There exist semigroups which have bi-bases with different cardinalities

Dariush Heidari

Abstract. Kummoon and Changphas in Quasigroups and Related Systems 25(2017), 87 - 94 state the following question: "Is it true that for any two bi-bases of a semigroup have the same cardinality?"

In this paper, we provide a semigroup of order n for every $n \ge 5$ which has two bi-bases with different cardinalities that is shown the answer of question is negative.

1. Introduction

Let S be a semigroup, and A, B non-empty subsets of S. The set product AB of A and B is defined to be the set of all elements ab with a in A and b in B. That is

$$AB = \{ab \mid a \in A, b \in B\}.$$

Kummoon and Changphas in [1] introduced the concept which is called bi-base of semigroups and proved some properties.

Definition. Let S be a semigroup. A subset B of S is called a *bi-base* of S if it satisfies the following two conditions:

(i) $S = B \cup BB \cup BSB;$

(*ii*) if A is a subset of B such that $S = A \cup AA \cup ASA$, then A = B.

2. Main results

In [1] the authors asked the following question:

Is it true that for any two bi-bases of a semigroup have the same cardinality?

We would like to answer the question by providing a semigroup of order $n \ge 5$ which has two bi-bases with different cardinalities.

Answer. Let $S_n = \{1, 2, ..., n\}$ for every $n \ge 5$ and consider the following binary operation on S_n :

$$x \cdot y = \begin{cases} 1, & \text{if } x \notin \{n-2,n\} \text{ and } y \notin \{n-1,n\}, \\ n-1, & \text{if } x \notin \{n-2,n\} \text{ and } y \in \{n-1,n\}, \\ n-2, & \text{if } x \in \{n-2,n\} \text{ and } y \notin \{n-1,n\}, \\ n, & \text{if } x \in \{n-2,n\} \text{ and } y \in \{n-1,n\}. \end{cases}$$

2010 Mathematics Subject Classification: 20M20 Keywords: Semigroup, bi-base.

To verify the associativity condition let $x, y, z \in S_n$. Then there are four cases:

Case 1. If $x \notin \{n-2, n\}$ and $z \notin \{n-1, n\}$ then $x \cdot (y \cdot z) = 1 = (x \cdot y) \cdot z$. Case 2. If $x \notin \{n-2, n\}$ and $z \in \{n-1, n\}$ then $x \cdot (y \cdot z) = n-1 = (x \cdot y) \cdot z$. Case 3. If $x \in \{n-2, n\}$ and $z \notin \{n-1, n\}$ then $x \cdot (y \cdot z) = n-2 = (x \cdot y) \cdot z$. Case 4. If $x \in \{n-2, n\}$ and $z \in \{n-1, n\}$ then $x \cdot (y \cdot z) = n = (x \cdot y) \cdot z$. In each case $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ so (S_n, \cdot) is a semigroup.

Now, let $A \subseteq \{2, 3, \ldots, n-3, n-1\}$ then AA = ASA = A so every bi-base of (S_n, \cdot) contains $\{2, 3, \ldots, n-3, n-1\}$. Also, if $A = \{2, n\}$ or $A = \{n-2, n-1\}$ then $AA = ASA = \{1, n-2, n-1, n\}$. Therefore, the subsets $B = \{2, 3, \ldots, n-3, n\}$ and $B' = \{2, 3, \ldots, n-1\}$ are two bi-bases of (S_n, \cdot) with cardinality n-3 and n-2, respectively.

Example. Consider n = 5. Then the Cayley table of (S_5, \cdot) is as follows

·	1	2	3	4	5
1	1	1	1	4	4
2	1	1	1	4	4
3	3	3	3	5	5
4	1	1	1	4	4
5	3	3	3	5	5

Also, the subsets $B = \{2, 5\}$ and $B' = \{2, 3, 4\}$ are two bi-bases of (S_5, \cdot) .

References

 P. Kummoon and T. Changphas, On bi-bases of a semigroup, Quasigroups and Related Systems 25 (2017), 87 - 94.

Received December 13, 2017

Faculty of science Mahallat Institute of Higher Education Mahallat Iran E-mail: dheidari82@gmail.com