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Implication zroupoids and identities

of associative type

Juan M. Cornejo and Hanamantagouda P. Sankappanavar

Abstract. An algebra A = 〈A,→, 0〉, where → is binary and 0 is a constant, is called an I-
zroupoid if A satis�es the identities: (x → y) → z ≈ [(z′ → x) → (y → z)′]′ and 0′′ ≈ 0, where

x′ := x → 0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it

satis�es x′′ ≈ x and (x→ y′)′ ≈ (y → x′)′. The variety of symmetric I-zroupoids is denoted by

S. An identity p ≈ q, in the groupoid language 〈→〉, is called an identity of associative type of

length 3 if p and q have exactly 3 (distinct) variables, say x, y, z, and are grouped according to one

of the two ways of grouping: (1) ?→ (?→ ?) and (2) (?→ ?)→ ?, where ? is a place holder for

a variable. A subvariety of I is said to be of associative type of length 3, if it is de�ned, relative

to I, by a single identity of associative type of length 3. In this paper we give a complete analysis

of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in

our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each

other and describe explicitly the poset formed by them under inclusion. As an application of the

main theorem, we derive that there are three distinct subvarieties of the variety S of associative

type, each de�ned relative to S, by a single identity of associative type of length 3.

1. Introduction

In 1934, Bernstein gave a system of axioms for Boolean algebras in [3] using
implication alone. Even though his system was not equational, it is not hard to
see that one could easily convert it into an equational one by using an additional
constant. In 2012, the second author extended this �modi�ed Bernstein's theorem�
to De Morgan algebras in [24] by showing that the variety of De Morgan algebras,
is term-equivalent to the variety DM (de�ned below) whose de�ning axioms use
only an implication → and a constant 0.

The primary role played by the identity (I): (x → y) → z ≈ [(z′ → x) →
(y → z)′]′, where x′ := x→ 0, in the axiomatization of each of those new varieties
motivated the second author to study the identity (I) in its own right and led him
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to introduce a new equational class of algebras called implication zroupoids in [24]
(also called implicator groupoids in [7]).

An algebra A = 〈A,→, 0〉, where → is binary and 0 is a constant, is called
a zroupoid. A zroupoid A = 〈A,→, 0〉 is an implication zroupoid (I-zroupoid, for
short) if A satis�es:

(I) (x→ y)→ z ≈ [(z′ → x)→ (y → z)′]′, where x′ := x→ 0,

(I0) 0′′ ≈ 0.

I denotes the variety of implication zroupoids. The varieties DM and SL are
de�ned relative to I, respectively, by the following identities:

(DM) (x→ y)→ x ≈ x (De Morgan Algebras);
(SL) x′ ≈ x and x→ y ≈ y → x (semilattices with the least element 0).

The variety BA of Boolean algebras is de�ned relative to DM by the following
identity:

(BA) x→ x ≈ 0′.

The variety I exhibits (see [24]) several interesting properties; for example,
the identity x′′′ → y ≈ x′ → y holds in I; in particular, I satis�es x′′′′ ≈ x′′.
Two of the subvarieties of I that are of interest in this paper are: I2,0 and MC
which are de�ned relative to I, respectively, by the following identities, where
x ∧ y := (x→ y′)′:

(I2,0) x′′ ≈ x;

(MC) x ∧ y ≈ y ∧ x.

The (still largely unexplored) lattice of subvarieties of I seems to be fairly
complex. In fact, Problem 6 of [24] calls for an investigation of the structure of
the lattice of subvarieties of I.

The papers [5], [6], [7], [8], [9], [10] and [11] have addressed further the above-
mentioned problem, but still partially, by introducing several new subvarieties of
I and investigating relationships among them. The (currently known) size of the
poset of subvarieties of I is at least 30; but it is still unknown whether the lattice
of subvarieties is �nite or in�nite. We conjecture that its cardinality is 2ω.

Motivated by the fact that not all algebras in I are associative with respect to
the operation →, the quest for �nding more new subvarieties of I led us naturally
to consider the question as to whether generalizations of the associative law would
yield some new subvarieties of I and thereby reveal further insight into the struc-
ture of the lattice of subvarieties of I. This quest led to the results in [9], [10] and
this paper, which will show that this is indeed the case.

The poset of the (then) known varieties that appears in [8] is given below for
the reader's convenience (for the de�nitions of the varieties in the picture, see [8]).
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A look at the associative law would reveal the following characteristics:

(1) Length of the left side term = length of the right side term = 3,

(2) The number of distinct variables on the left = the number of distinct variables
on right = the number of occurrences of variables on either side,

(3) The order of the variables on the left side is the same as the order of the
variables on the right side,

(4) The bracketings used in the left side term and in the right side term are
di�erent from each other.
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One way to generalize the associative law is to relax somewhat the restrictions
(1) and (2) by choosing m distinct variables and setting the length of the left
term = that of right term = n, with n > m, and keeping (3) and (4). But
then, for n > 4, there will be more than two possible bracketings. So, we order
all possible bracketings and assign a number to each, called bracketing number.
Such identities are called �weak associative identities of length n�. For a precise
de�nition and notation of weak associative identities, we refer the reader to [10]
and the references therein.

A second way to generalize the associative law is to relax (3) and to keep
(2), (4) and the �rst half of (1). So, we consider the laws of the form p ≈ q of
length n such that (a) each of p and q contains the n (an integer > 3) distinct
variables, say, x1, x2, . . . , xn, (b) p and q are terms obtained by distinct bracketings
of permutations of the n variables. Let us call such laws as �identities of associative
type of length n�.

A third way to generalize the associative law is to relax all of four features
mentioned above by allowing number of occurrences of variables on one side be
di�erent from the number on the other side. Let us refer to these as �identities of
mixed type�.

Speci�c instances of all such generalizations of the associative law have already
occurred in the literature at least since late 19th century. We mention below a few
such instances.

Weak associative identities of length 4 with 3 distinct variables, called �identi-
ties of Bol-Moufang type�, have been investigated in the literature quite extensively
for the varieties of quasigroups and loops. In fact, the �rst systematic analysis of
the relationships among the identities of Bol-Moufang type appears to be in [12]
in the context of loops. For more information about these identities in the context
of quasigroups and loops, see [12], [15], [19], [20]) and the references therein.

More recently, in [9] and [10], we have made a complete analysis of relation-
ships among weak associative identities of length 6 4, relative to the variety S of
symmetric I-zroupoids (i.e., satisfying x′′ ≈ x and (x → y′)′ ≈ (y → x′)′). We
have shown that 6 of the 155 subvarieties of S, each being de�ned by a single weak
associative law of length m 6 4 (including the Bol-Moufang type), are distinct.
Furthermore, we describe explicitly by a Hasse diagram the poset formed by them,
together with the varieties BA and SL.

We should mention here that such an analysis of weak associative laws of length
6 4 relative to the variety I is still open.

The identities of associative type have also appeared in the literature. We
mention several examples below, using · for the binary operation instead of →.

• The identity x · (y · z) ≈ (z · x) · y was considered in [28] by Suschkewitsch
(see also [27, Theorem 11.5]).

• Abbott [1] uses the identity x · (y · z) ≈ y · (x · z) as one of the de�ning
identities in his de�nition of implication algebras.
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• The identities x ·(y ·z) ≈ z ·(y ·x), x ·(y ·z) ≈ y ·(x ·z), and x ·(y ·z) ≈ (z ·x) ·y
were investigated for quasigroups by Hosszú in [13].

• The identity x · (z · y) ≈ (x · y) · z is investigated by Pushkashu in [22].

• The identities x · (z · y) ≈ (x · y) · z and x · (y · z) ≈ z · (y · x) have appeared
in [14] of Kazim and Naseeruddin.

The identities of mixed type have also been considered in the literature. A few
are listed below:

• left distributivity: x·(y ·z) ≈ (x·y)·(x·z), appears, according to [18], already
in the late 19th century publications of logicians Peirce and Schroeder (see
[17] and [25], respectively),

• right distributive: (z · y) · x ≈ (z · x) · (y · x) (see [26]),

• distributive if it is both left and right distributive (see [26]),

• medial: (x · y) · (u · v) ≈ (x · u) · (y · v) (see [26]),

• idempotent: x · x ≈ x (see [26]),

• left involutory (or left symmetric): x · (x · y) ≈ y (see [26]).

Several identities of associative type have appeared in the literatiure on groupoids
as well. For instance,

• (x · y) · z ≈ (z · y) · x: Abel-Grassmann's groupoid (AG-groupoid) (see [21]),

• (x · y) · z ≈ (z · y) · x and x · (y · z) ≈ y · (x · z) (AG∗∗-groupoid),

• x · (z · y) ≈ (x · y) · z: Hosszú-Tarski identity (see [22]),

• (x · y) · z ≈ (z · y) · x: Left almost semigroup (LA-semigroup) (see [22]),

• x · (y · z) ≈ z · (y · x): Right almost semigroup (RA-semigroup) (see [22]).

Similar to the problem mentioned in [10] for weak associative identities, the
following general problem presents itself naturally if we restrict our attention to
identities of associative type.

Problem. Let V be a given variety of algebras (whose language includes a binary

operation symbol, say, ‘→′). Investigate the mutual relationships among the sub-

varieties of V, each of which is de�ned by a single identity of associative type of

length n, for small values of the positive integer n.

We will now consider the above problem for the variety I. We begin a system-
atic analysis of the relationships among the identities of associative type of length
3 relative to the variety I.
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De�nition 1.1. An identity p ≈ q, in the groupoid language 〈→〉, is called an
identity of associative type of length 3 if p and q have exactly 3 (distinct) variables,
say x, y, z, and these variables are grouped according to one of the following two
ways of grouping:

(a) o→ (o→ o), (b) (o→ o)→ o.

In the rest of the paper, we refer to an �identity of associative type of length
3� as simply an �identity of associative type�.

We wish to determine the mutual relationships of all the subvarieties of I de-
�ned by the identities of associative type, which will be referred to as �subvarieties
of associative type�.

Our main theorem says that there are 8 of such subvarieties of I that are
distinct from each other and describes explicitly, by a Hasse diagram, the poset
formed by them, together with the varieties SL and BA. As an application, we
show that there are 3 distinct subvarieties of S of associative type.

We would like to acknowledge that the software �Prover 9/Mace 4� developed
by McCune [16] has been useful to us in some of our �ndings presented in this
paper. We have used it to �nd examples and to check some conjectures.

2. Preliminaries

We refer the reader to the standard references [2], [4] and [23] for concepts and
results used, but not explained, in this paper.

Recall from [24] that SL is the variety of semilattices with a least element 0.
It was shown in [7] that SL = C ∩ I1,0, where I1,0 is de�ned by x′ ≈ x, and C is
de�ned by x→ y ≈ y → x, to relative to I.

The two-element algebras 2z, 2s, 2b were introduced in [24]. Their operations
→ are respectively as follows:

→ 0 1
0 0 0
1 0 0

→ 0 1
0 0 1
1 1 1

→ 0 1
0 1 1
1 0 1

Recall that V(2b) = BA. Recall also from [7, Corollary 10.4] that V(2s) = SL.

The following lemmas will be useful in the sequel.

Lemma 2.1. [24, 7.16] Let A be an I-zroupoid. Then A |= x′′′ → y ≈ x′ → y.

Lemma 2.2. [7, 3.4] Let A be an I-zroupoid. Then A satis�es:

(a) (x→ y)→ z ≈ [(x→ y)→ z]′′,

(b) (x→ y)′ ≈ (x′′ → y)′.
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Lemma 2.3. [24, 8.15] Let A be an I-zroupoid. Then the following are equivalent:

1. 0′ → x ≈ x,

2. x′′ ≈ x,

3. (x→ x′)′ ≈ x,

4. x′ → x ≈ x.

Recall that I2,0 andMC are the subvarieties of I, de�ned, respectively, by the
equations

x′′ ≈ x. (I2,0)

x ∧ y ≈ y ∧ x. (MC)

Lemma 2.4. [24] Let A ∈ I2,0. Then

1. x′ → 0′ ≈ 0→ x,

2. 0→ x′ ≈ x→ 0′.

Lemma 2.5. Let A ∈ I2,0. Then A satis�es:

(a) (x→ 0′)→ y ≈ (x→ y′)→ y,

(b) (y → x)→ y ≈ (0→ x)→ y,

(c) 0→ x ≈ 0→ (0→ x),

(d) (0→ x)→ (0→ y) ≈ x→ (0→ y),

(e) x→ y ≈ x→ (x→ y),

(f) 0→ (x→ y) ≈ x→ (0→ y),

(g) 0→ (x→ y′)′ ≈ 0→ (x′ → y),

(h) x→ (y → x′) ≈ y → x′.

Proof. For the proofs of items (a), (b), (c), (f), (g), and (h) we refer the reader to
[7]. The proofs of items (d) and (e) are in [5].

Theorem 2.6. [8] Let ti(x), i = 1, . . . , 6 be terms and V a subvariety of I. If

V ∩ I2,0 |= [t1(x)→ t2(x)]→ t3(x) ≈ [t4(x)→ t5(x)]→ t6(x),

then

V |= [t1(x)→ t2(x)]→ t3(x) ≈ [t4(x)→ t5(x)]→ t6(x).
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2.1. Identities of associative type

We now turn our attention to identities of associative type of length 3. Recall that
such an identity will contain three distinct variables that occur in any order and
that are grouped in one of the two (obvious) ways. The following identities play a
crucial role in the sequel.

Let Σ denote the set consisting of the following 14 identities of associative type
(of length 3 in the binary language 〈→〉):

(A1) x→ (y → z) ≈ (x→ y)→ z
(Associative law)

(A2) x→ (y → z) ≈ x→ (z → y)

(A3) x→ (y → z) ≈ (x→ z)→ y

(A4) x→ (y → z) ≈ y → (x→ z)

(A5) x→ (y → z) ≈ (y → x)→ z

(A6) x→ (y → z) ≈ y → (z → x)

(A7) x→ (y → z) ≈ (y → z)→ x

(A8) x→ (y → z) ≈ (z → x)→ y

(A9) x→ (y → z) ≈ z → (y → x)

(A10) x→ (y → z) ≈ (z → y)→ x

(A11) (x→ y)→ z ≈ (x→ z)→ y

(A12) (x→ y)→ z ≈ (y → x)→ z

(A13) (x→ y)→ z ≈ (y → z)→ x

(A14) (x→ y)→ z ≈ (z → y)→ x.

We will denote by Ai the subvariety of I de�ned by the identity (Ai), for
1 6 i 6 14. Such varieties will be referred to as subvarieties of I of associative
type.

The following proposition is crucial for the rest of the paper.

Proposition 2.7. Let G be the variety of all groupoids of type {→} and Let V
denote the subvariety of G de�ned by a single identity of associative type. Then

V = Ai, for some i ∈ {1, 2, . . . , 14}.

Proof. In an identity p ≈ q of associative type of length 3, p and q have exactly 3
(distinct) variables, say x,y,z, and these variables are grouped according to one of
the two ways of bracketing mentioned above. Thus, there are six permuatations
of 3 variables which give rise to the following 12 terms:

1a: x→ (y → z) 1b: (x→ y)→ z

2a: x→ (z → y) 2b: (x→ z)→ y

3a: y → (x→ z) 3b: (y → x)→ z

4a: y → (z → x) 4b: (y → z)→ x

5a: z → (x→ y) 5b: (z → x)→ y

6a: z → (y → x) 6b: (z → y)→ x.
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It is clear that these 12 terms, in turn, will lead to 66 identities in view of the
symmetric property of equality. It is routine to verify that each of the 66 identities
is equivalent to one of the 14 identities of Σ in the variety of groupoids. Then the
proposition follows.

Our goal, in this paper, is to determine the distinct subvarieties of I and to
describe the poset of subvarieties of I of associative type. It su�ces to concentrate
on the varieties de�ned by identities (A1)-(A14), in view of the above proposition.

3. Properties of subvarieties of I of associative type

In this section we present properties of several subvarieties of I which will play a
crucial role in our analysis of the identities of associative type relative to I.

Lemma 3.1. Let A ∈ I such that A |= x′ → y ≈ x → y′, then A |= (x → y) →
y′ ≈ x→ y′.

Proof. Let a, b ∈ A. Then (a→ b)→ b′
2.5(a)& 2.6

= (a→ 0′)→ b′
hyp
= (a′ → 0)→ b′

= a′′ → b′
hyp
= a′′′ → b

2.1
= a′ → b

hyp
= a→ b′.

Lemma 3.2. Let A ∈ I2,0 such that A |= (x → y)′ ≈ x → (0 → y), then

A |= x→ y′ ≈ x→ (0→ y).

Proof. Let a, b ∈ A. Then a → b′
2.3(1)

= a → (0′ → b)′
hyp
= a → [0′ → (0 → b)]

2.3(1)
= a→ (0→ b).

Lemma 3.3. Let A ∈ I2,0 such that A |= (x→ y)′ ≈ x→ (0→ y). Then

A |= [x→ (y → z)′]′ ≈ x→ (y → (0→ z))′.

Proof. Let a, b, c ∈ A. We have that [a → (b → c)′]′
hyp
= a → (0 → (b → c)′)

hyp
= a → (0 → (b → (0 → c)))

2.5(f)
= a → (b → (0 → (0 → c)))

hyp
= a → [b → (0 →

c)′].

Lemma 3.4. Let A ∈ I such that A satis�es:

(1) (x→ y)′ ≈ x→ (0→ y),

(2) x′ → y ≈ x→ y′.

Then, A |= 0→ [x→ (y → z)] ≈ 0→ [(x→ y)→ z].

Proof. Let a, b, c ∈ A. Then, 0 → [(a → b) → c]
(I)
= 0 → [(c′ → a) → (b → c)′]′

(I)
= 0→ {[(b→ c)′′ → c′]→ [a→ (b→ c)′]}′′ 2.6= 0→ {[(b→ c)→ c′]→ [a→ (b→
c)′]}′′ 3.1

= 0 → {[b → c′] → [a → (b → c)′]}′′ 3.2& 2.6&hyp
= 0 → {[b → (0 → c)] →
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[a → (b → c)′]}′′ 3.3&hyp
= 0 → {[b → (0 → c)] → [a → [b → (0 → c)]′]}′′ 2.5(h)& 2.6

=

0 → {a → [b → (0 → c)]′}′′ (3.4)
= 0 → {a → [b → c]′′}′′ 2.6

= 0 → {a → [b → c]}′′
(3.4)
= 0′ → {a→ [b→ c]}′ (3.4)= 0′′ → {a→ [b→ c]} = 0→ {a→ [b→ c]}.

Lemma 3.5. Let A ∈ I such that A |= (x→ y)′ ≈ (y → x)′. Then

A |= (x→ y)→ z ≈ (y → x)→ z.

Proof. Let a, b, c ∈ A. Then, (a → b) → c
2.6
= (a → b)′′ → c

hyp
= (b → a)′′ → c

2.6
= (b→ a)→ c.

De�nition 3.6. Let A ∈ I. We say that A is of type 1 if the following identities
hold in A:

(E1) (x→ y)′ ≈ x→ (0→ y),

(E2) x′ → y ≈ x→ y′,

(E3) 0→ (x→ y) ≈ 0→ (y → x),

(E4) x → (y → z) ≈ (p(x) → p(y)) → p(z), where p is some permutation of
{x, y, z}.

Theorem 3.7. If A ∈ I is of type 1 then A |= (Aj) for all 1 6 j 6 14.

Proof. Let A ∈ I be of type 1, and a, b, c ∈ A. In view of equations (E1), (E2)
and Lemma 3.4 we have that

A |= 0→ [x→ (y → z)] ≈ 0→ [(x→ y)→ z]. (3.1)

Then we can consider the following cases.

• Assume that j = 1. Then a→ (b→ c)
(E4)
= (p(a)→ p(b))→ p(c)

2.2
= [(p(a)→

p(b)) → p(c)]′′
(E1)
= [(p(a) → p(b)) → (0 → p(c))]′

2.5(f)& 2.6
= [0 → [(p(a) →

p(b))→ p(c)]]′
(E3)& (3.1)

= [0→ [(a→ b)→ c]]′
2.5(f)& 2.6

= [(a→ b)→ [0→ c]]′

(E1)
= [(a→ b)→ c]′′

2.2
= (a→ b)→ c.

The cases j = 3, 5, 7, 8, 10 are similar.

• Assume that j = 2. Then, in the same way as in the case of j = 1 we have
that

A |= x→ (y → z) ≈ [0→ [(p(x)→ p(y))→ p(z)]]′. (3.2)

Then, a → (b → c)
(3.2)
= [0 → [(p(a) → p(b)) → p(c)]]′

(E3)& (3.1)
= [0 →

[(p(a) → p(c)) → p(b)]]′
2.5(f)& 2.6

= [(p(a) → p(c)) → [0 → p(b)]]′
(E1)
=

[(p(a)→ p(c))→ p(b)]′′
2.2(a)

= (p(a)→ p(c))→ p(b)
(E4)
= (a→ c)→ b.

The cases j = 4, 6, 9 are similar.
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• Assume that j = 11. (a → b) → c
2.2(a)

= [(a → b) → c]′′
(E1)
= [(a → b) →

(0 → c)]′
2.5(f)& 2.6

= [0 → [(a → b) → c]]′
(E3)& (3.1)

= [0 → [(a → c) → b]]′

2.5(f)& 2.6
= [(a→ c)→ [0→ b]]′

(E1)
= [(a→ c)→ b]′′

2.2
= (a→ c)→ b.

The cases j = 12, 13, 14 are similar.

To prove that the variety Aj is of type 1, with j ∈ {3, 5, 7, 8, 10}, we need the
following lemmas.

Lemma 3.8. If A ∈ A5 then A satis�es

(a) x′ → y ≈ x→ y′,

(b) (x→ y)′ ≈ 0→ (x→ y),

(c) x→ (0→ y) ≈ 0→ (x→ y).

Proof. Let a, b ∈ A. Then

(a) a→ b′ = a→ (b→ 0)
(A5)
= (b→ a)→ 0

2.6
= (b→ a′′)→ 0 = (b→ (a′ → 0))→

0
(A5)
= [(a′ → b)→ 0]→ 0 = (a′ → b)′′

2.6
= a′ → b.

(b) Observe that (a→ b)′ = (a→ b)→ 0
(A5)
= b→ (a→ 0) = b→ a′

3.8(a)
= b′ → a

= (b→ 0)→ a
(A5)
= 0→ (b→ a).

(c) Notice that 0→ (a→ b)
(A5)
= (a→ 0)→ b

2.6
= (a′′ → 0)→ b

3.8(a)
= (a′ → 0′)→

b
2.4(2)& 2.6

= (0→ a)→ b
(A5)
= a→ (0→ b).

Lemma 3.9. If A ∈ A8 then A satis�es:

(a) x→ y′ ≈ x′ → y′,

(b) x→ y′ ≈ 0→ (y′ → x).

Proof. Let a, b ∈ A. Then a → b′ = a → (b → 0)
(A8)
= (0 → a) → b

(I)
= [(b′ →

0) → (a → b)′]′ = [(b′ → 0) → (a → b)′] → 0
(A8)
= (a → b)′ → (0 → (b′ → 0))

(A8)
= (a → b)′ → ((0 → 0) → b′) = (a → b)′ → (0′ → b′)

2.3(1)& 2.6
= (a → b)′ → b′

= ((a → b) → 0) → b′
(A8)
= 0 → (b′ → (a → b))

(A8)
= 0 → ((b → b′) → a)

2.6
= 0 → ((b′′ → b′) → a)

2.3(4)& 2.6
= 0 → (b′ → a), implying that A satis�es the

identity (b). Next, 0→ (b′ → a)
(A8)
= (a→ 0)→ b′ = a′ → b′, thus A satis�es the

identity (a).
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Lemma 3.10. If A ∈ A10 then A satis�es:

(a) [0→ (x→ y)]′ ≈ x→ y′,

(b) (y → x)′′ ≈ x→ y′,

(c) (x→ y)′ ≈ x→ y′.

Proof. Let a, b ∈ A.

(a) We have that A |= [0→ (x→ y)]′ ≈ x→ y′, since

a→ b′ = a→ (b→ 0)
= (0→ b)→ a by (A10)
= [(a′ → 0)→ (b→ a)′]′ by (I)
= [((a→ 0)→ 0)→ (b→ a)′]′

= [(0→ (0→ a))→ (b→ a)′]′ by (A10)
= [(0→ a)→ (b→ a)′]′ by 2.5 (c) and 2.6
= [(0→ a)→ [(b→ a)→ 0]]′

= [(0→ a)→ [0→ (a→ b)]]′ by (A10)
= [(0→ a)→ [(0→ a)→ (0→ b)]]′ by 2.5 (f) and (d) and by 2.6
= [(0→ a)→ (0→ b)]′ by 2.5 (e) and 2.6
= [0→ (a→ b)]′ by 2.5 (d), (f) and by 2.6.

(b) Observe that a → b′
3.10(a)

= [0 → (a → b)]′
(A10)

= [(b → a) → 0]′ = (b → a)′′.
Hence, A |= (b).

(c) Since a→ b′
3.10(a)

= [0→ (a→ b)]′
2.5(c)& 2.6

= [0→ (0→ (a→ b))]′
(A10)

= [((a→
b)→ 0)→ 0]′ = (a→ b)′′′ = (a→ b)′, we conclude that A |= (c).

Lemma 3.11. If A ∈ A3 ∪ A5 ∪ A7 ∪ A8 ∪ A10 then A satis�es

(1) (x→ y)′ ≈ x→ (0→ y),

(2) x′ → y ≈ x→ y′ and

(3) 0→ (x→ y) ≈ 0→ (y → x).

Proof. Let a, b ∈ A.

• Suppose A ∈ A3. Then (a→ b)′ = (a→ b)→ 0
(A3)
= a→ (0→ b), implying

A |= (1). Observe that a′ → b = (a→ 0)→ b
(A3)
= a→ (b→ 0) = a→ b′. So,

(2) holds inA. Also, 0→ (a→ b)
(A3)
= (0→ b)→ a

(I)
= [(a′ → 0)→ (b→ a)′]′

= [a′′ → (b → a)′]′
2.6
= [a → (b → a)′]′

(3.11)
= [a′ → (b → a)]′

2.5(h)& 2.6
= (b →

a)′
2.3(1)& 2.6

= 0′ → (b → a)′
3.11(2)

= 0′′ → (b→ a) = 0 → (b → a), proving
that (3) holds in A.
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• Assume that A ∈ A5. Then (a → b)′
3.8(b)

= 0 → (b → a) = 0′′ → (b → a)
3.8(a)

= 0′ → (b → a)′
2.3(1)& 2.6

= (b → a)′ = (b → a) → 0
(A5)
= a → (b → 0)

= a → b′
3.8(a)

= a′ → b
2.3(1)& 2.6

= (0′ → a′) → b
3.8(a)

= (0 → a′′) → b
2.6
= (0 → a) → b

(A5)
= a → (0 → b), proving that (1) is true in A. (2)

is immediate from Lemma 3.8 (a). Next, 0 → (a → b)
3.8(b)

= (a → b)′

= (a → b) → 0
(A5)
= b → (a → 0) = b → a′

3.8(a)
= b′ → a

2.6
= (b′ → a)′′

3.8(a)
=

(b → a′)′′
3.8(b)

= [0 → (b → a′)]′
3.8(c)

= [b → (0 → a′)]′
3.8(a)

= [b → (0′ → a)]′

2.3(1)& 2.6
= (b→ a)′

3.8(b)
= 0→ (b→ a), proving (3) holds in A.

• Assume that A ∈ A7. Then (a → b)′
2.6
= (a → b)′′′ = [(a → b) → 0]′′

(A7)
=

[0→ (a→ b)]′′
2.5(f)& 2.6

= [a→ (0→ b)]′′
(A7)
= [(0→ b)→ a]′′

2.6
= (0→ b)→ a

(A7)
= a→ (0→ b), proving that A satis�es (1).

Next, a′ → b
2.6
= [a′ → b]′′ = [(a′ → b) → 0]′

(A7)
= [0 → (a′ → b)]′

2.6
=

[0 → (a′ → b′′)]′
2.5(g)& 2.6

= [0 → (a → b′)′]′ = [0 → ((a → b′) → 0)]′

(A7)
= [0 → (0 → (a → b′))]′

2.5(c)& 2.6
= [0 → (a → b′)]′ = [0 → (a → b′)] → 0

(A7)
= [(a → b′) → 0] → 0 = (a → b′)′′ = (a → (b → 0))′′

(A7)
= ((b → 0) → a)′′

2.6
= (b → 0) → a

(A7)
= a → (b → 0) = a → b′, proving that (2) is true in A.

Finally, observe that 0 → (a → b)
(A7)
= (a → b) → 0

2.6
= (a′′ → b) → 0 =

[(a′ → 0) → b] → 0
(A7)
= [b → (a′ → 0)] → 0 = [b → a′′] → 0

2.6
= [b → a] → 0

(A7)
= 0→ (b→ a), proving that (3) holds in A.

• Let A ∈ A8. First, we will prove (2) hold in A. Now, a → b′
3.9(b)

= 0 →
(b′ → a)

2.6
= 0 → (b′ → a′′)

3.9(a)
= 0 → (b′′ → a′′)

(A8)
= (a′′ → 0) → b′′

2.6
= (a′′ → 0)→ b = a′′′ → b

2.1
= a′ → b, proving (2).

Notice that a → (0 → b)
(A8)
= (b → a) → 0 = (b → a)′

2.6
= (b → a)′′′

= (b → a)′′ → 0
(2)
= (b → a)′ → 0′

2.3(1)& 2.6
= [0′ → (b → a)′] → 0′

(2)
=

[0′′ → (b → a)] → 0′ = [0 → (b → a)] → 0′
2.5(f)& 2.6

= [b → (0 → a)] → 0′

(A8)
= [(a → b) → 0] → 0′ = (a → b)′ → 0′

(2)
= (a → b) → 0′′ = (a → b) → 0

= (a→ b)′, proving (1) holds in A.

The identity

0→ (x→ y) ≈ (x→ y)′ (3.3)

holds in A, since 0 → (a → b) = 0′′ → (a → b)
(2)
= 0′ → (a → b)′

2.3(1)& 2.6
=

(a→ b)′.
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Then 0→ (a→ b)
(3.3)
= (a→ b)′ = (a→ b)→ 0

(A8)
= b→ (0→ a)

(1)
= (b→ a)′

(3.3)
= 0→ (b→ a), proving (3) is true in A.

• Assume that A ∈ A10. Hence

a′ → b = a′ → b′′ by 2.6
= (a′ → b′)′ by 3.10 (c)
= (a′ → b′)→ 0
= 0→ (b′ → a′) by (A10)
= 0→ (b′ → (a→ 0))
= 0→ ((0→ a)→ b′) by (A10)
= (b′ → (0→ a))→ 0 by (A10)
= (b′ → (0→ a))′

= ((b→ 0)→ (0→ a))′

= [(0→ a)→ (0→ b)]′ by (A10)
= [0→ (a→ b)]′ by 2.5 (f) & (d) and by 2.6
= [(b→ a)→ 0]′ by (A10)
= (b→ a)′′

= a→ b′ by 3.10 (b),

proving (2) holds in A.

Consider a → (0 → b)
(A10)

= (b → 0) → a
(I)
= [(a′ → b) → (0 → a)′]′

3.10(c)
=

[(a′ → b) → (0 → a′)]′
(2)
= [(a′ → b) → (0′ → a)]′

2.3(1)& 2.6
= [(a′ → b) → a]′

(2)
= [(a→ b′)→ a]′

2.5(b)& 2.6
= [(0→ b′)→ a]′

(A10)
= [a→ (b′ → 0)]′ = [a→ b′′]′

2.6
= (a→ b)′, proving (1).

To �nish o� the proof, 0 → (a → b)
(A10)

= (b → a) → 0
3.10(c)

= b → a′

(2)
= b′ → a = (b → 0) → a

(A10)
= a → (0 → b)

(1)
= (a → b)′ = (a → b) → 0

(A10)
= 0→ (b→ a).

Theorem 3.12. A3 = A5 = A7 = A8 = A10.

Proof. Let A ∈ A3 ∪ A5 ∪ A7 ∪ A8 ∪ A10. By Lemma 3.11 we have that A is of
type 1. Then, using Theorem 3.7, A ∈ Aj for all j ∈ {3, 5, 7, 8, 10}.

Lemma 3.13. If A ∈ A13 then A satis�es

(a) (x→ y)′ ≈ (0→ x)→ y,

(b) (x→ y)′ ≈ x′ → y′,

(c) (x→ y)′ ≈ (0→ y)→ x′,
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(d) (x→ y)′ ≈ (x→ y)′′,

(e) (x→ y)′ ≈ (y → x)′.

Proof. Let us consider a, b ∈ A.

(a) (a→ b)′ = (a→ b)→ 0
(A13)

= (b→ 0)→ a
(A13)

= (0→ a)→ b. Hence A |= (a).

(b) Observe that (a → b)′
2.6
= 0′ → (a → b)′ = (0 → 0) → (a → b)′

(A13)
= [0 →

(a → b)′] → 0
(I20)& 2.6

= [0 → (a → b′′)′] → 0
2.5(g)& 2.6

= [0 → (a′ → b′)] → 0
(A13)

= [(a′ → b′)→ 0]→ 0 = (a′ → b′)′′
2.6
= a′ → b′

(c) Observe (a → b)′
(a)
= (0 → a) → b

2.6
= (0 → a)′′ → b

(b)
= (0′ → a′)′ → b

2.6
= a′′ → b

(A13)
= (0→ b)→ a′.

(d) Note that (a → b)′
(c)
= (0 → b) → a′

(I)
= [(a′′ → 0) → (b → a′)′]′ = [a′′′ →

(b → a′)′]′
2.1
= [a′ → (b → a′)′]′

(b)
= [a′ → (b′ → a′′)]′

2.6
= [a′ → (b′ → a)]′

2.5(h)& 2.6
= (b′ → a)′

(A13)
= ((0→ a)→ b)′

(A13)
= ((a→ b)→ 0)′ = (a→ b)′′.

(e) We have (b → a)′
(c)
= (0 → a) → b′

2.6
= [(0 → a) → b′]′′

(b)
= [(0 → a)′ → b′′]′

(d)
= [(0 → a)′′ → b′′]′

2.6
= [(0 → a) → b]′

(d)
= [(0 → a) → b]′′

2.6
= (0 → a) → b

(a)
= (a→ b)′.

Theorem 3.14. A11 = A12 = A13.

Proof. Let us consider A ∈ A11 and a, b, c ∈ A. Hence (a → b) → c
2.3(1)& 2.6

=

((0′ → a) → b) → c
(A11)

= ((0′ → b) → a) → c
2.3(1)& 2.6.

= (b → a) → c. Hence,
A ∈ A12, implying A11 ⊆ A12.

Now assume that A ∈ A12 and a, b, c ∈ A. Then (a → b) → c
(I)
= [(c′ → a) →

(b → c)′]′
(I)
= {[(b → c)′′ → c′] → [a → (b → c)′]′}′′ 2.6

= {[(b → c) → c′] → [a →
(b → c)′]′}′′ (A12)

= {[c′ → (b → c)] → [a → (b → c)′]′}′′ 2.5(h)& 2.6
= {(b → c) →

[a → (b → c)′]′}′′ (A12)
= {[a → (b → c)′]′ → (b → c)}′′ = {[[a → (b → c)′] →

0] → (b → c)}′′ (A12)
= {[0 → [a → (b → c)′]] → (b → c)}′′ 2.5(b)& 2.6

= {[(b → c) →
[a → (b → c)′]] → (b → c)}′′ 2.5(h)& 2.6

= {[a → (b → c)′] → (b → c)}′′ 2.5(a)& 2.6
=

{[a → 0′] → (b → c)}′′ (A12)
= {[0′ → a] → (b → c)}′′ 2.3(1)& 2.6

= {a → (b → c)}′′
(A12)

= {(b→ c)→ a}′′ 2.6= (b→ c)→ a, which implies that A12 ⊆ A13.

If A ∈ A13 and a, b, c ∈ A, then (a → b) → c
(A13)

= (b → c) → a
(A13)

= (c →
a) → b

2.6
= (c → a)′′ → b

3.13(e)
= (a → c)′′ → b

2.6
= (a → c) → b, concluding that

A13 ⊆ A11.
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4. Main theorem

In this section we will prove our main theorem. But �rst we need one more lemma.

Lemma 4.1. If A ∈ A2 ∪ A6 ∪ A9 then A ∈ A11.

Proof. We will see that A |= (x→ y)′ ≈ (y → x)′.

Let a, b ∈ A.

• If A ∈ A2, (a→ b)→ 0
2.3(1)& 2.6

= (0′ → (a→ b))→ 0
(A2)
= (0′ → (b→ a))→

0
2.3(1)& 2.6

= (b→ a)→ 0.

• If A ∈ A6, (a→ b)→ 0
2.3(1)& 2.6

= (0′ → (a→ b))→ 0
(A6)
= (a→ (b→ 0′))→

0
(A6)
= (b→ (0′ → a))→ 0

2.3(1)& 2.6
= (b→ a)→ 0.

• If A ∈ A9, then

(a→ b)′ = (a→ b)→ 0
= (a→ (0′ → b))→ 0 by 2.3 (1) and 2.6
= (b→ (0′ → a))→ 0 by (A9)
= (b→ a)→ 0 by 2.3 (1) and 2.6
= (b→ a)′

Now, apply Lemma 3.5, to get A ∈ A12. Therefore, using Theorem 3.14, we
conclude A ∈ A11.

We are now ready to present the main theorem of this paper.

Theorem 4.2. We have

(a) The following are the 8 subvarieties of I of associative type that are distinct

from each other.

A1,A2,A3,A4,A6,A9,A11 and A14.

(b) They satisfy the following relationships:

1. SL ⊂ A3 ⊂ A4,

2. BA ⊂ A4 ⊂ I,
3. A3 ⊂ A1 ⊂ I,
4. A3 ⊂ A2 ⊂ A11, A3 ⊂ A6 ⊂ A11 and A3 ⊂ A9 ⊂ A11,

5. A11 ⊂ A14 ⊂ I.
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Proof. Observe that, in view of Theorem 3.12 and Theorem 3.14 we can conclude
that each of the 14 subvarieties of associative type of I is equal to one of the
following varieties:

A1,A2,A3,A4,A6,A9,A11,A14.

We �rst wish to prove (b). Notice that by Lemma 3.11 we have that A ∈ A3 is of
type 1. Then, using Theorem 3.7, A ∈ Aj for all 1 6 j 6 14. Hence

A3 ⊆ Aj for all 1 6 j 6 14. (4.4)

1. Recall that SL = C ∩ I1,0. Then, we get C ⊆ A1 and I1,0 ⊆ A1 by [7, Theorem
8.2] and [7, Theorem 9.3], respectively, implying SL ⊆ A3, and A3 ⊆ A4 by
(4.4).

The algebras 2z and 2b show that SL 6= A3 and A3 6= A4, respectively.

2. In view of [10] we have that BA ⊂ S. By [9, Lemma 3.1], S |= x→ (y → z) ≈
y → (x→ z). Thus, BA ⊆ A4.

The algebra 2s shows that BA 6= A4 and the following algebra shows that
A4 6= I, respectively.

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

3. The algebra 2b shows that A1 6= I and the following algebra witnesses that
A3 6= A1.

→ 0 1 2

0 0 1 2
1 1 1 2
2 2 1 2

4. Using (4.4) and Lemma 4.1 we can conclude that A3 ⊆ A2 ⊆ A11, A3 ⊆ A6 ⊆
A11 and A3 ⊆ A9 ⊆ A11.

The following algebras show that A3 6= A2 and A2 6= A11, respectively.

→ 0 1 2

0 0 0 0
1 2 0 2
2 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

The following algebras show that A3 6= A6 and A6 6= A11, respectively.

→ 0 1 2 3

0 0 0 0 0
1 0 2 3 0
2 0 0 0 0
3 0 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

The following algebras show that A3 6= A9 and A9 6= A11, respectively.
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→ 0 1 2 3

0 0 0 0 0
1 0 2 3 0
2 0 0 0 0
3 0 0 0 0

→ 0 1 2

0 0 0 0
1 2 0 0
2 0 0 0

5. Let A ∈ A11 and a, b, c ∈ A. By Theorem 3.14, A11 = A12 = A13. Hence

(a→ b)→ c
(A13)

= (b→ c)→ a
(A12)

= (c→ b)→ a. Therefore A11 ⊆ A14.

The algebra 2b shows that A14 6= I and the following algebra shows that
A11 6= A14.

→ 0 1 2 3

0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

The proof of the theorem is now complete since (a) is an immediate consequence
of (b).

The Hasse diagram of the poset of subvarieties of I of associative type, together
with SL and BA, is:
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s s
s

s s s s s
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s
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A2 A6 A9 A1 A4

A11

A14

I
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5. Identities in symmetric implication zroupoids

Let A ∈ I. A is involutive if A ∈ I2,0. A is meet-commutative if A ∈ MC.
A is symmetric if A is both involutive and meet-commutative. Let S denote the
variety of symmetric I-zroupoids. In other words, S = I2,0 ∩MC. The variety S
was investigated in [7], [9] and [10] and has some interesting properties.

In this section we give an application of the main theorem, Theorem 4.2, to
describe the poset of the subvarieties of the variety S.

Lemma 5.1. [9, Lemma 3.1 (a)] Let A ∈ S. Then A satis�es x → (y → z) ≈
y → (x→ z).

Lemma 5.2. [9, Lemma 2.1] MC ∩ I1,0 ⊆ C ∩ I1,0 = SL.

Lemma 5.3. [9, Lemma 3.2] Let A ∈ S such that A |= x → x ≈ x. Then

A |= x′ ≈ x.

Lemma 5.4. A11 ∩ S = SL.

Proof. Let A ∈ A11 ∩ S and a ∈ A. Since S ⊆ I2,0, we have

a = a′ → a by Lemma 2.3 (4)
= (0′ → a′)→ a by Lemma 2.3 (1)
= (0′ → a)→ a′ by (A11)
= a→ a′ by Lemma 2.3 (1)
= a′′ → a′

= a′ by Lemma 2.3 (4).

Therefore, A |= x ≈ x′. Then, by Lemma 5.2, A ∈ SL.

Lemma 5.5. A1 ∩ S ⊆ SL.

Proof. Let A ∈ A1 ∩ S and a ∈ A. Then

a = 0′ → a by Lemma 2.3 (1)
= (0→ 0)→ a
= 0→ (0→ a) by (A1)
= 0→ a by Lemma 2.5 (c).

Consequently,
A |= x ≈ 0→ x. (5.5)

Therefore,
a = a′ → a by Lemma 2.3 (4)

= (a→ 0)→ a
= a→ (0→ a) by (A1)
= a→ a by equation (5.5)

Thus, by Lemma 5.3, A |= x′ ≈ x. Using Lemma 5.2 we can conclude the
proof.
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We will denote by Si the variety Ai ∩ S with 1 6 i 6 14.

Proposition 5.6. Each of the 14 subvarieties of associative type of S is equal to

one of the following varieties:

SL, S14, S.

Proof. From Theorem 3.12 and Theorem 3.14 we know that each of the 14 subva-
rieties of associative type of I is equal to one of the following varieties:

A1,A2,A3,A4,A6,A9,A11,A14.

Using Theorem 4.2, Lemma 5.4 and Lemma 5.5 we have that

SL ⊆ S3 ⊆ S2 ⊆ S11 ⊆ SL,

SL ⊆ S6 ⊆ S11 ⊆ SL,

SL ⊆ S9 ⊆ S11 ⊆ SL

and
SL ⊆ S1 ⊆ SL

By Lemma 5.1, A4 = S, So, S4 = S.

We are now ready to present the main theorem of this section.

Theorem 5.7. We have

(a) The following are the 3 subvarieties of S of associative type that are distinct

from each other.

SL, S14, S.

(b) They satisfy the following relationships

1. SL ⊂ S14 ⊂ S,
2. BA 6⊂ S14.

Proof. We �rst prove (b).

1. By Theorem 4.2, SL ⊆ S14.
The following algebras show that SL 6= S14 and S14 6= S, respectively.

→ 0 1 2 3

0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

→ 0 1

0 1 1
1 0 1

2. Since 2b 6|= (S14), it follows that BA 6⊆ S14.
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The proof of the theorem is now complete since (a) is an immediate consequence
of Proposition 5.6 and (b).

The Hasse diagram of the poset of subvarieties of S of associative type, together
with BA, is:

r
r r
r

r
�
�
�

�
�
�

A
A
A

T

SL BA

S14

S
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