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On state equality algebras

Masoomeh Zarean, Rajab Ali Borzooei and Omid Zahiri

Abstract. We show that every state-morphism operator on an equality algebra is an internal

state operator on it and prove that the converse is correct for the linearly ordered equality algebras

under a special condition. Then we show that there is a one-to-one correspondening between

congruence relations on a state-morphism (linearly ordered state) equality algebra and state-

morphism (state) deductive systems on it. Moreover, we de�ne the notion of homomorphism on

equality algebras and we investigate the relation between state operators and state-morphism

operators with equality-homomorphism. Finally, we characterize the simple and semisimple

classes of state-morphism equality algebras.

1. Introduction

Equality algebras were introduced in [8] by Jenei, that the motivation cames from
EQ-algebra [13]. State MV-algebras were introduced by Flaminio and Montagna
as MV-algebras with internal states [6]. Di Nola and Dvure£enskij introduced
the notion of state-morphism MV-algebra which is a stronger variation of a state
MV-algebra [4]. State BCK-algebras and state-morphism BCK-algebras have been
de�ned and studied by Borzooei, Dvure£enskij and Zahiri [2]. Recently, the state
equality algebras and state-morphism equality algebras have been introduced in
[3]. Now we prove that every state-morphism operator on an equality algebra is
an internal state operator on it, and we prove the converse is true for a linearly
ordered equality algebra under a special condition. Also, we remove the condition
of [3, Th. 6.8] and [3, prop. 5.7(3)] and state them in general case. We introduce
a deductive system on state (state-morphism) equality algebra and we investigate
some related results. Then we show that for any linearly ordered sate (state-
morphism) equality algebra (A, σ), there is a one-to-one correspondence between
Con(A, σ) and IDS(Aσ) (SDS(Aσ)). We show that every internal state operator
on an equality algebra is a state-morphism if it is equality-homomorphism. Finally,
we study some classes of state-morphism equality algebras such as simple and
semisimple state-morphism equality algebras.
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2. Preliminaries

In this section, we recall basic de�nitions and results relevant to equality algebra
which will be used in the next sections.

De�nition 2.1. (cf. [8]) An equality algebra is an algebra (A,∧,∼, 1) of type
(2, 2, 0) such that the following axioms are ful�lled for all a, b, c ∈ A:

(E1) (A;∧, 1) is a meet-semilattice with top element 1,
(E2) a ∼ b = b ∼ a,
(E3) a ∼ a = 1,
(E4) a ∼ 1 = a,
(E5) a 6 b 6 c implies a ∼ c 6 b ∼ c and a ∼ c 6 a ∼ b,
(E6) a ∼ b 6 (a ∧ c) ∼ (b ∧ c),
(E7) a ∼ b 6 (a ∼ c) ∼ (b ∼ c),

where a 6 b i� a ∧ b = b.

Let (A,∧,∼, 1) be an equality algebra. A subset D ⊆ A is called a deductive
system of A if for all a, b ∈ A, (DS1): 1 ∈ D, (DS2): a ∈ D and a 6 b implies
b ∈ D, (DS3): a, a ∼ b ∈ D implies b ∈ D.

A deductive system D of an equality algebra A is proper if D 6= A. The
set of all deductive systems of A is denoted by DS(A). An equality algebra A is
called simple if DS(A) = {{1}, A}. A non-empty subset S of an equality algebra
(A,∧,∼, 1) which is closed under ∼ is called a subalgebra of A and the set of all
subalgebras of A is denoted by Sub(A). We know that ∼ is higher priority than
the operation ∧ (it means that �rst we calculate the operation ∧ then apply the
operation ∼). For simplify, some times we write a ∼ (a ∧ b) = a ∼ a ∧ b. The
operations → (called implication) and ↔ (called equivalence) on equality algebra
A are de�ned as follows:

a→ b = a ∼ (a ∧ b) , a↔ b = (a→ b) ∧ (b→ a).

If there exists zero element 0 ∈ A such that 0 6 a (i.e, 0 → a = 1), for all a ∈ A,
then A is called a bounded equality algebra and it is denoted by (A,∧,∼, 0, 1).

Proposition 2.2. (cf. [3, 8]) Let (A,∧,∼, 1) be an equality algebra. Then the
following hold for all a, b, c ∈ A:

(E8) a ∼ b 6 a→ b 6 a↔ b,
(E9) a 6 (a ∼ b) ∼ b,
(E10) a ∼ b = 1 i� a = b,
(E11) a→ b = 1 i� a 6 b,
(E12) a→ b = 1 and b→ a = 1 implies a = b,
(E13) a 6 b→ a,
(E14) a 6 (a→ b)→ b,
(E15) a→ b 6 (b→ c)→ (a→ c),
(E16) a 6 b→ c i� b 6 a→ c,
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(E17) a→ (b→ c) = b→ (a→ c),
(E18) x 6 y implies y → z 6 x→ z,
(E19) x 6 y implies z → x 6 z → y,
(E20) b 6 a ∼ a ∧ b , a ∼ b 6 a ∼ a ∧ b,
(E21) a 6 (a ∼ a ∧ b) ∼ b , b 6 (a ∼ a ∧ b) ∼ b,
(E22) ((a→ b)→ b)→ b = a→ b.

Proposition 2.3. (cf. [3, 5]) Let (A,∧,∼, 1) be an equality algebra and D ∈
DS(A). Then the following hold for all a, b ∈ A:

(i) if a, a→ b ∈ D, then b ∈ D,
(ii) if a, b ∈ D, then a ∼ b ∈ D and a ∧ b ∈ D,
(iii) if A is linearly ordered, then a ∼ b ∈ D i� a↔ b ∈ D i� b→ a, a→ b ∈ D.

Proposition 2.4. (cf. [3]) Every deductive system of an equality algebra A is a
subalgebra of A.

Proposition 2.5. (cf. [3, 9]) Let A be an equality algebra and Con(A) be the set
of all congruence relations on A. Then the following hold:

(i) For any D ∈ DS(A), the relation θD on A which is de�ned by
(a, b) ∈ θD ⇔ a ∼ b ∈ D, is a congruence relation on A.

(ii) If θ ∈ Con(A), then [1]θ = {a ∈ A : (a, 1) ∈ θ} is a deductive system of A.

For D ∈ DS(A) and θD ∈ Con(A), we denote the set of all equivalence classes
of θD by A/D = {a/D : a ∈ A}.

Theorem 2.6. (cf. [3, 9]) Let (A,∧,∼, 1) be an equality algebra. Then there is a
one-to-one correspondence between DS(A) and Con(A).

Theorem 2.7. (cf. [3, 5]) Let (A,∧,∼, 1) be an equality algebra and D ∈ DS(A).
Then (A/D,∧D,∼D, 1D) is an equality algebra with the following operations:

a/D ∧D b/D = (a ∧ b)/D , a/D ∼D b/D = (a ∼ b)/D.

In the following we recall de�nitions of internal state and state-morphism op-
erators and their properties. For more details, see [3].

De�nition 2.8. (cf. [3]) Let (A,∧,∼, 1) be an equality algebra. Then (A, σ) is
called an internal state equality algebra if σ : A→ A is a unary operator on A such
that for all a, b ∈ A the following conditions are satis�ed:

(S1) σ(a) 6 σ(b), whenever a 6 b,
(S2) σ(a ∼ a ∧ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b),
(S3) σ(σ(a) ∼ σ(b)) = σ(a) ∼ σ(b),
(S4) σ(σ(a) ∧ σ(b)) = σ(a) ∧ σ(b).

In the following, we replace internal state equality algebra by state equality
algebra.

For any state equality algebra (A, σ), theKer(σ) is de�ned as {a∈A|σ(a) = 1}.
The state σ is called faithful, if Ker(σ) = {1}. The set of all internal states on an
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equality algebra A denote by S(A). Clearly S(A) 6= ∅. In fact, the identity map
1A is a faithful state on A. If A is linearly ordered, then IdA ∈ S(A).

Proposition 2.9. (cf. [3]) Let (A,∧,∼, 1) be an state equality algebra. Then for
all a, b ∈ A the following hold:

(1) σ(1) = 1,
(2) σ(σ(a)) = σ(a),
(3) σ(A) = {a ∈ A : a = σ(a)},
(4) σ(A) is a subalgebra of A,
(5) Ker(σ) ∈ DS(A),
(6) Ker(σ) is a subalgebra of A,
(7) Ker(σ) ∩ σ(A) = {1}.

De�nition 2.10. (cf. [3])Let (A,∧,∼, 1) be an equality algebra. Then (A, σ) is
called a state-morphism equality algebra if σ : A → A is a unary operator on A
such that for all a, b ∈ A the following conditions are satis�ed:

(SM1) σ(a ∼ b) = σ(a) ∼ σ(b),
(SM2) σ(a ∧ b) = σ(a) ∧ σ(b),
(SM3) σ(σ(a)) = σ(a).

The set of all state-morphisms on an equality algebra A is denoted by SM(A).
Clearly SM(A) 6= ∅. Indeed, if A is an equality algebra, then the constant map
1A(a) = 1 and the identity map IdA(a) = a are state-morphism operators on A.

Proposition 2.11. (cf. [3]) Let (A, σ) be a state-morphism equality algebra. Then
the following hold:

(1) Ker(σ) ∈ DS(A),
(2) Ker(σ) = {σ(a) ∼ a : a ∈ A},
(3) If Ker(σ) = {1}, then σ = IdA,
(4) If A is a simple equality algebra, then SM(A) = {1A, IdA}.

3. (State) deductive systems in equality algebras

In this section, by considering the notion of deductive system, we de�ne the concept
of state deductive system on state (state morphism) equality algebras then prove
that the quotient algebra constructed with a state deductive system of a state-
morphism (and linearly ordered state) equality algebra (A, σ) is a state-morphism
(and state) equality algebra. Finally, we show that a deductive system on a state-
morphism (and linearly ordered state) equality algebra de�ne a congruence relation
on (A, σ) and there is a one-to-one correspondence between SDS(Aσ) (IDS(Aσ))
and Con(A, σ).

Theorem 3.1. Let X be a subset of an equality algebra A.
(i) The deductive system generated by X which is denoted by 〈X〉 is

〈X〉={a ∈ A | ∃n ∈ N and x1, . . . , xn ∈ X st. x1 → (x2 → ...(xn → a)...) = 1}
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(ii) If D is a deductive system of A and S ⊆ A, then

〈D∪S〉={a∈A | ∃n ∈ N and s1, . . . , sn ∈ S st. s1 → (s2 → (...(sn → a)...)) ∈ D}

Proof. It follows from [5, Prop. 4.3] and [11, Prop. 2.2.7].

For each x belonging to an equality algebra A, the deductive system generated
by {x} is called principal deductive system. Clearly,

〈x〉={a∈A |xn → a = 1, for some n ∈ N},

where x0 → b = b, xn → b = x→ (xn−1 → b).

De�nition 3.2. A proper deductive system D of an equality algebra A is called
• prime if a ∼ a ∧ b ∈ D or b ∼ b ∧ a ∈ D, for all a, b ∈ A,
• maximal if there is not any proper deductive system strictly containing D.

An equality algebra A is called semisimple if Rad(A) =
⋂

D∈Max(A)

D = {1}. The

set of all prime (maximal) deductive systems of an equality algebra A is denoted
by Pr(A)(Max(A)).

Proposition 3.3. Any proper deductive system of a bounded equality algebra A
is contained in a maximal deductive system of A.

Proof. It is an immediate consequence of Zorn,s Lemma.

Example 3.4. (i). Let A = {0, a, b, 1} be a poset with 0 < a, b < 1. Then
(A,∧,∼, 1) is an equality algebra with the operation ∼ on A, given as follows:

∼ 0 a b 1
0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

Then DS(A) = {{1}, {a, 1}, {b, 1}, A}, Pr(A) = {{a, 1}, {b, 1}} and Max(A) =
{{a, 1}, {b, 1}}. Also by Theorem 3.1, 〈0〉 = A, 〈a〉 = {a, 1}, 〈b〉 = {b, 1} and
〈1〉 = {1}.

(ii). Let B = {0, b, 1} be a chain such that 0 < b < 1. Then (B,∧,∼, 1) is an
equality algebra with the operation ∼ on B, given as follows:

∼ 0 b 1
0 1 b 0
b b 1 b
1 0 b 1
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Then DS(B) = {{1}, B}, Pr(B) = {1} and Max(B) = {1}. By Theorem 3.1,
〈0〉 = 〈b〉 = B, 〈1〉 = {1}.

(iii). Let C = {0, a, b, 1} be a poset with 0 < a < b < 1. Then (C,∧,∼, 1) is
an equality algebra with the operation ∼ on C, given as follows:

∼ 0 a b 1
0 1 a 0 0
a a 1 a a
b 0 a 1 b
1 0 a b 1

Then DS(C) = {{1}, {b, 1}, A}, Pr(C) = {{1}, {b, 1}} and Max(C) = {{b, 1}}.
Also 〈0〉 = 〈a〉 = C, 〈b〉 = {b, 1}, 〈1〉 = {1}.

Proposition 3.5. Let D be a proper deductive system of an equality algebra A.
Then the following are equivalent:

(i) D is maximal.
(ii) For all x ∈ A \D, 〈D ∪ {x}〉 = A.
(iii) For all x ∈ A \D, xn → a ∈ D for any a ∈ A.

Proof. (i)⇒ (ii). If x ∈ A \D, then D ⊂ 〈D ∪ {x}〉. Since D is maximal, we get
〈D ∪ {x}〉 = A.

(ii)⇒ (i). Assume that F is a proper deductive system of A such that D ⊂ F .
Hence there is x ∈ F \D, and so by (ii), 〈D ∪ {x}〉 = A. Then F = A, that is a
contradiction.

(ii)⇔ (iii). It is clearly by Theorem 3.1(ii).

Proposition 3.6. Let A be an equality algebra. The subalgebra S of A is a
deductive system of A, if a ∈ S and b ∈ A\S implies a∧b ∈ A\S and a ∼ b ∈ A\S.

Proof. Let S be a subalgebra of A. Since 1 = a ∼ a ∈ S, thus (DS1) satis�ed.
If a ∈ S and a 6 b, then a ∧ b = a ∈ S. Assume that b /∈ S. Since a ∈ S and
b ∈ A \ S then a ∧ b ∈ A\S, which is a contradiction. Hence b ∈ S. Thus (DS2)
satis�ed. Now, let a, a ∼ b ∈ S, but b /∈ S. Hence by assumption a ∼ b ∈ A \ S,
which is a contradiction. Thus b ∈ S. So (DS3) is satis�ed.

Example 3.7. Let A be the equality algebra in Example 3.4(i). Then

Sub(A) = {{1}, {0, 1}, {a, 1}, {b, 1}, A}.

Clear that any member of Sub(A) is a deductive system, except {0, 1}. It follows
that Proposition 3.6 is not satis�ed for subalgebra {0, 1}.

Proposition 3.8. Let A be an equality algebra. Then the following hold.
(i) If A is linearly ordered and a ∈ A, then A(a) = {x ∈ A | a 6 x} is a

subalgebra of A.
(ii) If A is bounded, then A0 = {a ∈ A | a ∼ 0 = 0} is a proper deductive

system and subalgebra of A.
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Proof. (i). Let a ∈ A. Clearly, A(a) is closed under ∧. Put x, y ∈ A(a). Since A
is linearly ordered, we assume x 6 y. Now by (E13) and (E2) we get a 6 x 6 y →
x = y ∼ (y ∧ x) = y ∼ x = x ∼ y. Hence x ∼ y ∈ A(a). For y 6 x, with a similar
way, the result satis�es.

(ii). Since 1 ∼ 0 = 0, we get 1 ∈ A0. Let a ∈ A0 and a 6 b. Then by (E5),
b ∼ 0 6 a ∼ 0 = 0 and so b ∼ 0 = 0. Thus b ∈ A0. Now let a, a ∼ b ∈ A0. By
(E7), b ∼ 0 6 (a ∼ b) ∼ (a ∼ 0) = (a ∼ b) ∼ 0 = 0. Hence b ∼ 0 = 0 and so
b ∈ A0. Therefore, A0 is a proper deductive system. Also, by Proposition 2.4, A0

is a subalgebra of A.

Proposition 3.9. Let D be a proper deductive system of an equality algebra A.
Then the following hold:

(i) D is prime i� A/D is a linearly ordered equality algebra,
(ii) if D is prime, then {F ∈ DS(A) | D ⊆ F} is linearly ordered by inclusion.

Proof. (i). For any a, b ∈ A, a ∼ a ∧ b ∈ D i� (a ∼ a ∧ b)/D = 1/D i�
a/D ∼D a/D ∧D b/D = 1/D i� a/D = a/D ∧D b/D i� a/D 6 b/D. By the
similar way b ∼ b ∧ a ∈ D i� b/D 6 a/D. Hence D is prime i� A/D is a linearly
ordered equality algebra.

(ii). Let F,G ∈ {F ∈ DS(A) | D ⊆ F}. If F and G are incomparable, then
there exist a ∈ F \ G and b ∈ G \ F . Since D is prime, by (i), A/D is linearly
ordered. Then we can assume a/D 6 b/D, and so a ∼ a ∧ b ∈ D ⊆ F . Since
a ∈ F , by (DS2), a ∧ b ∈ F and since a ∧ b 6 b, by (DS1) we get b ∈ F , which is
a contradiction. Hence F ⊆ G or G ⊆ F .

Proposition 3.10. Let A be an equality algebra. Then A is a linearly ordered i�
each proper deductive systems of A are prime.

Proof. Let A be a linearly ordered equality algebra. Then we have a 6 b or
b 6 a, for all a, b ∈ A. Thus for any proper D ∈ DS(A), a ∼ a ∧ b = 1 ∈ D or
b ∼ b∧ a = 1 ∈ D and so D is prime. Conversely, by the assumption, {1} is prime
and so by Proposition 3.9, A/{1} = A is a linearly ordered equality algebra.

Corollary 3.11. An equality algebra A is linearly ordered i� the set DS(A) is
linearly ordered by inclusion.

Proof. It follows from Propositions 3.10 and 3.9(ii).

Proposition 3.12. Let A be an equality algebra. Then D ∈ Max(A) i� A/D is
simple.

Proof. Let D ∈ Max(A). If A/D is not simple, then there is a ∈ A such that
〈a/D〉 6= 1/D. So a /∈ D and D ⊂ 〈D ∪ {a}〉, which is a contradiction with the
maximality of D. Hence A/D is simple. The converse is obvious.

In the follows, we de�ne the notion of state deductive system on state equality
algebras.
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De�nition 3.13. Let (A, σ) be an state equality algebra. A deductive system
D of A is called a state deductive system of A if σ(D) ⊆ D ( i.e., a ∈ D implies
σ(a) ∈ D). The set of all state deductive systems on state equality algebra (A, σ)
is denoted by IDS(Aσ). A proper state deductive system of (A, σ) is called a
maximal state deductive system if there is no proper deductive system strictly
containing it. The set of all maximal state deductive systems of (A, σ) is denoted
by IMax(Aσ). The intersection of all the maximal state deductive system of (A, σ)
is denoted by Rad(A, σ). Clearly, Ker(σ) is a state deductive system of any state
equality algebra.

Example 3.14. (i). Let A be the equality algebra in Example 3.4(i). Then
σ1 : A → A which is de�ned by σ1(0) = 0, σ1(a) = 1, σ1(b) = 0, σ1(1) = 1 is an
state on A. We can check {b, 1} ∈ DS(A), but {b, 1} /∈ IDS(Aσ1

). Since b ∈ {b, 1}
but σ1(b) = 0 /∈ {b, 1}. Then Rad(A) = {1} and Rad(A, σ) = {a, 1}.

(ii). Let C be the equality algebra of Example 3.4(iii). Then σ1 : C → C
which is de�ned by σ1(0) = 0, σ1(a) = a, σ1(b) = a, σ1(1) = 1 is an state on
C. We can check {b, 1} ∈ DS(C), but {b, 1} /∈ IDS(Cσ1

). Since b ∈ {b, 1} but
σ1(b) = a /∈ {b, 1}. Therefore Rad(A) = {b, 1} and Rad(A, σ1) = {1}.

Example 3.15. (i). {1} and A are state deductive systems of any state equality
algebra (A, σ).

(ii). In any linearly ordered state equality algebra (A, IdA), every D ∈ DS(A)
is a state deductive system of (A, σ). Then Rad(A) = Rad(A, σ).

(iii). If C is the equality algebra in Example 3.4(iii). Then σ : C → C which
is de�ned by σ(0) = 0, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on C. Then we
can see that D ∈ DS(C) i� D ∈ IDS(Cσ), Since x ∈ D follows σ(x) ∈ D. Then
Rad(A) = Rad(A, σ).

(iv). If A is the equality algebra of Example 3.4(i), then σ : A → A which
is de�ned by σ(0) = a, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on A. Then we
can see that D ∈ DS(A) i� D ∈ IDS(Aσ). Since x ∈ D follows σ(x) ∈ D. Then
Rad(A) = Rad(A, σ).

Example 3.16. Let (A,∧A,∼A, 1A) and (B,∧B ,∼B , 1B) be two equality alge-
bras. Then C = A×B = {(a, b) ∈ A×B | a ∈ A, b ∈ B} with operations ∧, ∼, 1
as follows : (a, b)∧ (a′

, b
′
) = (a∧A a

′
, b∧B b

′
), (a, b) ∼ (a

′
, b

′
) = (a ∼A a

′
, b ∼B b

′
),

1 = (1A, 1B), for all (a, b), (a
′
, b

′
) ∈ C, is an equality algebra.

Let σ1 : A → A and σ2 : B → B are states on A and B, respectively. Then
σ : C → C which is de�ned by σ(a, b) = (σ1(a), σ2(b)) is an state on C, for all
(a, b) ∈ C. Let D1 ∈ DS(A) and D2 ∈ DS(B). Then D1×D2 ∈ DS(C) is a state
deductive system of (C, σ) if for all (a, b) ∈ D1 × D2 we get σ(a, b) ∈ D1 × D2.
Hence D1 ×D2 ∈ IDS(Cσ) i� D1 ∈ IDS(Aσ1) and D2 ∈ IDS(Bσ2).

Proposition 3.17. Let (A, σ) be an state equality algebra. Then
(i) σ(a→ b) 6 σ(a)→ σ(b), for any a, b ∈ A,
(ii) if A is linearly ordered, then σ(a∼b)6σ(a)∼σ(b) and σ(a∧b) = σ(a)∧σ(b).
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Proof. (i). By (E21) we have a 6 (a ∼ a∧b) ∼ b, so by (S1), we get σ(a) 6 σ((a ∼
a∧ b) ∼ b). Now (E18) follows σ((a ∼ a∧ b) ∼ b)→ σ(b) 6 σ(a)→ σ(b). Thus by
(S2), σ(a ∼ a ∧ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b) 6 σ((a ∼ a ∧ b) ∼ b) → σ(b). So
σ(a→ b) 6 σ(a)→ σ(b).

(ii). Since A is linearly ordered, assume that a 6 b. Then by a ∼ b 6 b→ a and
(i), we get σ(a ∼ b) = σ(b→ a) 6 σ(b)→ σ(a) = σ(a) ∼ σ(b). Moreover, if a 6 b
(b 6 a) then by (S1), σ(a) 6 σ(b) (σ(b) 6 σ(a)). So σ(a ∧ b) = σ(a) ∧ σ(b).

Proposition 3.18. Let (A, σ) be an state equality algebra and S ⊆ A. Then

Fix(S) = {a ∈ A | σ(a)→ s = s, for all s ∈ S}

is a state deductive system of (A, σ).

Proof. Obviously, 1 ∈ Fix(S). Let a ∈ Fix(S) and a 6 b. Then σ(a) → s = s.
Hence by De�nition 2.8(S1) and (E18), σ(a) 6 σ(b) and so σ(b) → s 6 σ(a) →
s = s, which implies that σ(b)→ s = s. Thus b ∈ Fix(S). Let a, a ∼ b ∈ Fix(S).
Then σ(a) → s = s and σ(a ∼ b) → s = s. Since a ∼ b 6 a → b, by De�nition
2.8 and (E18) we get s 6 σ(a → b) → s 6 σ(a ∼ b) → s = s. Hence σ(a →
b) → s = s. Now by Proposition 3.17, we get σ(a → b) 6 σ(a) → σ(b) and so
(σ(a) → σ(b)) → s = s. Since (σ(a) → σ(b)) → (σ(a) → s) = s thus we have
s 6 σ(b) → s 6 (σ(a) → σ(b)) → (σ(a) → s) = s, that follows b ∈ Fix(S).
Finally, let a ∈ Fix(S). So σ(a) → s = s. By s 6 σ(σ(a)) → s = σ(a) → s = s,
we get σ(a) ∈ Fix(S). Hence Fix(S) ∈ IDS(Aσ).

De�nition 3.19. Let (A, σ) be an state equality algebra. If S ⊆ A, then 〈〈S〉〉 is
the state deductive system generated by S.

Proposition 3.20. Let (A, σ) be an state equality algebra. If D ∈ DS(A),

〈〈D〉〉 = {a ∈ A | ∃n ∈ N,∃x1, . . . , xn ∈ D st. σ(x1)→ (...(σ(xn)→ a)...) ∈ D}.

Proof. Let
S={a ∈ A | ∃n ∈ N,∃x1, . . . , xn ∈ D st. σ(x1)→(σ(x2)→(...(σ(xn)→a)...))∈D}.

First, we show that D ⊆ S. For any d ∈ D, since 1 ∈ D and σ(1) = 1 ∈ D
we get σ(1) → d = 1 → d = d ∈ D and so d ∈ S. Now we prove that S is a
state deductive system of (A, σ). Since for all x ∈ D,σ(x) → 1 = 1 ∈ D, by
de�nition of S, 1 ∈ S. Now, let a ∈ S and a 6 b. Then there are n ∈ N and
x1, x2, ..., xn ∈ D such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) ∈ D. Since
a 6 b and D ∈ DS(A), from (E19),

σ(x1)→ (σ(x2)→ (...(σ(xn)→ a)...)) 6 σ(x1)→ (σ(x2)→ (...(σ(xn)→ b)...))

it follows that σ(x1) → (σ(x2) → (...(σ(xn) → b)...)) ∈ D. So b ∈ S. Finally, let
a, a ∼ b ∈ S. Then there are m,n ∈ N, x1, x2, ..., xm ∈ D and y1, y2, ..., yn ∈ D
such that

σ(x1)→ (σ(x2)→ (...(σ(xm)→ a)...)) ∈ D
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and σ(y1) → (σ(y2) → (...(σ(yn) → (a ∼ b))...)) ∈ D. Since a ∼ b 6 a → b,
we get σ(y1) → (σ(y2) → (...(σ(yn) → (a → b))...)) = Z ∈ D. Now from (E19)
and (E17), we have σ(x1) → (σ(x2) → (...(σ(xm) → a)...)) 6 σ(x1) → (σ(x2) →
(...(σ(xm)→ (σ(y1)→ (σ(y2)→ (...(σ(yn)→ (Z → b)))...)). So

Z → σ(x1)→ (σ(x2)→ (...(σ(xm)→ (σ(y1)→ (σ(y2)→ (...(σ(yn)→ b))...)) ∈ D

and Z ∈ D. Hence by de�nition of S, b ∈ S. Thus S is a deductive system of
A. Now, we prove that S is a state deductive system of A. For any a ∈ S, there
are x1, x2, ..., xn ∈ D such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) = Y ∈ D.
Hence Y → (σ(x1) → (σ(x2) → (...(σ(xn) → a)...))) = 1 ∈ D and σ(Y →
(σ(x1) → (σ(x2) → (...(σ(xn) → a)...)))) = σ(1) = 1 ∈ D. By using Propositions
3.17 and 2.9 (2), σ(Y ) → (σ(x1) → (σ(x2) → (...(σ(xn) → σ(a))...))) = 1 ∈ D.
From Y ∈ D, by de�nition of S, σ(a) ∈ S. Finally we show that S is the smallest
state deductive system of A containing D. Let F ∈ IDS(Aσ) such that D ⊆ F .
Assume a ∈ S, if a = 1, then S ⊆ F . Otherwise there are x1, x2, ..., xn ∈ D ⊆ F
such that σ(x1) → (σ(x2) → (...(σ(xn) → a)...)) ∈ D ⊆ F . Since F is a state
deductive system of A, thus σ(x1), σ(x2), ..., σ(xn) ∈ F , so a ∈ F . Hence S is the
smallest state deductive system of A containing D, that is 〈〈D〉〉 = S.

Proposition 3.21. Let D be a state deductive system of an state equality algebra
(A, σ) and x ∈ A. Then

〈〈D ∪ {x}〉〉 = {a ∈ A | σm(x)→ (xn → a) ∈ D, ∃m,n ∈ N}.

A state deductive system M of a bounded state equality algebra is maximal i� for
any x /∈M , there are m,n ∈ N such that σm(x)→ (xn → 0) ∈M .

Proof. Set S = {a ∈ A | σm(x) → (xn → a) ∈ D, ∃m,n ∈ N}. First, we show
that {D ∪ {x}} ⊆ S. Let y ∈ {D ∪ {x}}, if y = x then y ∈ S. Otherwise y ∈ D,
from y 6 x → y follows x → y ∈ D. So y ∈ S. Now we prove that S is a state
deductive system of (A, σ). Obviously, 1 ∈ S. Let a ∈ S and a 6 b. Then there are
m,n ∈ N such that σm(x) → (xn → a) ∈ D. By (E19), σ

m(x) → (xn → b) ∈ D.
So b ∈ S. Now, let a and a ∼ b ∈ S. Then there are m,n, s, t ∈ N such that
σm(x) → (xn → a) ∈ D and σs(x) → (xt → (a ∼ b)) ∈ D. Since a ∼ b 6 a → b,
thus σm(x) → (xn → (a → b)) = Y ∈ D. By routine proof we get σm(x) →
(xn → a) 6 σm(x) → (xn → (σs(x) → (xt → (Y → b))). Thus σm+s(x) →
(xn+t → (Y → b))) ∈ D. On the other hand we have Y ∈ D and so b ∈ S. Hence
S is a deductive system of A. Moreover, for any a ∈ S there are m,n ∈ N such
that σm(x) → (xn → a) = Y ∈ D. Then Y → (σm(x) → (xn → a)) = 1 ∈ D.
By Propositions 2.9(1) and 3.17, we have 1 = σ(1) = σ(Y → (σm(x) → (xn →
a)) 6 σ(Y ) → (σσm(x) → (σσn(x) → σ(a))). Since Y ∈ D and D is state, we
get σ(Y ) ∈ D and so by de�nition of S, σ(a) ∈ S. Hence S is a state deductive
system of A, that is S = 〈〈D ∪ {x}〉〉. For proof of the second part, we assume
that M is maximal and x /∈ M . Then by maximality of M , 〈〈M ∪ {x}〉〉 = A.
Since A is bounded, we get 0 ∈ 〈〈M ∪ {x}〉〉. Thus there are m,n ∈ N such that
σm(x)→ (xn → 0) ∈M . The converse is evident.



On state equality algebras 317

Remark 3.22. Obviously, Propositions 3.20 and 3.21 hold for any state-morphism
equality algebra, too.

De�nition 3.23. Let (A, σ) be an state equality algebra and θ be a congruence
relation on A. Then θ is called a congruence relation on (A, σ) if (a, b) ∈ θ implies
(σ(a), σ(b)) ∈ θ. The set of all congruence on (A, σ) denote by Con(A, σ).

In the following, we show that if (A, σ) is a linearly ordered state equality
algebra, there is a bijection between IDS(Aσ) and Con(A, σ).

Proposition 3.24. Let (A, σ) be a linearly ordered state equality algebra. Then
the following hold:

(i) if D ∈ IDS(Aσ), then θD = {(a, b) ∈ A×A | a ∼ b ∈ D} is a congruence
relation on (A, σ),

(ii) if θ ∈ Con(A, σ), then [1]θ = {a ∈ A | (a, 1) ∈ θ} is a state deductive
system of (A, σ) (that is [1]θ ∈ IDS(Aσ )).

Proof. (i). Let D ∈ IDS(Aσ). By Proposition 2.5(i), θD is a congruence relation
of A. Let (a, b) ∈ θD. Then a ∼ b ∈ D, by De�nition 3.13, we get σ(a ∼ b) ∈ D.
Now since A is linearly ordered, so by Proposition 3.17, σ(a) ∼ σ(b) ∈ D. Thus
(σ(a), σ(b)) ∈ θD. Hence θD is a congruence relation on (A, σ).

(ii) Let θ be a congruence relation on (A, σ). By Proposition 2.5(ii), [1]θ is a
deductive system of A. Let a ∈ [1]θ. Then (a, 1) ∈ θ. Since θ ∈ Con(A, σ), thus
(σ(a), σ(1)) ∈ θ. From σ(1) = 1 follows (σ(a), 1) ∈ θ and so σ(a) ∈ [1]θ. Thus [1]θ
is a state deductive system of (A, σ).

Theorem 3.25. Let (A, σ) be a linearly ordered state equality algebra. Then there
is a one-to-one correspondence between IDS(Aσ) and Con(A, σ).

Proof. De�ne f : Con(A, σ) → IDS(Aσ) by f(θ) = [1]θ. By Theorem 2.6
and Proposition 3.24, f is an one-to-one correspondence between IDS(Aσ) and
Con(A, σ). Then the proof is complete.

Theorem 3.26. Let (A, σ) be a linearly ordered state equality algebra. If D ∈
IDS(Aσ), then σ

′
: A/D → A/D is an state on A/D with σ

′
(a/D) = σ(a)/D.

Proof. First, we show that σ
′
is well de�ned. Let a/D = b/D. Then a ∼ b ∈ D and

so σ(a ∼ b) ∈ D. By Proposition 3.17, σ(a) ∼ σ(b) ∈ D and so σ(a)/D = σ(b)/D.
Hence σ

′
(a/D) = σ

′
(b/D). Now we prove σ

′
is an state. For the proof of (S1),

let a/D 6 b/D. Then a/D ∼ (a/D ∧ b/D) = 1/D and so a ∼ (a ∧ b) ∈ D. By
De�nition 3.13, we get σ(a ∼ (a ∧ b)) ∈ D. Also, by Proposition 3.17, σ(a) ∼
σ(b) ∧ σ(b) ∈ D. Thus σ(a)/D 6 σ(b)/D and so σ

′
(a/D) 6 σ

′
(b/D). For the

proof of (S2),

σ
′
(a/D ∼ a/D ∧ b/D) = σ

′
((a ∼ a ∧ b)/D) = σ(a ∼ a ∧ b)/D

= (σ((a ∼ a ∧ b) ∼ b) ∼ σ(b))/D
= σ((a ∼ a ∧ b) ∼ b)/D ∼ σ(b)/D
= σ

′
((a/D ∼ a/D ∧ b/D) ∼ b/D) ∼ σ

′
(b/D).
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For the proof of (S3),

σ
′
(σ

′
(a/D) ∼ σ

′
(b/D)) = σ

′
(σ(a)/D ∼ σ(b)/D) = σ

′
((σ(a) ∼ σ(b))/D)

= (σ(σ(a) ∼ σ(b)))/D = (σ(a) ∼ σ(b))/D
= σ(a)/D ∼ σ(b)/D = σ

′
(a/D) ∼ σ

′
(b/D).

Also (S4) satis�es since

σ
′
(σ

′
(a/D) ∧ σ

′
(b/D)) = σ

′
(σ(a)/D ∧ σ(b)/D) = σ

′
((σ(a) ∧ σ(b))/D)

= σ(σ(a) ∧ σ(b))/D = (σ(a) ∧ σ(b))/D
= σ(a)/D ∧ σ(b)/D = σ

′
(a/D) ∧ σ

′
(b/D).

Finally (S5) satis�es since

σ
′
(σ

′
(a/D)) = σ

′
(σ(a)/D) = σ(σ(a))/D = σ(a)/D = σ

′
(a/D).

Note that in Proposition 3.26, σ
′
is faithful if Ker(σ

′
) = {x/D | σ′

(x/D) =
1/D} = {1/D} i.e., Ker(σ′

) = {x/D | σ(x) ∈ D}.

Corollary 3.27. Let (A, σ) be a linearly ordered state equality algebra. Then
σ

′
: A/K → A/K is an state on A/K such that K = Ker(σ).

Proof. Since Ker(σ) is a state deductive system of (A, σ), so the result follows
from Theorem 3.26.

De�nition 3.28. Let (A, σ) be a state-morphism equality algebra. A deductive
system D of A is called the state-morphism deductive system of A if σ(D) ⊆ D,
i.e., if a ∈ D implies σ(a) ∈ D.

The set of all state-morphism deductive systems on a state-morphism equality
algebra (A, σ) denote by SDS(Aσ) and the set of all maximal state-morphism
deductive systems of (A, σ) denote by SMax(Aσ).

Remark 3.29. Clearly, by Theorem 4.6(i) and De�nition 2.10, the above results
proved for linearly ordered state equality algebra hold for state-morphism equality
algebra.

Proposition 3.30. Let (A, σ) be a state-morphism equality algebra and D be a
deductive system of A. Then D is a prime state deductive system of (A, σ) i�
(A/D, σ

′
) is a linearly ordered state-morphism equality algebra.

Proof. It follows by Proposition 3.9, Remark 3.29 and Theorem 3.26.

De�nition 3.31. Let (A, σ) be a state-morphism (an state) equality algebra. A
subalgebra S of A is called state subalgebra if a ∈ S implies σ(a) ∈ S.



On state equality algebras 319

Example 3.32. (i). If A is the equality algebra in Example 3.4(i), then σ1 and
σ2 : A → A de�ned by σ1(0) = 0, σ1(a) = 1, σ1(b) = 0, σ1(1) = 1 and σ2(0) = a,
σ2(a) = a, σ2(b) = 1, σ2(1) = 1 are state-morphisms on A. Also, {0, 1} is a state
subalgebra of (A, σ1), which is not a state subalgebra of (A, σ2), since σ2(0) = a /∈
{0, 1}.

(ii). Let C be an equality algebra. We know that (C, 1C) is a state-morphism
equality algebra. Then every subalgebra of C is a state subalgebra of (C, 1C).

Remark 3.33. Let (A, σ) be a bounded state-morphism equality algebra. If A
is linearly ordered, a ∈ A and a 6 σ(a), then by Proposition 3.8(i), A(a) is a
state subalgebra. Moreover, if σ(0) = 0, then by Proposition 3.8(ii), A0 is a
state deductive system. Since for any a ∈ A0, a ∼ 0 = 0. By De�nition 2.10,
σ(a ∼ 0) = σ(a) ∼ σ(0) = σ(0), then we get σ(a) ∼ 0 = 0. Thus σ(a) ∈ A0.

Proposition 3.34. Every state deductive system of an state equality algebra (A, σ)
is a state subalgebra of (A, σ).

Proof. By Proposition 2.4 and De�nition 3.31, the proof is clear.

4. Some properties of state equality algebra and
state-morphism equality algebras

In the following, we state some properties of state equality algebra and state-
morphism equality algebra. We proved every state-morphism operator on an
equality algebra is a state operator on it and the converse is true for a linearly
ordered equality algebra under a condition.

Proposition 4.1. Let (A, σ) be a linearly ordered state equality algebra. The map
σ

′
: A/Ker(σ) → A/Ker(σ) de�ned by σ

′
(a/Ker(σ)) = σ(a)/Ker(σ), is a state

on A/Ker(σ), for any a ∈ A.

Proof. First, we show that σ
′
is well de�ned. For this, let K = Ker(σ) and

a/K = b/K. Then a ∼ b ∈ K and so σ(a ∼ b) = 1. Since A is linearly ordered,
by Proposition 3.17, σ(a) ∼ σ(b) = 1 and this conclude that σ(a) = σ(b). Hence
σ

′
(a/K) = σ

′
(b/K). Now by Theorem 2.7, De�nition 2.8 and Proposition 3.17,

the proof is complete.

Proposition 4.2. Let (A, σ) be a state equality algebra and Ker(σ) be prime.
Then σ(A) is linearly ordered.

Proof. For all a, b ∈ A, a ∼ a ∧ b ∈ Ker(σ) or b ∼ b ∧ a ∈ Ker(σ). So σ(a ∼
a ∧ b) = 1 or σ(b ∼ b ∧ a) = 1. From a ∧ b 6 a, b and Proposition 3.17, we get
σ(a) ∼ σ(a ∧ b) = 1 or σ(b) ∼ σ(b ∧ a) = 1. Hence σ(a) 6 σ(b) or σ(b) 6 σ(a).
Thus σ(A) is linearly ordered.
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Example 4.3. Let A be the equality algebra in Example 3.4(i) and σ = IdA.
Then (A, σ) is a state equality algebra. But Ker(σ) = {1} is not prime. Since by
Proposition 4.2, σ(A) is not linearly ordered (σ(a) � σ(b)).

Proposition 4.4. Let (A, σ) be a linearly ordered state equality algebra. Then the
following statements are equivalent:

(i) σ(a→ b) = σ(a)→ σ(b),
(ii) σ(a ∼ b) = σ(a) ∼ σ(b).

Proof. (i) ⇒ (ii). Since A is linearly ordered, we can assume a 6 b. By (S1), we
get σ(a) 6 σ(b) and so

σ(b ∼ a) = σ(b ∼ b ∧ a) = σ(b→ a) = σ(b)→ σ(a)

= σ(b) ∼ σ(b) ∧ σ(a) = σ(b) ∼ σ(a).

For b 6 a the proof is similarly.
(ii)⇒ (i). By Proposition 3.17,

σ(a→ b) = σ(a ∼ a ∧ b) = σ(a) ∼ σ(a ∧ b) = σ(a) ∼ (σ(a) ∧ σ(b)) = σ(a)→ σ(b).

Proposition 4.5. Let (A, σ) be a state equality algebra, σ be faithful and for any
a, b ∈ A, σ((a ∼ a ∧ b) ∼ b) = σ((b ∼ b ∧ a) ∼ a). Then

(i) a < b implies σ(a) < σ(b),
(ii) if A is linearly ordered, then σ(a) = a, for all a ∈ A.

Proof. (i). Let a < b. By (S1) we have σ(a) 6 σ(b). Assume σ(a) = σ(b). Then
by (S2) and assumption,

σ(a ∼ b) = σ(b ∼ b ∧ a) = σ((b ∼ b ∧ a) ∼ a) ∼ σ(a)
= σ((a ∼ a ∧ b) ∼ b) ∼ σ(a) = σ(b) ∼ σ(a) = 1.

So a ∼ b ∈ Ker(σ) = {1} and it follows a = b, which is a contradiction with a < b.
Then σ(a) < σ(b).

(ii). Let for all a ∈ A, σ(a) 6= a. Since A is linearly ordered, σ(a) < a or
a < σ(a). By (i) we get σ(σ(a)) < σ(a) or σ(a) < σ(σ(a)), which is a contradiction
with (S3). Hence σ(a) = a.

Proposition 4.5, is not true for any state equality algebra. In Example 3.4(iii),
with σ1 : C → C de�ned by σ1(0) = 0, σ1(a) = a, σ1(b) = a, σ1(1) = 1, (C, σ1) is
a linearly ordered state equality algebra with Ker(σ) = {1}. But σ(b) = a 6= b,
since σ((a ∼ a ∧ b) ∼ b) 6= σ((b ∼ b ∧ a) ∼ a).

Theorem 4.6. Let A be an equality algebra. Then
(i) any state-morphism on A is a state on A,
(ii) if (A, σ) is a linearly ordered state equality algebra in which for all a, b ∈ A

σ((a ∼ a∧ b) ∼ b) = σ((b ∼ b∧ a) ∼ a), then σ is a state-morphism on A.
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Proof. (i) Let σ be a state-morphism operator on A. Clearly, (S1) satis�es. Since
b 6 (a→ b)→ b), by (SM1),

σ(a ∼ a ∧ b) = σ(a→ b) = σ(((a→ b)→ b)→ b)

= σ(((a ∼ a ∧ b) ∼ b) ∼ b) = σ((a ∼ a ∧ b) ∼ b) ∼ σ(b).

Thus (S2) satis�es. Also (S3) and (S4) follow from (SM1)− (SM3).
(ii). Let σ be a state operator on A and a 6 b. By (S1) we have σ(a) 6 σ(b).

Then by (S2),

σ(a ∼ b) = σ(b ∼ b ∧ a) = σ((b ∼ b ∧ a) ∼ a) ∼ σ(a)
= σ((a ∼ a ∧ b) ∼ b) ∼ σ(a) = σ(b) ∼ σ(a) = σ(a) ∼ σ(b).

For b 6 a, with the similar proof, σ is a state-morphism operator on A. Finally,
(SM2) and (SM3) follow from Propositions 3.17 and 2.9(2).

De�nition 4.7. (cf. [3]) Let A be an equality algebra and a ∈ A. Then
(i) A is called (∼a)-involutive, if for all b ∈ A, ((b ∼ a) ∼ a) = b,
(ii) x ∈ A is called a-regular if (x ∼ a) ∼ a = x,
(iii) A is called involutive if A = Rega(A), for all a ∈ A, where Rega(A) is the

set of all a-regular elements of A.

Example 4.8. (1). Any equality algebra A is (∼1)-involutive and A = Reg1(A)
(for all b ∈ A, ((b ∼ 1) ∼ 1) = b).
(2). Let A be the equality algebra in Example 3.4(i). Then A is (∼a)-involutive,
for all a ∈ A and A = Rega(A).
(3). Let B be the equality algebra in Example 3.4(ii). Then B is (∼0)-involutive
since ((0 ∼ 0) ∼ 0) = 0, ((b ∼ 0) ∼ 0) = b, ((1 ∼ 0) ∼ 0) = 1. But B is not
(∼b)-involutive, since ((0 ∼ b) ∼ b) = 1 6= 0.

Corollary 4.9. Let A be a linearly ordered involutive equality algebra. Then σ is
a state on A i� σ is a state-morphism on A.

Proof. Since A is involutive, we get (a ∼ b) ∼ b = a, for all a, b ∈ A. Then by
Theorem 4.6, the proof is complete.

Example 4.10. Let C be the linearly ordered equality algebra of Example 3.4(iii).
Then σ1, σ2 : C → C de�ned by σ1(0) = 1, σ1(a) = 1, σ1(b) = 1, σ1(1) = 1 and
σ2(0) = 0, σ2(a) = a, σ2(b) = 1, σ2(1) = 1 are two state-morphisms on C. By
Theorem 4.6, σ1 and σ2 are states on C. Moreover, σ3 : C → C which is de�ned
by σ3(0) = 0, σ3(a) = a, σ3(b) = a, σ3(1) = 1 is a state on C but it is not a state-
morphism on C. Since σ3(a ∼ b) 6= σ3(a) ∼ σ3(b). Also, Theorem 4.6(ii) is not
satis�ed, since σ3((b ∼ b ∧ a) ∼ a) = σ3(1) = 1 6= a = σ3((a ∼ a ∧ b) ∼ b).

Proposition 4.11. Let (A, σ) be a state-morphism equality algebra and a ∈ A. If
x ∈ Rega(A), then σ(x) ∈ Regσ(a)(A).



322 M. Zarean, R.A. Borzooei and O. Zahiri

Proof. It is clearly by De�nitions 4.7(ii) and 2.10.

Proposition 4.12. Let (A, σ) be a state-morphism equality algebra. Then Ker(σ)
is prime i� σ(A) is linearly ordered.

Proof. If Ker(σ) is prime, then the proof is similar to the proof of Proposition
4.2. Conversely, assume that for all a, b ∈ A, σ(a) 6 σ(b) or σ(b) 6 σ(a). Let
a ∼ a ∧ b /∈ Ker(σ). Then σ(a ∼ a ∧ b) 6= 1 and so by (SM1) and (SM2),
σ(a) ∼ σ(a∧ b) 6= 1. Thus σ(a) � σ(b) and so by assumption, σ(b) 6 σ(a). Hence
σ(b ∼ b ∧ a) = 1 and b ∼ b ∧ a ∈ Ker(σ).

Proposition 4.13. Let (A, σ) be a state-morphism equality algebra and K =
Ker(σ). Then

(i) a/K 6 b/K i� σ(a) 6 σ(b),
(ii) a/K = b/K i� σ(a) = σ(b).

Proof. Applying Theorem 2.7 and De�nition 2.10, we get
(i). a/K 6 b/K i� a/K = (a∧b)/K i� (a ∼ (a∧b))/K = 1/K i� a ∼ (a∧b) ∈

K i� σ(a ∼ (a ∧ b)) = 1 i� σ(a) ∼ (σ(a) ∧ σ(b)) = 1 i� σ(a) 6 σ(b).
(ii). a/K = b/K i� (a ∼ b)/K = 1/K i� a ∼ b ∈ K i� σ(a ∼ b) = 1 i�

σ(a) ∼ σ(b) = 1 i� σ(a) = σ(b).

Proposition 4.14. Let σ and µ be two state-morphisms on equality algebra A
such that Ker(σ) = Kerµ and Imσ = Imµ. Then σ = µ.

Proof. By Proposition 2.11, for all a ∈ A, σ(a) ∼ a ∈ Ker(σ) = Kerµ. Then
µ(σ(a) ∼ a) = 1 and so we have µ(σ(a)) ∼ µ(a) = 1. From σ(a) ∈ Imσ = Imµ
follows µ(σ(a)) = σ(a). Hence σ(a) ∼ µ(a) = 1, that means σ(a) = µ(a).

Theorem 4.15. If (A, σ) is a state-morphism equality algebra, then

A = 〈Ker(σ) ∪ Imσ〉.

Proof. Obviously, 〈Ker(σ) ∪ Imσ〉 ⊆ A. Since Ker(σ) ∈ Ds(A) and Imσ ⊆
A, thus by Theorem 3.1(ii), 〈Ker(σ) ∪ Imσ〉 = {a ∈ A | σ(a1) → (σ(a2) →
(...(σ(an) → a)...)) ∈ Ker(σ), for some a1, ...an ∈ A}. Let a be an arbitrary
element ofA, by Proposition 2.11, σ(a) ∼ a ∈ Ker(σ). Since σ(a) ∼ a 6 σ(a)→ a,
then σ(a)→ a ∈ Ker(σ) such that σ(a) ∈ Imσ and so a ∈ 〈Ker(σ)∪Imσ〉. Hence
A = 〈Ker(σ) ∪ Imσ〉.

5. Equality-homomorphisms and their relation with
the state-morphism operator

In this section, we de�ne a homomorphism between two equality algebras and we
state some related results. Then we prove that an state on an equality algebra, is
a state-morphism if it is an equality-homomorphism.
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De�nition 5.1. Let (A,∧,∼, 1) and (A
′
,∧′

,∼′
, 1

′
) be two equality algebras. The

map f : A→ A
′
is called an equality-homomorphism, if the following hold, for all

a, b ∈ A:
(H1) f(a ∼ b) = f(a) ∼′

f(b),
(H2) f(a ∧ b) = f(a) ∧′

f(b).

If f : A → A
′
is a homomorphism of equality algebras, then f is called an

equality-endomorphism. The set Kerf={a∈ A | f(a)=1
′} is called a kernel of f .

It is clear that every equality-homomorphism, is a BCK ∧-semilattice homo-
morphism.

Proposition 5.2. Let f : A → A
′
be a bounded equality-homomorphism and

f(0) = 0
′
. Then:

(i) f(1) = 1
′
,

(ii) f is monotone,
(iii) f(x ∼ 0) = f(x) ∼′

0
′
,

(iv) Kerf is a proper deductive system of A,
(v) Imf is a subalgebra of A

′
,

(vi) f is injective i� Kerf = {1},
(vii) if D

′ ∈ DS(A′
), then f−1(D

′
) ∈ DS(A),

(viii) if f is surjective and Kerf ⊆ D ∈ DS(A), then f(D) ∈ DS(A′
).

Proof. The proofs of (i)− (vi) are straightforward.
(vii). Assume that D

′ ∈ DS(A′
). Since f(1) = 1

′ ∈ D′
, thus 1 ∈ f−1(D′

).
Let a ∈ f−1(D′

) and a 6 b. Then f(a) ∈ D′
and f(a) 6

′
f(b). Thus f(b) ∈ D′

.
Let a, a ∼ b ∈ f−1(D′

). Then f(a ∼ b) ∈ D′
, by equality-homomorphism f , we

get f(a) ∼′
f(b) ∈ D′

. So f(a) ∈ D′
follows that f(b) ∈ D′

, thus b ∈ f−1(D′
).

Thus f−1(D
′
) is a deductive system of A.

(viii). Since 1 ∈ D, by (i), 1
′ ∈ f(D). Let a

′
, b

′ ∈ A′
. If a

′ ∈ f(D) and a
′
6 b

′
.

Then there exists a ∈ D such that f(a) = a
′
. Since f is surjective, there exists

b ∈ A such that b
′
= f(b). So f(a) 6

′
f(b) follows that f(a) →′

f(b) = 1 and
so f(a → b) = 1, thus a → b ∈ Kerf ⊆ D. Then b ∈ D, so b

′
= f(b) ∈ f(D).

Let a
′
, a

′ ∼′
b
′ ∈ f(D). Then there are a, z ∈ D such that f(a) = a

′
and

f(z) = a
′ ∼′

b
′
. Since f is surjective, so there is b ∈ A, such that f(b) = b

′
.

So f(z) = a
′ ∼′

b
′
= f(a) ∼′

f(b) = f(a ∼ b). Thus 1 = f(z) ∼′
f(a ∼ b) =

f(z ∼ (a ∼ b)). Then z ∼ (a ∼ b) ∈ Kerf ⊆ D follows that b ∈ D and so
b
′
= f(b) ∈ f(D). Then f(D) is a deductive system of A

′
.

Theorem 5.3. If f : A → A
′
is a surjective equality-homomorphism, then there

is a bijective correspondence between {D | D ∈ DS(A),Kerf ⊆ D} and DS(A′
).

Proof. By Proposition 5.2(vii) and (viii), f : {D | D ∈ DS(A),Kerf ⊆ D} →
DS(A

′
) such that D 7−→ f(D) and f−1 : Ds(A

′
) → {D | D ∈ DS(A),Kerf ⊆

D} such that D
′ 7−→ f−1(D

′
) are well de�ned functions. Now we will show

f(f−1(D
′
)) = D

′
and f−1(f(D)) = D. Since f is surjective, then f(f−1(D

′
)) =

D
′
. It is clear that D ⊆ f−1(f(D)). Assume that a ∈ f−1(f(D)) then f(a) ∈
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f(D), so there is x ∈ D such that f(a) = f(x) then f(a) ∼ f(x) = 1. By
De�nition 5.1, f(a ∼ x) = 1 so a ∼ x ∈ Kerf ⊆ D. since x ∈ D we get a ∈ D,
thus f−1(f(D)) ⊆ D. So f−1(f(D)) = D.

Theorem 5.4. Let A be an equality algebra. Then f : A→ A is a state-morphism
operator i� f is an equality-endomorphism with f(a) ∼ a ∈ Kerf , for all a ∈ A.

Proof. Let f be a state-morphism operator. Then by De�nition 2.10, (H1) and
(H2) satis�es. Also by (SM3), we get, 1 = f(f(a)) ∼ f(a) = f(f(a) ∼ a). It
follows f(a) ∼ a ∈ Kerf .

Conversely, let f be an equality-endomorphism. By De�nition 5.1, (SM1) and
(SM2) satis�es. By the assumption, for all a ∈ A, f(a) ∼ a ∈ Kerf . Thus
f(f(a) ∼ a) = 1. From (H1), we get 1 = f(f(a) ∼ a) = f(f(a)) ∼ f(a) that it
follows f(f(a)) = f(a). So (SM3) satis�es.

Corollary 5.5. If A is a simple equality algebra, then every equality-endomorphism
f : A→ A is a state-morphism operator, if f = 1A or f = IdA.

Proof. Assume f is an equality-endomorphism. Then By Theorem 5.4, f is a
state-morphism operator if f(a) ∼ a ∈ Kerσ for any a ∈ A. Since A is simple so
Ker(σ) = {1} or Ker(σ) = A. Then f = IdA or f = 1A.

Example 5.6. Let A be the equality algebra as Example 3.4(i). Then f : A→ A
is an equality-endomorphism by de�ne f(0) = 0, f(a) = b, f(b) = a, f(1) = 1. But
f is not a state-morphism operator on A.

Lemma 5.7. Let f : A → A be an endomorphism on equality algebra A and for
all a ∈ A, f(a) ∼ a ∈ Kerf . Then f is a state operator on A.

Proof. By Theorems 5.4 and 4.6(i), f is an state on A.

The converse of proposition 5.7 is not true. In Example 3.4(iii), σ : C → C
which is de�ned by σ(0) = 0, σ(a) = a, σ(b) = 1, σ(1) = 1 is an state on the
linearly ordered equality algebra C, but σ is not equality-endomorphism (σ2(a ∼ b)
6= σ2(a) ∼ σ2(b)).

Lemma 5.8. Let σ be an state operator on a linearly ordered equality algebra A
such that for all a, b ∈ A, σ((a ∼ a ∧ b) ∼ b) = σ((b ∼ b ∧ a) ∼ a). Then σ is an
equality-endomorphism with σ2 = σ.

Proof. By Theorems 4.6(ii) and 5.4, the proof is complete.

Theorem 5.9. Let f : A→ A be an equality-endomorphism on an equality algebra
A. Then the following are equivalent.

(i) f is a state operator on A.
(ii) f is a state-morphism operator on A.

Proof. By Lemmas 5.7 and 5.8 and Theorem 5.4, the proof is clear.
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Theorem 5.10. Let (A, σ) be a state-morphism equality algebra. Then,
(i) σ(A) is a simple subalgebra of A i� Ker(σ) ∈ SMax(Aσ),
(ii) (A, σ) is a simple state-morphism equality algebra i� A is a simple equality

algebra,
(iii) if σ(A) is a semisimple subalgebra of A, then the intersection of all maxi-

mal state-morphism deductive systems of (A, σ) is a subset of Ker(σ).

Proof. (i). Let (A, σ) be a state-morphism equality algebra. Then by Theorem
5.4, σ is an equality-endomorphism, which implies that A/Ker(σ) ∼= σ(A). Thus
Ker(σ) ∈ SMax(Aσ) i� A/Ker(σ) is simple i� σ(A) is simple.

(ii). Let (A, σ) be a simple state-morphism. Then Ker(σ) ∈ SDS(Aσ) and
so Ker(σ) = {1} or Ker(σ) = A. Hence σ = IdA or σ = 1A. In this case every
deductive system of A is state. Thus {1} and A are only deductive systems of A.
Therefore, A is simple. Conversely, let A be a simple equality algebra. Then A
has only two deductive systems, {1} and A which they are state. Hence (A, σ) is
a simple state-morphism equality algebra.

(iii). Let σ(A) be a semisimple subalgebra of A. Then by De�nition 3.2,⋂
I∈SMax(σ(A))

I = {1}.

Since A/Ker(σ) ∼= σ(A), then A/Ker(σ) is a semisimple equality algebra. So
∩{D : Ker(σ) ⊆ D ∈ SMax(A)} = 1/Kerσ. Now we show that D is state.
Let D ∈ SMax(Aσ) and Kerσ ⊆ D. Then by Proposition 2.11, for all a ∈ D,
σ(a) ∼ a ∈ Kerσ ⊆ D. Therefore, σ(a) ∈ D.
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