,H,H) ∪ f(a,H,H,H,H,H,H)

= I ∪ f(I,H,H) ∪ f(a,H,H) ∪ f(a,H,H,H,H)

= 〈I ∪ f(a,H,H)〉r = I ∪ f(a,H,H).

In the same manner, we obtain

〈I ∪ 〈a〉m〉m = 〈I ∪ f(H, a,H)〉m = I ∪ f(H, a,H) ∪ f(H,H, a,H,H),

〈I ∪ 〈a〉l〉l = 〈I ∪ f(H,H, a)〉l = I ∪ f(H,H, a).

Then

〈I ∪ f(a,H,H)〉r ∩ 〈I ∪ f(H, a,H)〉m ∩ 〈I ∪ f(H,H, a)〉l
= I ∪ f(〈I ∪ f(a,H,H)〉m , 〈I ∪ f(H, a,H)〉m , 〈I ∪ f(H,H, a)〉l)
= I ∪ f(a,H,H,H, a,H,H,H, a) ∪ f(a,H,H,H,H, a,H,H,H,H, a)
= I ∪ f(a,H, a,H, a) ∪ f(a,H,H, a,H,H, a).

The result now follows.
(3) ⇒ (1). Let R be an arbitrary right hyperideal, M an arbitrary lateral

hyperideal, L an arbitrary left hyperideal of H all containing I. Let us assume
that I satis�es the condition (3). It is clear that,

I ∪ f(R,M,L) ⊆ R ∩M ∩ L.

Let a ∈ R ∩ M ∩ L. By (3), then a ∈ I or a ∈ f(f(a, a1, a, a2, a) or a ∈
f(a, b1, b2, a, b3, b4, a) for some a1, a2, b1, b2, b3, b4 ∈ H. We note also that in the
second and third cases we have:

a ∈ f(a, a1, a, a1, a, a2, a, a2, a) = f(f(a, a1, a2), f(a1, a, a2), f(a, a2, a)),

a ∈ f(a, b1, b2, a, b1, b2, a, b3, b4, a, b3, b4, a) =
= f(f(a, b1, b2), f(a, b1, b2), a, f(b3, b4, a), f(b3, b4, a)).

Hence in the last two cases we have

a ∈ f(f(a, x2, x3), f(y1, a, y3), f(z1, z2, a)),

for some x2, x3, y1, y2, z1, z2 ∈ H. Whence, in any case we have:

a ∈ I ∪ f(R,M,L)
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and therefore I ∪ f(R,M,L) = R ∩M ∩ L.

Theorem 2.10. Let (H, f) be a ternary semihypergroup and I a regular hyperideal
of a H. Then, for any right hyperideal R, lateral hyperideal M , and left hyperideal
L of H, if f(R,M,L) ⊆ I, then R ∩M ∩ L ⊆ I.

Proof. Suppose f(R,M,L) ⊆ I and I is a regular hyperideal. Then

R ∩M ∩ L ⊆ 〈I ∪R〉r ∩ 〈I ∪M〉m ∩ 〈I ∪ L〉l
I ∪ f(〈I ∪R〉r , 〈I ∪M〉m , 〈I ∪ L〉l) = I ∪ f(I, 〈I ∪M〉m , 〈I ∪ L〉l)
= f(R, I, 〈I ∪ L〉l) ∪ f(R,M, I) ∪ f(R,M,L) ⊆ I.

Corollary 2.11. A regular and strongly irreducible hyperideal is always prime.

Corollary 2.12. Every regular hyperideal is prime.

De�nition 2.13. Let (H, f) be a ternary semihypergroup and Q a nonempty
subset of H. Then Q is called a quasi-hyperideal of H if and only if

f(Q,H,H) ∩ f(H,Q,H) ∩ f(H,H,Q) ⊆ Q and
f(Q,H,H) ∩ f(H,H,Q,H,H) ∩ f(H,H,Q) ⊆ Q.

Theorem 2.14. Let (H, f) be a regular ternary semihypergroup and Q be a
nonempty subset of H. Then Q is a quasi-hyperideal if and only if

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ Q.

Proof. Let H be a regular ternary semihypergroup and Q be a quasi-hyperideal of
H. Then

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ f(H,H,Q), f(Q,H,H), and
f(H,Q,H) ∪ f(H,H,Q,H,H)

and hence

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆
⊆ f(H,H,Q) ∩ (f(H,Q,H) ∪ f(H,H,Q,H,H)) ∩ f(Q,H,H) ⊆ Q.

Conversely, suppose that H is regular and

f(Q,H,Q,H,Q) ∩ f(Q,H,H,Q,H,H,Q) ⊆ Q.

Then

f(Q,H,H) ∩ (f(H,Q,H) ∪ f(H,H,Q,H,H)) ∩ f(H,H,Q)

= f(f(Q,H,H), f(H,Q,H) ∪ f(H,H,Q,H,H), f(H,H,Q))

= f(f(Q,H,H), f(H,Q,H), f(H,H,Q)) ∪ f(f(Q,H,H), f(H,H,Q,H,H),

f(H,H,Q)) ⊆ f(Q,H,Q,H,Q) ∪ f(Q,H,H,Q,H,H,Q) ⊆ Q.
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Theorem 2.15. Let (H, f) be a regular ternary semihypergroup and Q1, Q2, Q3

be three quasi-hyperideals of H. Then f(Q1, Q2, Q3) is a quasi-hyperideal.

Proof.

f(f(Q1, Q2, Q3), H, f(Q1, Q2, Q3), H, f(Q1, Q2, Q3)) ∪ f(f(Q1, Q2, Q3), H,H,

f(Q1, Q2, Q3), H,H, f(Q1, Q2, Q3))

= f(f(Q1, f(Q2, Q3, H), Q1, f(Q2, Q3, H), Q1), Q2, Q3) ∪
∪f(f(Q1, f(Q2, Q3, H), H,Q1, f(Q2, Q3, H), H,Q1), Q2, Q3) ⊆
⊆ f(Q1, Q2, Q3).

Corollary 2.16. The family of all quasi-hyperideals of a regular ternary semihy-
pergroup is a ternary semihypergroup.

Theorem 2.17. Let (H, f) be a ternary semihypergroup. If for every quasi-
hyperideal Q of H, f(Q,Q,Q) = Q, then H is a regular ternary semihypergroup.

Proof. Let R be a right hyperideal of H, L be a left hyperideal of H and M be a
lateral hyperideal of H. By Theorem 2.2 [9], R ∩M ∩ L is a quasi-hyperideal of
H. Then by hypothesis, we have

R ∩M ∩ L = f(R ∩M ∩ L,R ∩M ∩ L,R ∩M ∩ L) ⊆ f(R,M,L).

On the other hand, f(R,M,L) ⊆ R ∩M ∩ L. Therefore we have f(R,M,L) =
R ∩M ∩ L. By Theorem 2.3(2), H is a regular ternary semihypergroup.

Theorem 2.18. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) For every bi-hyperideal B of H, f(B,H,B,H,B) = B;

(3) For every quasi-hyperideal Q of H, f(Q,H,Q,H,Q) = Q.

Proof. (1) ⇒ (2). Let us assume that H is regular and B be a bi-hyperideal
of H. Let b ∈ B. From regularity of H, there exists x ∈ H, such that b ∈
f(b, x, b). Thus, B ⊆ f(B,H,B). We have b ∈ f(b, x, b) ⊆ f(b, x, f(b, x, b)) ⊆
f(B,H, f(B,H,B)) = f(B,H,B,H,B). Therefore, B ⊆ f(B,H,B,H,B). On
the other hand, since B is a bi-hyperideal of H, we have f(B,H,B,H,B) ⊆ B.
Thus, f(B,H,B,H,B) = B.

(2) ⇒ (3). It is clear by Lemma 4.2 [9] since every quasi-hyperideal is a bi-
hyperideal.

(3) ⇒ (1). Let R be a right hyperideal of H, L be a left hyperideal of H and
M be a lateral hyperideal of H. By Theorem 2.2 [9], Q = R ∩M ∩ L is a quasi-
hyperideal of H. By (3) we have f(Q,H,Q,H,Q) = Q. Thus R ∩M ∩ L = Q =
f(Q,H,Q,H,Q) =⊆ f(R,H,M,H,L) ⊆ f(R,M,L). But f(R,M,L) ⊆ R∩M∩L.
Therefore, since f(R,M,L) = R∩M∩L, by Theorem 2.3(2), H is a regular ternary
semihypergroup.
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Corollary 2.19. Let (H, f) be a ternary semihypergroup. The following state-
ments are equivalent:

(1) H is regular;

(2) For every bi-hyperideal B of H, f(B,H,B) = B;

(3) For every quasi-hyperideal Q of H, f(Q,H,Q) = Q.

Theorem 2.20. Let (H, f) be a ternary semihypergroup. If for every bi-hyperideal
B of H, f(B,B,B) = B, then H is a regular ternary semihypergroup.

Proof. The proof is a corollary of Theorem 2.17.

Theorem 2.21. Let (H, f) be a regular ternary semihypergroup. Then a ternary
subsemihypergroup B of H is bi-hyperideal if and only if B is a quasi-hyperideal
of H.

Proof. Let H be a regular ternary semihypergroup and B a bi-hyperideal of H.
By Theorem 2.3, we have f(R ∩M ∩ L) = f(R,M,L) for every right hyperideal
R, lateral hyperideal M and left hyperideal L. Thus

f(B,H,H) ∩ (f(H,B,H) ∪ f(H,H,B,H,H)) ∩ f(H,H,B)

= f(f(B,H,H), f((f(H,B,H) ∪ f(H,H,B,H,H)), f(H,H,B,H,H))

= f(B, f(H,H,H), B, f(H,H,H), B) ∪ f(B, f(H,H,H), H,B, f(H,H,H), H,B)

⊆ f(B,H,B,H,B) ∪ f(B,H,H,B,H,H,B)

⊆ B ∪ f(B,H,B) = B ∪B = B.

Therefore, B is a quasi-hyperideal of H.
Conversely, let B be a quasi-hyperideal of H. Then, by Lemma 4.2 [9], B is a

bi-hyperideal of H.

Corollary 2.22. Let (H, f) be a regular ternary semihypergroup. A ternary sub-
semihypergroup B of H is bi-hyperideal of H if and only if B is the intersection
of a right hyperideal, a lateral hyperideal and a left hyperideal of H.

Theorem 2.23. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) M∩B = f(B,M,B) for every lateral hyperidealM and for every bi-hyperideal
B of H;

(3) M∩Q = f(Q,M,Q) for every lateral hyperidealM and for every bi-hyperideal
Q of H.
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Proof. (1) ⇒ (2). Let M be a lateral hyperideal of H and B a bi-hyperideal
of H. We have f(B,M,B) ⊆ f(H,M,H) ⊆ M . By Corollary 2.19, we have
f(B,M,B) ⊆ f(B,H,B) = B. Therefore, f(B,M,B) ⊆M ∩B. Let a ∈M ∩B.
Since H is regular, there exists h ∈ H such that a ∈ f(a, h, a). We have a ∈
f(a, h, a) ⊆ f(f(a, h, a), h, a) = f(a, f(h, a, h), a) ⊆ f(B,M,B). It follows that
M ∩B ⊆ f(B,M,B). Therefore f(B,M,B) =M ∩B.

(2)⇒ (3). It is clear since every quasi-hyperideal is a bi-hyperideal.
(3) ⇒ (1). Let Q be a quasi-hyperideal of H. By (3) it follows that Q =

H ∩ Q = f(Q,H,Q). By Corollary 2.19, it follows that H is a regular ternary
semihypergroup.

In the sequel, the following results hold. The proof of them is straightforward,
so we omit it.

Theorem 2.24. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) B ∩ L ⊆ f(B,H,L) for every bi-hyperideal B of H and for every left hyper-
ideal L;

(3) Q ∩ L ⊆ f(Q,H,L) for every quasi-hyperideal Q of H and for every left
hyperideal L;

(4) B ∩ R ⊆ f(R,H,B) for every bi-hyperideal B of H and for every right
hyperideal R;

(5) Q ∩ R ⊆ f(R,H,Q) for every quasi-hyperideal Q of H and for every right
hyperideal R.

Theorem 2.25. Let (H, f) be a ternary semihypergroup. The following statements
are equivalent:

(1) H is regular;

(2) B1 ∩B2 ⊆ f(B1, H,B2)∩ f(B2, H,B1) for every bi-hyperideals B1, B2 of H;

(3) B ∩ Q ⊆ f(B,H,Q) ∩ f(Q,H,B) for every bi-hyperideal B and for every
quasi-hyperideal Q of H;

(4) B∩L ⊆ f(B,H,L)∩f(L,H,B) for every bi-hyperideal B of H and for every
left hyperideal L;

(5) Q ∩ L ⊆ f(Q,H,L) ∩ f(L,H,Q) for every quasi-hyperideal Q of H and for
every left hyperideal L;

(6) R ∩ L ⊆ f(R,H,L) ∩ f(L,H,R) for every right hyperideal R of H and for
every left hyperideal L;
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(7) B ∩ R ⊆ f(R,H,B) ∩ f(B,H,R) for every bi-hyperideal B of H and for
every right hyperideal R;

(8) Q ∩R ⊆ f(R,H,Q) ∩ f(Q,H,R) for every quasi-hyperideal Q of H and for
every right hyperideal R.

3. Completely regular and intra-regular

ternary semihypergroups

De�nition 3.1. Let (H, f) be a ternary semihypergroup. An element a ∈ H is
said to be left (resp. right) regular if there exists an element x ∈ H such that
a ∈ f(x, a, a) (resp. a ∈ f(a, a, x)). An element a ∈ H is said to be completely
regular if it is left regular, right regular and regular.

If all the elements of a ternary semihypergroup H are left (resp. right, com-
pletely) regular, then H is called left (resp. right, completely) regular.

The ternary semihypergroup of the Example 1.6 is a completely regular ternary
semihypergroup.

Theorem 3.2. A ternary semihypergroup (H, f) is left (resp. right) regular if and
only if every left (resp. right) hyperideal of H is completely semiprime.

Proof. LetH be a left regular ternary semihypergroup and L be any left hyperideal
ofH. Suppose that f(a, a, a) ⊆ L for a ∈ H. SinceH is left regular, there exists an
element x ∈ H such that a ∈ f(x, a, a) ⊆ f(x, f(x, a, a), a) ⊆ f(x, x, f(a, a, a)) ⊆
f(H,H,L) ⊆ L. Thus L is completely semiprime.

Conversely, suppose that every left hyperideal of H is completely semiprime.
Now for any a ∈ H, f(H, a, a) is a left hyperideal of H. Then by hypothesis,
f(H, a, a) is a completely semiprime hyperideal of H. Now f(a, a, a) ⊆ f(H, a, a).
Since f(H, a, a) is completely semiprime, it follows that a ∈ f(H, a, a). So there
exists an element x ∈ H such that a ∈ f(x, a, a). Consequently, a is left regular.
Since a is arbitrary, it follows that H is left regular.

Similarly, it can be proved the theorem for the right regularity.

Proposition 3.3. A ternary semihypergroup (H, f) is completely regular if and
only if a ∈ f(a, a,H, a, a) for all a ∈ H.

Proof. Suppose that H is a completely regular ternary semihypergroup. Let a ∈
H. Then, by the de�nition, we have that a ∈ f(a, a,H) and a ∈ f(H, a, a), that is
a ∈ f(a, a,H) ∩ f(H, a, a). Since H is completely regular, there exists an element
x ∈ H such that a ∈ f(a, x, a). So we have

a ∈ f(a, x, a) ⊆ f(f(a, a,H), x, f(H, a, a)) ⊆
⊆ f(a, a, f(H,x,H), a, a) ⊆ f(a, a,H, a, a).
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Conversely, suppose that for any a ∈ H, a ∈ f(a, a,H, a, a). Then
1. a ∈ f(a, a,H, a, a) ⊆ f(a, f(a,H, a), a) ⊆ f(a,H, a), that is H is regular.
2. a ∈ f(a, a,H, a, a) ⊆ f(f(a, a,H), a, a) ⊆ f(H, a, a), that isH is left regular.
3. a ∈ f(a, a,H, a, a) ⊆ f(a, a, f(H, a, a)) ⊆ f(a, a,H), that is H is right

regular. Therefore H is completely regular.

Theorem 3.4. A ternary semihypergroup (H, f) is completely regular if and only
if every bi-hyperideal of H is completely semiprime.

Proof. Suppose that H is completely regular ternary semihypergroup. Let B be
any bi-hyperideal of H. Let f(b, b, b) ⊆ B for b ∈ B. Since H is completely
regular, from Proposition 3.3, it follows that b ∈ f(b, b,H, b, b). This implies that
there exists x ∈ H such that

b ∈ f(b, b, x, b, b) ⊆ f(b, f(b, b, x, b, b), x, f(b, b, x, b, b), b) =
= f(b, b, b, f(x, b, b, x), b, f(b, b, x, b, b), x, b, b, b)

= f(b, b, b, f(x, b, b, x), b, b, b, f(x, b, b, x), b, b, b) ⊆ f(B,H,B,H,B) ⊆ B.

This shows that B is completely semiprime.
Conversely, suppose that every bi-hyperideal of H is completely semiprime.

Since every left and right hyperideal of a ternary semihypergroup H is a bi-
hyperideal of H, it follows that every left and right hyperideal of H is completely
semiprime. Consequently, we have from Theorem 3.2 that H is both left and right
regular.

Let a ∈ H. We consider f(a,H, a). Let x, y, z ∈ f(a,H, a) and h1, h2 ∈ H.
Then for some h0, h

′

0, h
′′

0 ∈ H we have:

f(x, h1, y, h2, z) ⊆ f(f(a, h0, a), h1, f(a, h
′

0, a), h2, f(a, h
′′

0 , a))

⊆ f(a, f(h0, a, h1, a, h
′

0, a, h2, a, h
′′

0 ), a)

⊆ f(a,H, a).

This implies that f(f(a,H, a), H, f(a,H, a), H, f(a,H, a)) ⊆ f(a,H, a). That is,
f(a,H, a) is a bi-hyperideal of H. Since f(a, a, a) ⊆ f(a,H, a) and f(a,H, a) is
completely semiprime, it follows that a ∈ f(a,H, a), for all a ∈ H. That is H is
regular. This completes the proof.

Theorem 3.5. If (H, f) is a completely regular ternary semihypergroup, then
every bi-hyperideal of H is idempotent.

Proof. Let H be a completely regular ternary semihypergroup and B be a bi-
hyperideal of H. Since H is a completely regular ternary semihypergroup, it is
also a regular ternary semihypergroup. Let b ∈ B. Then there exists x ∈ H such
that b ∈ f(b, x, b). This implies that b ∈ f(B,H,B) and hence B ⊆ f(B,H,B).
Also f(B,H,B) ⊆ f(B,H,B,H,B) ⊆ B. Thus we �nd that B = f(B,H,B).
Again, we have from Proposition 3.3 that b ∈ f(b, b,H, b, b) ⊆ f(B,B,H,B,B).
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This implies that B ⊆ f(B,B,H,B,B) = f(B, f(B,H,B), B) = f(B,B,B) ⊆ B.
Consequently, f(B,B,B) = B.

De�nition 3.6. A ternary semihypergroup (H, f) is called intra-regular if for
each element a ∈ H, there exist elements x, y ∈ H such that a ∈ f(x, a, a, a, y).

Theorem 3.7. [9, Theorem 6.4] Let (H, f) be a ternary semihypergroup. Then
the following statements are equivalent:

(1) H is intra-regular;

(2) For every left hyperideal L, lateral hyperideal M and right hyperideal R of
H, L ∩M ∩R ⊆ f(L,M,R).

Proposition 3.8. Let (H, f) be an intra-regular ternary semihypergroup. Then a
non-empty subset I of H is a hyperideal of H if and only if I is a lateral hyperideal
of H.

Proof. Clearly, if I is a hyperideal of H, then I is a lateral hyperideal of H.
Conversely, let I be a lateral hyperideal of an intra-regular ternary semihy-

pergroup. Let a ∈ I and s, t ∈ H. Then a ∈ H and hence there exist elements
x, y ∈ H such that a ∈ f(x, a, a, a, y). Now f(s, t, a) ⊆ f(s, t, f(x, a, a, a, y)) ⊆
f(H, I,H) ⊆ I and f(a, s, t) ⊆ f(f(x, a, a, a, y), s, t) ⊆ f(H, I,H) ⊆ I. This im-
plies that I is both a left hyperideal and a right hyperideal of H. Consequently, I
is an hyperideal of H.

Lemma 3.9. Every lateral hyperideal of an intra-regular ternary semihypergroup
(H, f) is an intra-regular ternary semihypergroup.

Proof. Let L be a lateral hyperideal of an intra-regular ternary semihypergroup
H. Then for each a ∈ L, there exist x, y ∈ H such that a ∈ f(x, a, a, a, y). Now
a ∈ f(x, a, a, a, y) ⊆ f(x, f(x, a, a, a, y), f(x, a, a, a, y), f(x, a, a, a, y), y)
⊆ f(f(x, x, a, a, a, y, y), f(a, a, a), f(y, x, a, a, a, y, y)) ⊆ f(L, f(a, a, a), L). This
implies that there exist u, v ∈ L such that a ∈ f(u, f(a, a, a), v). Consequently, L
is an intra-regular ternary semihypergroup.

From the Proposition 3.8 we have the following corollary:

Corollary 3.10. Every hyperideal of an intra-regular ternary semihypergroup H
is an intra-regular ternary semihypergroup.

Theorem 3.11. Let I be a hyperideal of an intra-regular ternary semihypergroup
H and J be a hyperideal of I. Then J is a hyperideal of the entire ternary semi-
hypergroup H.

Proof. It is su�cient to show that J is a lateral hyperideal of H. Let a ∈ J ⊆ I
and s, t ∈ H. Then f(s, a, t) ⊆ I. We have to show that f(s, a, t) ⊆ J . From
Corollary 3.10, it follows that I is an intra-regular ternary semihypergroup. Thus
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there exist u, v ∈ I such that f(s, a, t) ⊆ f(u, f(s, a, t), f(s, a, t), f(s, a, t), v) ⊆
f(f(u, s, a, t, s), a, f(t, s, a, t, v)) ⊆ f(I, J, I) ⊆ J . Consequently, J is a lateral
hyperideal of H.

Theorem 3.12. A ternary semihypergroup (H, f) is intra-regular if and only if
every hyperideal of H is completely semiprime.

Proof. Let H be an intra-regular ternary semihypergroup and I be a hyperideal
of H. Let f(a, a, a) ⊆ I for a ∈ H. Since H is intra-regular, there exist x, y ∈ H
such that a ∈ f(x, f(a, a, a), y) ⊆ I. Consequently, I is completely semiprime.

Conversely, suppose that every hyperideal of H is completely semiprime. Let
a ∈ H. Then f(a, a, a) ⊆ 〈f(a, a, a)〉. This implies that a ∈ 〈f(a, a, a)〉, since
〈f(a, a, a)〉 is completely semiprime.

Now 〈f(a, a, a)〉 = f(H,H, f(a, a, a))∪f(f(a, a, a), H,H)∪f(H, f(a, a, a), H)∪
f(H,H, f(a, a, a), H,H) ∪ f(a, a, a). So we have the following cases:

If a ∈ f(H,H, f(a, a, a)), then f(a, a, a) ⊆ f(H,H, f(a, a, a), a, a). Hence a ∈
f(H,H,H,H, f(a, a, a), a, a) ⊆ f(H,H,H, a, a, a,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(f(a, a, a), H,H), then f(a, a, a) ⊆ f(a, a, f(a, a, a), H,H). Hence a ∈
f(a, a, f(a, a, a), H,H,H,H) ⊆ f(H, a, a, a,H,H,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(H, f(a, a, a), H), then we are done.
If a ∈ f(H,H, f(a, a, a), H,H), then f(a, a, a) ⊆ f(a,H,H, f(a, a, a), H,H, a).
Hence

a ∈ f(H,H, a,H,H, f(a, a, a), H,H, a,H,H)

⊆ f(H,H,H, f(a, a, a), H,H,H) ⊆ f(H, f(a, a, a), H).

If a ∈ f(a, a, a), then

a ∈ f(a, a, a) ⊆ f(f(a, a, a), f(a, a, a), f(a, a, a)) ⊆ f(H, f(a, a, a), H).

So we �nd that in any case, H is intra-regular.
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