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Retractions of cyclic finitely supported Ch-sets

Mohammad M. Ebrahimi, Khadijeh Keshvardoost and Mojgan Mahmoudi

Abstract. The monoid Cb of name substitutions originated by Pitts in name abstraction, and
the notion of a finitely supported Cb-set appeared in the study of models of homotopy type theory
in the works of Gabbay and Pitts. On the other hand, retracts and retractions play a crucial
role in most branches of mathematics as well as in computer science where partial morphisms
need to be completed. Retracts are the subobjects whose related inclusion morphism have a left
inverse, called retraction.

In this paper, we study the retracts and retractions of cyclic finitely supported Cb-sets. We
find the general definition of retractions from a cyclic Cb-set, and give necessary conditions under
which retractions exist. Also, fix-simple retracts of a cyclic Cb-set are characterized. Further,
the cyclic finitely supported Cb-sets all whose subobjects are retract, are studied. In particular,
we give a necessary condition for a cyclic finitely supported Cb-set to be retractable.

1. Introduction and preliminaries

The notion of a nominal set was originated by Fraenkel in 1922 and developed by
Mostowski in the 1930s under the name of legal sets. The legal sets were applied
to prove the independence of the axiom of choice with the other axioms (in the
classical Zermelo-Fraenkel (ZF) set theory).

In 2001, Gabbay and Pitts rediscovered those sets in the context of name
abstraction. They called them nominal sets, and applied this notion to properly
model the syntax of formal systems involving variable binding operations (see [5]).

In [10], Pitts generalized the notion of nominal sets, by first adding two ele-
ments 0, 1 to D, then generalizing the notion of a finitary permutation to finite
substitution, and considering the monoid Cb instead of the group G. Then he
defined the notion of a support for C'b-sets, sets with an action of Cb on them, and
invented the notion of finitely supported Cb-sets, a generalization of nominal sets.
He has shown that the category of finitely supported Cb-sets is in fact isomorphic
to the category of nominal sets equipped with two families of unary operations
which substitute names (elements of D) by the constants 0 or 1; and the cate-
gory of finitely supported Cb-sets is a coreflective subcategory of the category of
Cb-sets.

The notion of retractions appears when one can find a left inverse (reflection) for
a morphism. This notion plays a crucial role in many areas of mathematics, such
as homological algebra, topology, ordered algebraic structures, etc. The retracts
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are also known as complete or partial objects in recursion theory by computer
scientists (see [7]).

On the other hand, we recall from [6] that every Cb-set is a disjoint union of all
its indecomposable sub Cb-sets, where an indecomposable Cb-set is a Cb-set which
can not be written as a disjoint union of non-empty sub Cb-sets. Therefore, to find
retractions of a Cb-set, it is sufficient to obtain retractions of its indecomposable
sub Cb-sets. Also, it is known that cyclic finitely supported Cb-sets are indecom-
posable (see Proposition 1.5.8 of [6]). These facts provided our motivation to study
the retracts of cyclic finitely supported Cb-sets in this paper. First, applying the
characterization of cyclic finitely supported Cb-sets from [3], and assuming the
existence of retractions from a cyclic Cb-set to its proper sub Cb-sets, we find the
possible definition of them.

Moreover, using the characterization of cyclic fix-simple finitely supported Cb-
sets given in [3], we find a characterization of retracts of cyclic finitely supported
Cb-sets. Also, we prove that simple finitely supported Cb-sets which are fix-simple
with one zero element are retracts of cyclic finitely supported Cb-sets.

Finally, retractable (the ones all whose subobjects are retract) finitely sup-
ported Cb-sets are studied; and a necessary condition for cyclic finitely supported
C'b-sets to be retractable is obtained.

1.1. M-sets

In the following, we recall some notions and facts about M-sets, for a general
monoid M. For more information, see (|2, 6]).

A (left) M-set for a monoid M with identity e is a set X equipped with a
map M x X — X, (m,x) ~ muz, called an action of M on X, such that ex = z
and m(m'z) = (mm/)z, for all x € X and m,m’ € M. An equivariant map from
an M-set X to an M-set Y is amap f : X — Y with f(ma) = mf(z), for all
reX,meM.

An element z of an M-set X is called a zero (or a fized) element if ma = z, for
all m € M. We denote the set of all zero elements of an M-set X by Fix X. The
M-set X all of whose elements are zero is called a discrete M-set, or an M-set
with identity action.

An equivalence relation p on an M-set X is called a congruence on X if xpx’
implies mz pma’, for x,2" € X, m € M. We denote the set of all congruences
on X by Con(X). Also, for z,2’ € X, the smallest congruence on X containing
(z,2") is denoted by p(z,z’). It is in fact, the equivalence relation generated by
{(mz,ma’) | m e M}.

A subset Y of an M-set X is a sub M-set (or M-subset) of Y if for all m € M
and y € Y we have my € Y. The subset Fix X of X is in fact a sub M-set.
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1.2. Cb-sets

Now, we give some basic notions about the monoid Cb, and Cb-sets. For more
information one can see [9, 10].

Let D be an infinite countable set, whose elements are sometimes called di-
rections (atomic names or data values) and PermD be the group of all permuta-
tions (bijection maps) on D. A permutation m € PermD is said to be finite if
{d € D | w(d) # d} is finite. Clearly the set Perm;DD of all finitary permutations is
a subgroup of PermDD.

Also, we take 2 = {0,1} with 0,1 ¢ D.

Definition 1.1. (a) A finite substitution is a function o : D — D U 2 for which
Dom¢o = {d € D | o(d) # d} is finite.

(b) If d € D and b € 2, we write (b/d) for the finite substitution which maps
d to b, and maps identically on other elements of D. Each (b/d) is called a basic
substitution.

(¢) If d,d’ € D then we write (dd’) for the finite substitution that transposes
d and d', and keeps fixed all other elements. Each (dd') is called a transposition
substitution.

Definition 1.2. (a) Let Sb be the monoid whose elements are finite substitutions,
with the monoid operation given by o - ¢’ = 6o’, where 6 : DU2 — D U2 maps 0
to 0, 1 to 1, and on D is defined the same as 0. The identity element of Sb is the
inclusion ¢ : D — D U 2.

(b) Let Cb be the submonoid of Sb satisfying the following injectivity condition:

(Vd,d €D), o(d) =o(d)¢2=>d=d.

(c) Take S to be the subsemigroup of Cb generated by basic substitutions. The
members of S are of the form § = (by/dy) - (bg/dg) € S for some d; € D and
b; € 2, and we denote the set {d;,...,d;} by D,.

Remark 1.3. (1) Notice that each finite permutation 7 on D, can be considered
as a finite substitution t o7 : D — D U 2. Doing so, throughout this paper, we
consider the group Perm¢D as a submonoid of Cb, and denote ¢ o 7w with the same
notation 7.

(2) Let d € D and b € 2. Then, for a finite permutation 7 and a basic
substitution (b/d), one can compute that in Cb, w(b/d) = (b/7(d))r and (b/d)7m =
7(b/7~1(d)). Then, by induction, we also have:

m(by/dy) -+ (br/dy) = (by/mdy) - - - (bp/mdy),
and
(b1/dy)- - (bi/di)m = mw(by /7 dy) - - (b /7 dy),
for m € Perm¢(D), dy, -+ ,dp € D, and b; € 2, for i = 1,... k.

(3) Let d # d € D and b, € 2. Then (b/d)(¥'/d') = (V//d')(b/d). But,
we see that (1/d)(0/d) = (0/d) and (0/d)(1/d) = (1/d), and hence (1/d)(0/d) #
(0/d)(1/d).
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Theorem 1.4. [3] For the monoid Cb, we have:

Cb = Perm; (D) U Permg(D)S, Permg(D) N Permg(D)S = 0.

1.3. Finitely supported Cb-sets

In this subsection, we give some basic notions of finitely supported Cb-sets needed
in the sequel, some of which are given in [10].

The following definition introduces the notion of a, so called, support, which is
the central notion to define finitely supported Cb-sets.

Definition 1.5. (a) Suppose X is a Cb-set. A subset C,; C D supports an element
z of X if, for every 0,0’ € Cb,

(o(c)=0'(c),(Vc € Cy)) = ox =0'x

If there is a finite (possibly empty) support C, then we say that x is finitely
supported.

(b) A Cb-set X all of whose elements has a finite support, is called a finitely
supported Cb-set.

We denote the category of all Cb-sets with equivariant maps between them by
Set®?, and its full subcategory of all finitely supported Cb-sets by Setgb.

Remark 1.6. [3] Suppose that X is a non-empty finitely supported Cb-set and
z € X\ Fix X.
(1) By Remark 1.3(3), it is clear that

{deD|(0/d)z £} ={deD|1/d)z # ).

This set is in fact the least finite support of . First notice that, by Lemma 2.4 of
[10], this set is a finite support for x. Now, let C be a finite support for z. Then
for any d € D with (0/d) z # «, by taking o = (0/d) and ¢’ = ¢ in the Definition
1.5(a), we get (0/d)d’ # d', for some d’ € C. So, by the definition of (0/d), we
have d = d’, and therefore d € C.

From now on, we call the least finite support for x the support for x, and denote
it by supp z.

(2) Let 6 € S. Then, by (1),

dx =z if and only if D, Nsuppz = 0.
(3) Let {d1,...,dx} C suppzx. Then,
supp (b1/dy) -+ (bg/dr) x C suppa \ {di,...,dx},

forany b; €2 andi=1,--- k.
(4) Let 6 € S. Then,

dx =2 if and only if |suppd x| = |supp z|.
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(5) By (3) and (4), we have
0x #x if and only if |suppd x| < |supp z|.

(6) Let m € Perm¢(D). Then, supp 7 = msupp x, and so |[supp x| = |7wsupp z| =
|supp x|.
(7) X has a zero element.

Remark 1.7. [3] Let X be a finitely supported Cb-set and = € X. Then,

(1) Sy ={d € S| dx ==z} is a subsemigroup of S;

(2) S, =S\ S, ={d €S|z +# =z} is also a subsemigroup of S;

(3) If 6 € S, then ¢ x = 6; =, for some &, € S} with D, C supp x;

(4) If § € S!, then 7z # 7'dx, for some m, 7' € Perms(D). Since otherwise, if
ma = 7'dx then by Remark 1.6(5,6),

|supp z| = |supp 7z| = |supp 7’'dx| = |supp dz| < |[supp z|
which is impossible.

Definition 1.8. A cyclic finitely supported Cb-set X is said to be cyclic, if it is
generated by only one element, that is X = Cbx, for some z € X.

Lemma 1.9. [3] Let Cbzx be a cyclic finitely supported Cb-set. Then,

Cbz = Perm(D)S,, x UPerm¢(D) z, Perm¢(D)S, x N Perme(D) z = (.

2. Retractions of cyclic finitely supported Cb-sets

In this section, we study retracts and retractions of cyclic finitely supported Cb-
sets. We find the general definition of a retraction, and give some necessary and
sufficient conditions for a sub Cb-set of a cyclic finitely supported Cb-set to be a
retract.

First, we give the definition of a retraction.

Let X be an object of a category €. A subobject J of X is called a retract of
X if there exists a morphism g : X — J, called a retraction, such that g|, = id,.

Notice that, for a proper sub Cb-set Cbx’ of Cbx, Cbx’ is a retract of Cbx if
and only if Cbdgx is a retract of Cbx, where &’ = wdopx, for some m € Permg(D)
and dg € S..

Lemma 2.1. Suppose wopx is a non-zero element in Cbx, where m € Perm¢(D)
and 09 € S'. If there exists a retraction o from Cbx to Cbdox then

(i) ¢(x) € Perm¢(D)dox;

(i) ¢(x) = doz.
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Proof. (i) We have p(z) € Cbdpzx. So by Lemma 1.9, ¢(x) € Permf(D)S(’soméOx or
p(z) € Permg(D)dpx. We show p(z) € Permg(D)dpz. On the contrary, let ¢(x) €
Perm¢(D)S; dox. Then, ¢(z) = 7'6'dpx where 6" € S —and 7' € Permg(D).
Since ¢ is a retraction and dpx € Cbdgx, we get

dox = p(Sox) = dop(x) = Som’'d' S0
Now, by Remark 1.6(5,6),
|[supp dox| = |supp do7’§'dpx| < |supp doz|,
which is impossible.

(i) By (i), we get p(z) € Perms(D)dpx. So there exists 7’ € Perms(D) such
that ¢(x) = m'dpz. Since ¢ is a retraction and dpx € Cbdpx, we get

(501’ = (p((som) = (SQQD(’JZ) = (;071'/50:7} = 71'/56501’,

where the last equality is true by Remark 1.3(2). Now, d; € S, ., since otherwise,
if &) € S;Oz then by Remark 1.6(5,6),

|supp dox| = |supp 7’600 | = |supp djdox| < |supp doz|,

which is impossible. Thus, d; € S; . and so doz = 7'0ydox = 7'doz. Therefore,
p(x) = dox. O

Corollary 2.2. Suppose mé,x is a non-zero element of Cbx, for some m € Perm; (D)
and 6y € S.,. Let ¢ : Cbx — Cbdgx be a retraction. Then,

(i) If 0x € Cbdpx then 00, v = dx;
(ii) If mopx = ') x then d,x = 0! x.

Proof. (i) Since ¢ is a retraction, by Lemma 2.1, we get
o0z = p(0x) = dp(x) = dd, .

(ii) Let méox = 7’0/ x. Then 0!z € Cbdpx and [suppd!z| = [suppd,z|. Since
0l € Cbdox, by (i) 6\ x = 6 d,x. So suppd,x C supp d,z. Now, since [supp 0! z| =
|supp 6, | and supp doz is finite, we get supp 6/ x = supp d, . Thus for all d € D

510
we have d ¢ supp d,z and so 0/ x = § dpx = do. 0

Remark 2.3. Let Cbdpx be a proper sub Cb-set of Cbx. Then,

(1) B = {wéx € Perm¢(D)S.z | D, Nsupp dpz # O} is a proper sub Cbh-set of
Chbz.

(2) If @ € B then a = wéz, for some m € Perm¢(D) and § € Sgom. This
is because, since dx € B, we get D, Nsuppdoxz # @. So by Remark 1.6(2),
000z # dgx. Therefore, § € S:som'

(3) If @ € Cbx \ B then a = mz, for some 7w € Perm¢(D) or a = wdz, for some
7 € Permy(D) and 6 € S, ,. Notice that, if 6z ¢ B then D, Nsuppx = (), and so
by Remark 1.6(2), ddox = dpxz. Thus d € S, ..
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Theorem 2.4. Let Cbdgx be a proper sub Cb-set of Cbx. Then, Cbdgx is a retract
of Cbx if and only if the assignment ¢ : Cbx — Cbégx defined by

(a) = wodox, if a=mndx € B
pla) = whox, if a=mx or wéx ¢ B

is a map retraction, where B is considered as in Remark 2.3.

Proof. To prove the non-trivial part, let Cbdpx be a retract of Cbx and ¢ : Cbx —
Cbéox be a retraction. Then, by Lemma 2.1, )(x) = dpz. Let a = a’. Then, we
show p(a) = ¢(a’).

CASE (1): Suppose a = a’ € B. By Remark 2.3(2), méx = a = a’ = 7'z, for
some 7, 7" € Perm¢(D) and ¢,d’ € S’g”. Now, ¥(a) = ¥(a’) and so

o(a) = mddox = wop(x) = Y(ndx) = Y(a) = P(a’) = P(7'd'x)
=7'8Y(x) = 7§ Sox = p(d’).

CASE (2): Suppose a = o' ¢ B. By Remark 2.3(3), a = 7wz, for some 7 €
Perm¢(D) or a = mdz, for some 7 € Perm¢(D) and 6 € S, .. Then, by Remark
1.7(4), we have the following subcases;

SUBCASE (2A): If 7z = a = o’ = 7’z then

pla) = mépz = m(x) = Y(rz) = P(a) = P(d’) = Y(7'x) = 7'¢(z)
= n'dox = p(a’).

SUBCASE (2B): If méx = a = o/ = 7’é’x then §dgx = dpx and so

p(a) = moox = wdox = wop(x) = Y(wox) = Y(a) = Y(a') = Y(n'd'x)
=7'8"Y(x) = 7'd dox = 7'dox = @(a’).

Now, we show ¢ is equivariant and ¢ |, .= id |Cb50m. Suppose a € Cbz and
01 € Cb. We have the following cases:

CASE (A): Let a € B. Then, o1a € B and by Remark 2.3(2), a = ndz, where
7 € Permg(D) and 6 € 5] . Now,

o1p(a) = o1wédox = p(o1mox) = p(o1a).

CASE (B): Let a ¢ B. Then, by Remark 2.3(3), a = 7z, for some 7 € Perm;(ID)
or a = wdz, for some m € Perm;(D) and 6 € S, , and by Remark 1.7(4), we have
the following subcases;

SUBCASE (B1): Let a = wmx and o1 = 1. Then,

Spx

o1p(a) = mp(rx) = mrdox = p(mmz) = p(ma) = ¢(o1a).
SUBCASE (B2): Let a = wéx and o1 = m;. Then,

o1p(a) = mp(réx) = mymdox = p(mmdz) = p(ma) = p(o1a).
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SuBCASE (B3): If a = wx and 01 = m1 61 or a = 7wz and o1 = mJ; then
o1p(a) = moip(a) = mémdor = T I
Now, if o1a € B then
o1a = méymx = mwdyx or oya = Mo woéx = w0,

and so ]D)é,1 Nsupp dox # 0. Thus ¢(o1a) = M dox = o10(a).
Also, if o1a ¢ B then

mdia = mdmr = mwdyx or md1a = w6 wéx = mwh o,

and so ]D)é,1 N supp dpxz = (). Thus 6}dpx = dpx, and so

p(o1a) = mmdox = mwd0ex = o1p(a).

It remains to show ¢ |, .= id,; .- Let a € Cbdox. Then, a = 7'd'dpx, for
some 7’ € Perm¢(D) and ¢’ € S(';OI or a = w'dpx, for some 7’ € Permy(D). Now, if
a = 7'0'dpx then a € B and so ¢(a) = 7'd’dpx = a. Also, if a = 7'dpx then a ¢ B,
and so p(a) = 7'dpz = a. O

Now, we recall the following definition and theorem from [3].

Definition 2.5. We call a finitely supported Cb-set X, fiaz-simple if its only non-
trivial sub Cb-sets are of the form (J,.;{0;}, for a set I, and 6; € Fix X.

If X is a fix-simple Cb-set and Fix X = {6,...,0;}, then we simply call X,
{61,...,0;}-simple. A {0}-simple Cb-set is said to be f-simple or 0-simple.

Theorem 2.6. If X is a non-discrete fixz-simple finitely supported Cb-set, then X
is cyclic and of one of the forms

Perm; (D) z U {6} or Perm;(D)xz U {0,602}
where 0,01,05 € Fix X, and |Fix X| < 2.

Recall that simple algebras are the one whose only congruences are A and V.
Now, using the above theorem, we have:

Lemma 2.7. Let Cbx be a cyclic finitely supported Cb-set. Then, each simple sub
Cb-set of Cbx is a retract of Cbx.

Proof. Let A be a simple sub Cb-set and 6 € Fix Cbx. Then, by Theorem 6.3 of
[3], A is 6-simple and so by Theorem 2.6, A = Perm;(D)z’ U {0}, where 2’ € Cbz.
Take 2’ = wégz, for some m € Perms(D) and §y € S.,. Now, applying Theorem 2.4,
it is sufficient to show that the assignment ¢ mentioned there, is a map. Notice
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that, if w6z € B then D, Nsupp dpz # @ and since A is Perms(D) 2’ U {0}, we get
66px = 6. Thus, we have

(a) = 0, if aeB
U= ndor, if a=nz or mox ¢ B

To see that it is well-defined, assume a = a’. If a = o/ € B, then p(a) = 6 = p(d’).
Let a ¢ B. Then, by Remark 2.3(3), a,a’ € {nz, 7'z, ndx,7n'd'x}, for some m, 7" €
Perm¢(D) and 6,6" € S ,. So by Remark 1.7(4), we have the following cases:

CaseE (1): mz =a=d =7'z.

CASE (2): wox =n'd'x.

In each case, we must show mdpx = ’dpz. To show this, by Theorem 6.4 of [3],
it is sufficient to show supp mdgz = supp 7’'dpx. Notice that, supp dpx C supp oz,
for all § € S, ,. This is because, if there exists some d € supp oz \ supp dzx then
(0/d)éx = Oz, and so éx € B, which is impossible. We prove case (2). The
other case is proved similarly. Suppose wdx = 7’é’x. Let d’ € supp wdxy. Then,
7~1d’ € supp dpz, and so

70/ d Yoz = (0/d\wéx = (0/d)7'8'x = 7' (07"~ d') 6 .

Now, since 7~ 1d’ € supp doz, we get (0/7~1d')dx € B, and so (0/7'~td")é'x € B.
Therefore, 7'~ 'd’ € supp dpz. Similarly supp 7’6oz C supp 7oz, and so the result
holds. O

Remark 2.8. Let Cbxg be a non-discrete fix-simple sub Cb-set of Cbx with two
zero elements 01,05 € Fix Cbxy. Then, by Theorem 2.6,

Cbl?o = Permf(ID))(So:z: U {91,02}.

Take supp dox = {d}, (0/d)dox = 01, and (1/d)dpz = 05. Then,
(1) the sets

By = {mdz | §(d) = 0,6 € S.,, m € Perm;(D)}

and
By ={mbéz | §(d) = 1,6 € S, 7w € Perm;(D)}

are non-empty sub Cb-sets of Cbzx.

(2) 6z € By U By if and only if d € D, if and only if D, N supp doz # 0.

(3) If §x € FixCbx then éx € By U By. This is because, suppdz = @ and
so d ¢ suppdx. Thus (b/d)dx = dx. Now, since (b/d)éx € By U By, we get
dx € By U By.

(4) Let a ¢ By U By. Then, a = wdz, for some ¢ € S, , and 7 € Perm¢(D) or
a = mx, for some 7w € Permy (D).
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Theorem 2.9. Let Cbxg = Perm¢(D)dox U {61,602} be a non-discrete fiz-simple
sub Cb-set of Cbx with two zero elements 01,05 € Fix Cbxg, and supp dpx = {d},
(O/d)(s()ér = 91, (1/d)(5()$ = 92. Then,

Cbipx is a retract of Cbx if and only if for all § € Cb, dx € Fix Cbx implies
d e D.

Proof. Let ¢ : Cbx — Cbdpx be a retraction. Then, by Lemma 2.1, ¢(ox) = odpz,
for 0 € Cb. Suppose dz € FixCbz. We show d € D,. On the contrary, if
d ¢ D, then D, Nsuppdpz = @, and so by Remark 1.6(2), ddpx = dox. Also,
notice that since dz € Fix Cbz, we get suppdx = @, and so d ¢ suppdz. Thus
oz = (0/d)éx = (1/d)éx € B. Now,

0y = (0/d)dox = (0/d)ddoz = ¢((0/d)dx) = @(6x) = ((1/d)dx)
= (1/d)550$ = (1/d)50$ = 02,

which is impossible.

To prove the converse, we show that the assignment ¢ mentiones in Theorem
2.4, is a map. Notice that, if a ¢ By U By, then by Remark 2.8(4), a = nx or
a = méz, for some m € Perm¢(D) and 6 € S, . Thus, we have

6‘17 if a€ By
ola) =4 04, if a€ B
woox, if a¢ ByU By

To show that ¢ is well-defined, let a = a’. Then, suppa = 0 or suppa # 0.
If suppa = 0 then by Remark 2.8, a € By U By, and so a = 7’8z, for some
7' € Permg(D) and ¢’ € S, ,. Now, by the assumption, d € D,. Thus, if §'(d) =0
then o’ = a € By, and so ¢(a) = ¢(a’) = ;. Also, if §'(d) =1 then o’ = a € By,
and so ¢(a) = ¢(a’) = 0.

In the case that suppa # 0 and a = @’ € By U By, it is clear that the result
holds.

Let a ¢ By U B;. Then, by Remark 2.8, a,a’ € {wx, 7'z, mdx,n'6'x}, for some
m, " € Perm¢(D) and 6,0" € S, .. So by Remark 1.7(4), we have two following
cases:

Case (1): mz =a=d =7'z;

CASE (2): wox =n'd'x.

In each case, we must show wdpx = 7'dgx. To show this, it is sufficient to prove
that supp mdpx = supp7'doz. Notice that, suppdox C suppdz, for all 6 € S; .
This is because, if d ¢ supp dx then (0/d)dx = dx and so dz € By U By, which
is impossible. We prove case (2). The other case is proved similarly. Suppose
wox = 7'8'x. Let d € supp méxg. Then, 7~ 1d’ € supp oz, and so

7(0/m td)ox = 7' (0/7'~1d') o x.

Now, since 7~ 1d’ € supp dox, we have (0/7~1d’)dz € BoUB1, and so (0/7'~1d')é'x €
By U By. Therefore, 7'~1d’ € supp dpz. Similarly supp 7’dox C supp mdpz, and the
proof is complete. O
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Theorem 2.10. Let Cbdgx be a non-zero and proper sub Cb-set of Cbx. Also, let
the following conditions hold:

(i) if d € supp dpz then (b/d)x € Chdyx,

(11) Zf Permf(]D))(bl/dl)(Sox N Permf(D)(bg/dg)(S()Jf 7& @, then d; = d>.

Then, Cbdpx is a retract of Cbx if and only if for all 6x € Cbdpx we have dx =
55021?.

Proof. If Cbégx is a retract of Cbx then applying Corollary 2.2, for all z € Cbdpx
we have dx = ddpx. To prove the converse, let dz = ddgz, for all dx € Cbiyz.
Then to get the result, using Theorem 2.4, we show that ¢ is a map. First, we
prove

a € B=acChixr ().

Since a € B, a = wdz, for some 7 € Perm¢(D) and § € Sgom. So D, Nsupp doz # 0.
Thus there exists some d € D with d € D, Nsupp dpz, and so by (i), dz € Cbdyx.

Let a = o/ € B. Then, néx = a = o’ = 7'z, for some 7,7’ € Perms(D) and
0,0 € S(’sow. So by (x), a,a’ € Cbdpx. Thus a = w6100z and a’ = wed2dpx, for
some 7y, Ty € Permf(ID)) and 41,9, € S;oﬂ" Now,

QD(’/T(&L’) = <p(7r15150x) = 7T1515050{E = ’/T151($0£E =a= a’ = 7T2(52(50£L’
T20200007 = @(m202007) = p(a’).

¢(a)

Let a = @’ ¢ B. Then, we have the following cases:

CASE (1): mz =a=d =7'z.

CASE (2): méx =a =a' = 'z, for some 7,7’ € Perm¢(D) and 6,8’ € S%,.
In each case, we show mdpx = 7'dpx. We prove case (1). The other case is
proved similarly. Let d € suppdox. Then (b/wd)rz = (b/wd)n’x. So w(b/d)x =
7' (b/7'~17d)z. Since d € supp doz, by (i), we get (b/d)x € Cbdpx. So (b/n'~tnd)x €
Cbdgz, and we have

m(b/d)éox = w(b/d)x (by the assumption)
=7/(b/m"trd)z
= 7/(b/7'"tmwd)Sox (by the assumption).

Now, if 7'~1md ¢ supp oz then 7(b/d)dpz = 7'dpz, which is impossible, since in
this case, by Lemma 3.4 of [3], |supp (b/d)dox| < |supp doz|. Therefore 7'~1md €
supp dox, and so by (ii), 7' ~17d = d. Thus for all d € supp dpx, we have 7'~ tnd = d
which implies that 7'~ 7wdpz = dpx. O

Theorem 2.11. Let Cbx be a cyclic finitely supported Cb-set and Cbdpx be a
proper sub Cb-set such that for all z,z' € Cbdpx, supp z = supp 2’ implies z = z’.
Also, suppose for all §,6' € S, with Perm;(D)§ x N Perme(D)d' x # ) we have
|D, N suppdoz| = |D,, Nsuppdoz|. Then, there exists a retraction from Cbx to
Cb(S()ZL'
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Proof. Applying Theorem 2.4, we show that ¢ is a map. If a = o’ ¢ B then by
Remark 2.8, we have the following cases:

Case (1) mz =a=d =7'z.

Case (2) mdx = a =da' = n'd'x, for some 7,7’ € Perm¢(D) and §,¢" € S..

In each case, we must show wdyz = 7'dgx. By the assumption, it is sufficient
to show that suppwdpxr = suppn’'dpz. We prove case (1). The other case is
proved similarly. Let d € supp mdpz. Then (b/d)mz = (b/d)n’z. So w(b/7m " d)x =
7' (b/7'~1d)x. Since 7~ 1d € supp dox, by the assumption, 7'~*d € supp dox, and so
d € spp'dpx. Similarly, supp 7’'dpz C supp wdox. Thus supp wdpz = supp 7’dpz,
and so by the assumption, mdgz = 7'px.

Now, suppose a = a’ € B. Then, a = wéx and o’ = 7’6z, for some m, 7' €
Perm;(D) and 46,0’ € S(’som. We show that supp wddgxr = suppn’'d’'dpx, and so
by the assumption, mddgxr = 7'8’'dpx. First, notice that suppddgr C suppd z.
To show this, suppose d € suppdd, z. So d € suppd, z. If d ¢ suppdz, then
(b/d)d x = éx, which is impossible. Let d € suppmédox. Then, d € suppwdz.
Now, (0/7 *d)éz = (0/d)mdz = (0/d)7'8'z = 7'(0/7'~1d)§’x. Thus by the
assumption, 7'~1d € supp dpx. Now, if d ¢ supp7'd’dpz then 7/ (0/7'~1d)§ dpz =
(0/d)n’d'dpx = 7’6’ dpr, which is a contradiction. O

Theorem 2.12. Let Z be a finitely supported Cb-set, and Y = Cbx U Z, where
CbaxnNZ =10 or CobxNZ = {0} for 0 € FixCbx NFixZ. Then, there ezists a
retraction from'Y to Cbx.

Proof. Let i : Cbx — Y be the inclusion map and 6 € Cbzx, which exists by
Remark 1.6(7). Then, g : Y — Cbz which is defined by

{z if zeCbx

92 =39 if 2ez

is a retraction. O

Here, to have a better scenery, we summarize the results of this section. In
Lemma 2.1, assuming the existence of a retraction from Cbx to a sub Cb-set, we
found some necessary conditions to have a retraction. We gave a characterization
of retracts of cyclic finitely supported Cb-sets in Theorem 2.4. In Lemma 2.7,
we showed that all simple sub Cb-sets of a cyclic finitely supported Cb-sets are
retracts. Further, in Theorem 2.9, a sufficient and necessary condition for a fix-
simple finitely supported Cb-set with two zero elements is stated to make it into
a retract of a cyclic Cb-set.

3. Retractable finitely supported Cb-sets

In this section, we consider retractable cyclic finitely supported Cb-set.

Definition 3.1. A finitely supported Cb-set X is called retractable if for every
non-empty sub Cb-set Y of X, there exists a retraction from X to Y.
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Example 3.2. (1) Discrete Cb-sets are retractable. The converse is not correct.
(2) Each fix-simple Cb-set with a unique zero is retractable.

Remark 3.3. Every sub Cb-set of a retractable Cb-set is retractable.
Lemma 3.4. A retractable cyclic finitely supported Cb-set has a unique zero.

Proof. Take X = Cbux, for some x € X. If suppz = () then X is a singleton, and
so the result holds. Suppose supp z # (). By Remark 1.6(7), X has a zero element.
We show X has a uniuge zero element. On the contrary, suppose 61 # 05 € Fix X.
Since X is retractable, there exists an equivariant map f : X — {61,602} with fi =
id, where i : {01,602} — X is an inclusion arrow. Now, f(z) € {61,62}. If f(z) =
01 then f(Cbx) C {61}. In particular, f = f(02) = 61, which is impossible.
Similarly, f(x) = 65 is impossible. Thus X has a unique zero element. O

Lemma 3.5. FEvery non-trivial cyclic sub Cb-set of a non-discrete retractable
Cb-set X has a unique infinite 0-simple sub Cb-set.

Proof. Let Cbx be a non-trivial sub Cb-set of X. Then, by Remark 3.3, Cbz is
retractable, and so by Lemma 3.4, Cbz has a unique zero 6. Also, by Lemma 7.6
of [3], Cbx has a f-simple sub Cb-set, say B. Now, if B, B’ are two #-simple sub
Cb-sets of Cbx then BN B’ = {6} or B = B’. Suppose BN B’ = {#}. Since Cbz
is retractable, there exists a retraction f : Cbx — B U B’, which is impossible,
because f(x) € B or f(z) € B’, and so f(Cbxz) C B or f(Cbx) C B’. Now, since
f is a retraction, we get f(BUB’) = BUB’, and so BUB’ C B. Thus B’ C B,
which is impossible. 0

Theorem 3.6. Let Cbax = Perms(D)xz U A, where A = Perm¢(D)dgz U {0} is a
simple sub Cb-set of X, FixCbx = {0} and &y € S,,. Then,

(i) the non-empty sub Cb-sets of Cbx are {0}, A, and Cbx;

(ii) Cbx is retractable;

(iii) (b/d)x =0, for all d € supp dpx.
Proof. (i) Let C be a non-empty non-trivial proper sub Cb-set of Cbx. Then
x ¢ C, and so C C A. Now, since dpz € C, A C C, and so C = A.

(ii) It is sufficient to show that A is a retract of Cbz. Applying Theorem 2.4,
we show that ¢ : Cbx — A is a map. First, we show ¢ = ¢, where

| a, if a € Chipx
vla) = { nbor, if a ¢ Chéyr

Let a € A. Then, a = § = (0/d)dpx, where d € supp dpx or a = wdypz, for some
7 € Permg(D). If a = 6 = (0/d)dpx then 6 € B, and so ¢(6) = 6 = ¥(0). Also, if

a = mopx then a ¢ B, and so

p(moox) = woox = (7).
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Let a ¢ A. Then, a = 7wz, for some m € Perm¢(D), and so a ¢ B. Thus ¢(a) =
moox = P(a).

Now, we show that ¢ is well-defined. Let a = o’ ¢ A = Cbdpx. Then mx =
a=a = 7'z, for some 7,7 € Perm;(D). Take 7’7 = 7;. We must show that
m0pr = dgx. First, notice that, since A is simple, it is sufficient to show that
supp m10px = supp dgx. To prove this, let d € supp m1dpx, then d € supp w12, and
so (0/d)x = (0/d)mz = 71(0/7; *d)z. Now, since 7, 'd € supp dox, (0/7'd)x €
B, and so (0/d)x € B. Thus d € supp dpx. Similarly, supp dpx C supp mdpx, and
SO supp 710 = supp dox.

Now, since 1 is a map, we get that ¢ is a retraction.

(iii) Let d € suppdoz. Then, Cb(b/d)x is a proper sub Cb-set of Cbx, for
b € 2. Since otherwise, if Cbx = Cb(b/d)x then = = o(b/d)z, and so by Remark
2.4(4) of [3], |suppz| = |suppo(b/d)z| < |supp (b/d)z| < |supp (b/d)x|, which is
impossible. Therefore, Cb(b/d)z = A or Cb(b/d)x = {6}, and so (b/d)x € A.
Since Chz is retractable, there exists a retraction ¢ : Cbz — A. Applying Lemma
2.1(ii), p(z) = dox, (b/d)x = ¢((b/d)x) = (b/d)dpx = 6. O
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