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A note on hyperideals

in ordered hypersemigroups

Niovi Kehayopulu

Abstract. For an ordered hypersemigroup H, we denote by N the semilattice congruence on H

de�ned by xNy if and only if the hyper�lters of H generated by the elements x and y coincide.

We �rst prove that this is a complete semilattice congruence on H. Moreover, if H is an ordered

hypersemigroup, T a hyper�lter of H and, for a class (z)N of H there is an element in the

intersection T ∩ (z)N , then the class (z)N is a subset of T . From these two statements, the

following two important results can be obtained: (1) If H is an ordered hypersemigroup, then

each hyperideal of some (z)N -class of H does not contain proper hyper�lters. As a consequence,

(2) every prime hyperideal of an ordered hypersemigroup is decomposable into its N -classes.

1. Introduction

The concept of the hypergroup introduced by the French Mathematician F. Marty
at the 8th Congress of Scandinavian Mathematicians in 1933 is as follows: A
hypergroup is a nonempty set H endowed with a multiplication xy such that the
following assertions are satis�ed: (i) xy ⊆ H; (ii) x(yz) = (xy)z; (iii) xH =
Hx = H for every x, y, z ∈ H (see [10]). The �rst researchers who investigate
hypergroups using the de�nition given by Marty were Mittas and Corsini. The
concept of the hypersemigroup follows at the usual way and in the recent years
many groups in the world investigate these two subjects, related subjects as well,
in research programs and hundreds of papers on hypergroups and hypersemigroups
appeared using the de�nition introduced by Marty. As it is no possible to refer
to all of them, we will mention only some, related to the present paper, in the
references such as the [1�5, 7�10, 12]. If H is a hypergroupoid, a relation σ on
H is called congruence if (a, b) ∈ σ and c ∈ H implies (c ◦ a, c ◦ b) ∈ σ and
(a ◦ c, b ◦ c) ∈ σ; in the sense that for every u ∈ c ◦ a and every v ∈ c ◦ b we
have (u, v) ∈ σ and for every u ∈ a ◦ c and every v ∈ b ◦ c we have (u, v) ∈ σ.
A congruence σ on H is called semilattice congruence if, for any a, b ∈ H, we
have (a, a ◦ a) ∈ σ and (a ◦ b, b ◦ a) ∈ σ; in the sense that for every a ∈ H and
every u ∈ a ◦ a we have (a, u) ∈ σ and for every a, b ∈ H, every u ∈ a ◦ b and
every v ∈ b ◦ a, we have (u, v) ∈ σ. An ordered hypergroupoid is an ordered set
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(H,≤) at the same time a hypergroupoid such that a ≤ b implies x ◦ a ≤ x ◦ b
and a ◦ x ≤ b ◦ x for all x ∈ H, in the sense that for every x ∈ H and every
u ∈ x ◦ a there exists v ∈ x ◦ b such that u ≤ v and for every u ∈ a ◦ x there exists
v ∈ b ◦ x such that u ≤ v [5]. A nonempty subset I of an ordered hypergroupoid
is called a hyperideal of H if the following hold: (1) H ◦ I ⊆ I and I ◦ H ⊆ I
and (2) if a ∈ I and b ∈ H such that b ≤ a, then b ∈ I. A hyperideal I of H is
called prime if (1) a, b ∈ H such that a ◦ b ⊆ I implies a ∈ I or b ∈ I and (2)
for every a, b ∈ H, either a ◦ b ⊆ I or (a ◦ b) ∩ I = ∅. A hyperideal (hyper�lter)
T of H is called proper if H is the only hyperideal (hyper�lter) of H. If I is
an ideal of an N -class of a semigroup, then I has no completely prime ideals.
As a consequence every complete prime ideal of a semigroup is a union of N -
classes [11]. In ordered semigroups, we always use the terms prime, weakly prime
instead of completely prime, prime given by Petrich and we will keep the same for
hypersemigroups as well. For an ordered hypersemigroup H, we denote by N the
semilattice congruence on H de�ned by xN y if and only if N(x) = N(y), where
N(a) is the hyper�lter of H generated by the element a of H. The present paper
deals with the decomposition of prime hyperideals of an ordered hypersemigroup
into its N -classes. First of all, the class N is a complete semilattice congruence on
H. If now H is an ordered hypersemigroup, T a hyper�lter of H and z an element
of H that belongs to T ∩ (z)N , then the class (z)N is a subset of T , that yields to
the following two important results: Firstly, if H is an ordered hypersemigroup,
z ∈ H and I a hyperideal of (z)N , then I does not contain proper hyper�lters, as
so does not contain proper prime hyperideals as well. Secondly, if H is an ordered
hypersemigroup and I a prime hyperideal of H, then I is decomposable into its
N -classes. The corresponding results on hypersemigroup (or semigroups) (without
order) can be also obtained as application of the results of the present paper as
each hypersemigroup (semigroup) endowed with the equality relation �=" is an
ordered hypersemigroup (ordered semigroup).

2. Main results

De�nition 2.1. Let (H, ◦,≤) be an ordered hypergroupoid. A nonempty subset
F of H is called a hyper�lter of H if the following assertions are satis�ed:

1) if x, y ∈ F , then x ◦ y ⊆ F ,

2) if x, y ∈ H such that x ◦ y ⊆ F , then x ∈ F and y ∈ F ,

3) for any x, y ∈ H, we have x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅,

4) if x ∈ F and y ∈ H such that y ≥ x, then y ∈ F .

That is, it is a hypersubgroupoid of H satisfying the relations 2�4.

De�nition 2.2. Let H be a hypergroupoid. A nonempty subset T of H is called
a prime subset of H if the following assertions are satis�ed:
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1) if a, b ∈ H such that a ◦ b ⊆ T, then a ∈ T or b ∈ T and

2) for every a, b ∈ H, we have a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅.

De�nition 2.3. Let (H, ◦,≤) be an ordered hypergroupoid. A semilattice con-
gruence σ on H is called complete if a ≤ b implies (a, a ◦ b) ∈ σ, in the sense that
if u ∈ a ◦ b, then (a, u) ∈ σ.
Proposition 2.4. Let (H, ◦,≤) be an ordered hypergroupoid. Then the semilattice

congruence N is a complete semilattice congruence on H.

Proof. Let a ≤ b. Then (a, a◦b) ∈ N . In fact: Let u ∈ a◦b. Then (a, u) ∈ N , that
isN(a) = N(u). Indeed: SinceN(a) 3 a ≤ b, we have b ∈ N(a). Since a, b ∈ N(a),
we have a ◦ b ⊆ N(a). Since u ∈ a ◦ b, we have u ∈ N(a), then N(u) ⊆ N(a). On
the other hand, since u ∈ a ◦ b and u ∈ N(u), we have u ∈ (a ◦ b) ∩N(u). Since
(a ◦ b) ∩ N(u) 6= ∅, we have a ◦ b ⊆ N(u). Then a ∈ N(u), and N(a) ⊆ N(u).
Hence we obtain N(u) = N(a) and the proof is complete.

In a similar way as in the Lemma in [6] we can prove the following:

Proposition 2.5. Let H be an ordered hypergroupoid and F a nonempty subset of

H. The following are equivalent:

(1) F is a hyper�lter of H.

(2) H\F = ∅ or H\F is a prime hyperideal of H.

Proposition 2.6. An ordered hypergroupoid H does not contain proper hyper�lters

if and only if H does not contain proper prime hyperideals.

Proof. (⇒). Let I be a prime hyperideal of H and I ⊂ H. Then ∅ 6=H\I⊆ H and
H\(H\I)(= I) is a prime hyperideal of H (H\I is the complement of I to H).
By Proposition 2.5, H\I is a hyper�lter of H. Then H\I = H and I = ∅ which is
impossible.

(⇐). Let F be a hyper�lter of H and F ⊂ H. Since H\F 6= ∅, by Proposition
2.5, H\F is a prime hyperideal of H. Then H\F = H and F = ∅ which is
impossible.

Remark 2.7. Let H be an ordered hypergroupoid, T a hyper�lter of H, z ∈ H and

a ∈ T ∩ (z)N . Then we have (z)N ⊆ T .

Proof. Let y ∈ (z)N . Then (y)N = (z)N = (a)N , so (y, a) ∈ N and N(y) = N(a).
Since T is a hyper�lter of H containing the element a, we have N(a) ⊆ T . Thus
we have y ∈ N(y) = N(a) ⊆ T and so y ∈ T .

Theorem 2.8. Let H be an ordered hypersemigroup and z ∈ H. If I is a hyperideal

of (z)N , then I does not contain proper hyper�lters.
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Proof. Let F be a hyper�lter of I. Then F = I. In fact: Take an element a ∈ F
(such an element exists as F is a nonempty set) and consider the set

T := {x ∈ H | a2 ◦ x ⊆ F}.

Then the following assertions are satis�ed:
(1). F = T ∩ I. Indeed: Let y ∈ F . Since a2 ⊆ F , we have a2 ◦ y ⊆ F and so

y ∈ T . Besides, F ⊆ I, so F ⊆ T ∩ I. Let now y ∈ T ∩ I. Since y ∈ T , we have
a2 ◦ y ⊆ F . Then, since a2 ⊆ F ⊆ I, we have y ∈ I and, since F hyper�lter of I,
we have y ∈ F .

(2). T is a hyper�lter of H. In fact: This is a nonempty subset of H because
a3 ⊆ F and a ∈ T . Let x, y ∈ T . Then x◦y ⊆ T . In fact: The following properties
are satis�ed:

(A). y ◦ a2 ⊆ F . Indeed: Since a2 ◦ y ⊆ F and a2 ⊆ F , we have

F ⊇ (a2 ◦ y) ◦ a2 = a2 ◦ (y ◦ a2), where a2 ⊆ I (∗)

Moreover, we have y ◦ a2 ⊆ I. Indeed: Since a2 ◦ y ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2 ◦ y)N := (a2)N ◦ (y)N = (a)N ◦ (y)N
= (y)N ◦ (a)N = (y ◦ a)N ,

so y ◦ a ⊆ (z)N . Then, since a ∈ F ⊆ I and I is a hyperideal of (z)N , we have

y ◦ a2 = (y ◦ a) ◦ a ⊆ (z)N ◦ I ⊆ I,

thus y ◦ a2 ⊆ I. Since a2 ⊆ I and y ◦ a2 ⊆ I, by (∗), we have y ◦ a2 ⊆ F .
(B). a2 ◦ x ◦ y ⊆ I. In fact: Clearly, a2 ◦ x ◦ y = a ◦ (a ◦ x ◦ y). On the other

hand, a ◦ x ◦ y ⊆ (z)N . Indeed: Since a2 ◦ x ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2 ◦ x)N = (a2)N ◦ (x)N = (a)N ◦ (x)N = (a ◦ x)N .

We have seen in (A) that (z)N = (y ◦ a)N (= (a ◦ y)N ). Thus we have

(z)N = (z2)N := (z)N ◦ (z)N = (a ◦ x)N ◦ (a ◦ y)N
= (a)N ◦

(
(x)N ◦ (a)N

)
◦ (y)N = (a)N ◦

(
(a)N ◦ (x)N

)
◦ (y)N

= (a2)N ◦ (x)N ◦ (y)N = (a)N ◦ (x ◦ y)N = (a ◦ x ◦ y)N

and so a ◦ x ◦ y ⊆ (z)N . Then, since I is a hyperideal of (z)N , we have

a ◦ (a ◦ x ◦ y) ⊆ I ◦ (z)N ⊆ I,

and so a2 ◦ x ◦ y ⊆ I.
Since x ∈ T , we have a2 ◦ x ⊆ F . Then, by (A), (a2 ◦ x) ◦ (y ◦ a2) ⊆ F , and

then we have
F ⊇ (a2 ◦ x) ◦ (y ◦ a2) = (a2 ◦ x ◦ y) ◦ a2,
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where a2 ⊆ I and a2 ◦ x ◦ y ⊆ I (by (B)). Since F is a hyper�lter of I, we have
a2 ◦ x ◦ y ⊆ F and so x ◦ y ⊆ T .

If x, y ∈ H such that x◦y ⊆ H, then x ∈ T and y ∈ T . In fact, since x◦y ⊆ T ,
we have a2 ◦ x ◦ y ⊆ F . We remark �rst that

F ⊇ (a2 ◦ x ◦ y) ◦ a2 = (a2 ◦ x) ◦ (y ◦ a2) (∗)

In addition, the following properties are satis�ed:

(A). a2 ◦ x ⊆ I. In fact: We have a2 ◦ x = a ◦ (a ◦ x), where a ∈ I. Moreover,
a ◦ x ⊆ (z)N . Indeed, since a2 ◦ x ◦ y ⊆ F ⊆ (z)N , we have (a2 ◦ x ◦ y) = (z)N .
Since a ∈ F ⊆ I ⊆ (z)N , we have (z)N = (a)N . Thus we get (a2 ◦x ◦ y)N = (a)N .
On the other hand,

(a ◦ x)N = (a)N ◦ (x)N = (a2 ◦ x ◦ y)N ◦ (x)N
= (a2)N ◦ (x)N ◦ (y)N ◦ (x)N = (a2)N ◦ (x)N ◦ (x)N ◦ (y)N
= (a2)N ◦ (x2)N ◦ (y)N = (a2)N ◦ (x)N ◦ (y)N
= (a2 ◦ x ◦ y)N = (z)N ,

thus a ◦ x ⊆ (z)N . Since I is a hyperideal of (z)N , we have a ◦ (a ◦ x) ⊆ I ◦ (z)N
and so a2 ◦ x ⊆ I.

(B). y ◦ a2 ⊆ I. In fact: First of all, y ◦ a2 = (y ◦ a) ◦ a and a ∈ I. Besides,
y ◦ a ⊆ (a)N , Indeed, since

(y ◦ a)N = (y)N ◦ (a)N = (y)N ◦ (a2 ◦ x ◦ y)N = (a2 ◦ x ◦ y)N ◦ (y)N
= (a2 ◦ x)N ◦ (y)N ◦ (y)N = (a2 ◦ x)N ◦ (y2)N
= (a2 ◦ x)N ◦ (y)N = (a2 ◦ x ◦ y)N = (z)N ,

y◦a is a subset of (z)N . Since a ∈ I and I a hyperideal of (z)N , we get (y◦a)◦a ⊆
(z)N ◦ I ⊆ I and so y ◦ a2 ⊆ I.

Since a2◦x ⊆ I, y◦a2 ⊆ I and F is a hyper�lter of I, by (∗), we have a2◦x ⊆ F
and y◦a2 ⊆ F . Finally, y◦a2 ⊆ F implies a2 ◦y ⊆ F . In fact: Since a2, y◦a2 ⊆ F ,
we have a2 ◦ (y ◦ a2) ⊆ F , then (a2 ◦ y) ◦ a2 ⊆ F . On the other hand, a2 ◦ y ⊆ I.
Indeed: Since a ◦ y ⊆ (a ◦ y)N = (z)N and a ∈ I (F ⊆ I), we have

a2 ◦ y = a ◦ (a ◦ y) ⊆ I ◦ (z)N ⊆ I,

so a2 ◦ y ⊆ I. Since (a2 ◦ y) ◦ a2 ⊆ F , a2 ◦ y ⊆ I, a2 ⊆ I and F is a hyper�lter of
I, we have a2 ◦ y ⊆ F .

For any x, y ∈ T it is clear that either a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅. Finally, let
x ∈ T and y ∈ H such that y ≥ x. Then y ∈ T . In fact: We have a2 ◦ y ≥ a2 ◦ x
and a2 ◦x ⊆ F . It is enough to prove that a2 ◦y ⊆ I. Then, since F is a hyper�lter
of I, we have a2 ◦y ⊆ F and so y ∈ T . On the other site, a2 ◦y = a◦ (a◦y), where
a ∈ F ⊆ I ⊆ (z)N . We prove that a ◦ y ⊆ (z)N . Then, since I is a hyperideal
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of (z)N , we have a ◦ (a ◦ y) ⊆ I ◦ (z)N and so a2 ◦ y ⊆ I. First of all, since
a2 ◦ x ⊆ F ⊆ I ⊆ (z)N , we have

(z)N = (a2x)N := (a2)N (x)N = (a)N (x)N = (a ◦ x)N .

On the other hand, since x ≤ y, we have a ◦x ≤ a ◦ y then, by Proposition 2.4, we
have (a ◦ x, a ◦ x ◦ a ◦ y) ∈ N , hence we obtain

(a ◦ x)N = (a ◦ x ◦ a ◦ y)N := (a)N ◦ (x)N ◦ (a)N ◦ (y)N
= (a2)N ◦ (x)N ◦ (y)N = (a2 ◦ x)N ◦ (y)N = (z)N ◦ (y)N
= (a)N ◦ (y)N (since a ∈ (z)N )

= (a ◦ y)N .

Hence a ◦ y ⊆ (a ◦ y)N = (a ◦ x)N = (z)N . Since T is a hyper�lter of H, a ∈ T
and a ∈ (z)N , by Remark 2.7, we have (z)N ⊆ T . Thus we have

I ⊆ F = T ∩ I ⊇ (z)N ∩ I = I,

and then F = I.

By Proposition 2.5 and Theorem 2.8 we have the following

Corollary 2.9. If H is an ordered hypersemigroup, z ∈ H and I a hyperideal of

(z)N , then I does not contain proper prime hyperideals (of I).

Theorem 2.10. Let H be an ordered hypersemigroup and I a prime hyperideal of

H. Then we have I =
⋃
x∈I

{(x)N | x ∈ I}.

Proof. Let t ∈ (x)N for some x ∈ I. Since (x)N is a hyperideal of (the hypersemi-
group) (x)N , by Corollary 2.9, (x)N does not contain proper prime hyperideals.
We prove that (x)N∩I is a prime hyperideal of (x)N . Then we get (x)N∩I = (x)N ,
and then t ∈ I. First of all, (x)N ∩ I is a nonempty subset of (x)N and this is
because x ∈ (x)N and x ∈ I. Moreover we have

(x)N ◦ ((x)N ∩ I) ⊆ (x)2N ∩ (x)N ◦ I = (x2)N ∩ (x)N ◦ I
= (x)N ∩ (x)N ◦ I ⊆ (x)N ∩H ◦ I
⊆ (x)N ∩ I

and ((x)N ∩ I) ◦ (x)N ⊆ (x)2N ∩ I ◦ (x)N ⊆ (x)N ∩ I ◦H ⊆ (x)N ∩ I. In addition,
if a ∈ (x)N ∩ I and b ∈ (x)N such that b ≤ a then, since b ≤ a ∈ I and I is a
hyperideal of H, we have b ∈ I. Thus we have b ∈ (x)N ∩ I.

Let now y, z ∈ (x)N such that y ◦z ⊆ (x)N ∩I. Since y ◦z ⊆ I and I is a prime
hyperideal of H, we have y ∈ I or z ∈ I. Hence y ∈ (x)N ∩ I or z ∈ (x)N ∩ I and
the proof is complete.
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