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Symmetry groups and Graovac−Pisanski index
of some linear polymers

Fatemeh Koorepazan-Moftakhar, Ali Reza Ashra� and Ottorino Ori

Abstract. Suppose G is a graph with vertex set V (G). The Graovac�Pisanski index of G is
de�ned as GP (G) = 1

2
|V (G)|2δ(G), where

δ(G) =
1

|Γ||V (G)|
∑

u∈V (G)

∑
g∈Γ

d(u, g(u)).

This is a type of graph invariant that is combined distance and symmetry of molecules under

consideration. The aim of this paper is to compute the symmetry groups and Graovac�Pisanski

index of some linear polymers.

1. Introduction

Throughout this paper all graphs will be assumed to be simple and undirected.
This means that they don't have loops, multiple and directed edges. Suppose G
is such a graph with vertex set V (G) and edge set E(G). An edge e ∈ E(G) will
be written as e = xy, where x, y ∈ V (G). A graph G is called r-regular if degrees
of all vertices are equal to r.

The molecular graph of a molecule M is a simple graph in which atoms and
chemical bonds are in one-to-one correspondences with vertices and edges, respec-
tively. A path Pn is a sequence x1, x2, . . . , xn of di�erent vertices in which xi and
xi+1, 1 6 i 6 n − 1, are adjacent. The number of edges in a path is called its
length. A cycle graph Cn is a graph constructed from the path Pn by adding a
new edge x1xn. The complete graph Kn is an n−vertex graph in which all pairs
of di�erent vertices are adjacent. A graph G is connected if for each vertex x, y in
G, there exists a path connecting them.

A permutation on a set X is a one-to-one function from X onto X. The set
of all permutations on a set X is denoted by SX . It is well-known that SX is a
group under composition of functions. The order of an element x in a group G
is denoted by O(x). An element θ ∈ SV (G) is said to be an automorphism if the
following condition is satis�ed:

∀x, y ∈ V (G) xy ∈ E(G)⇐⇒ θ(x)θ(y) ∈ E(G).
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The set of all automorphisms of G is denoted by Aut(G) which is a group under
composition of functions. It is easy to see that Aut(G) is a subgroup of SV (G).
The graph G is called vertex-transitive if and only if for each x, y ∈ V (G) there
exists an automorphism g ∈ Aut(G) such that g(x) = y. It is easy to see that
vertex-transitive graphs are regular. We refer the interested readers to the famous
book of Biggs [3], for more information on this topic.

Suppose G is a group containing two subgroups H and K in such a way
that H E G, |H ∩ K| = 1 and G = HK = {xy | x ∈ H, y ∈ K}. Then
we say that G is a semi-direct product of H by K and write G = H : K.
For an example, we consider the set of all permutations on X = {1, 2, 3}, i.e.,
SX = {(), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)}, where () is the identity permuta-
tion. Then by choosing H = {(), (1, 2, 3), (1, 3, 2)} and K = {(), (1, 2)}, we can
see that HESX , K 6 SX , |H ∩K| = 1 and SX = HK. Hence, SX can be written
as the semi-direct product H : K of its subgroups.

Suppose G is a graph and x, y ∈ V (G). The length of a minimum path con-
necting x and y is denoted by d(x, y). It is easy to see that (V (G), d) is a metric
space with distance function d(−,−). If G is connected then the Wiener index

W (G) is de�ned as the sum of distances between all pairs of vertices in G [18].

Graovac and Pisanski [8] in an innovating work applied the symmetry group of
the graph under consideration to generalize the Wiener index and obtain a good
correlation with some physico-chemical properties of molecules. To explain, we
assume that G is a graph, Γ 6 Aut(G) and g ∈ Γ. De�ne the distance number

of g, δ(g), to be the average of d(u, g(u)) overall vertices u ∈ V (G) and δ(G) =
1
|Γ|
∑

g∈G δ(g) = 1
|Γ||V (G)|

∑
u∈V (G)

∑
g∈Γ d(u, g(u)). The Graovac−Pisanski index

(GP index for short) of G with respect to Γ, GPΓ(G), is de�ned as GPΓ(G) =
|V (G)|2

2|Γ|
∑

g∈Γ δ(g). If Γ = Aut(G) then we write GP (G) as GPΓ(G). It is easy to

see that the GP index of G can be computed by GP (G) = 1
2 |V (G)|2δ(G). Ashra�

and Shabani [2] computed the GP index of graphs that can be represented as some
graph operations and in [12], some upper and lower bounds for this graph invari-
ant are presented. In 2016, Ghorbani and Klavžar [7] computed this topological
index by cut method and Tratnik [17] generalized their method and calculated
the closed formulas for the GP index of zig-zag tubulenes. In [13], the GP index
of the cycle Cn with respect to all subgroups of Aut(Cn) and the GP index of
(3, 6)− and (5, 6)−fullerene graphs with respect to a subgroup of their symme-
try groups are computed. Finally in [15], the Graovac-Pisanski polynomial of a
graph was presented by which the authors extended some well-known results from
Hosoya polynomial to its symmetry-based version. In the mentioned paper, this
polynomial for some classes of chemical graphs containing linear phenylene and
its hexagonal squeeze, and the ortho-, meta- and para-polyphenylene chains were
calculated.

Phenylenes are polycyclic conjugated molecules possessing both six- and four-
membered rings [9]. Following Došli¢ and Litz [5], a polymer with phenylene as
the basic building block is called a polyphenylene. In the mentioned paper, some
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exact formulas for the numbers of matchings and independent sets in three types of
uniform chains are given. The authors also presented some results on polypheny-
lene dendrimers. In this paper, the GP index of the molecular graphs presented
in [6, 9] are computed. Our calculations are done with the aid of TopoCluj [4],
HyperChem [11] and GAP [16]. Our group theory notations are standard and can
be taken mainly from [1, 10, 14, 16].

2. Main result

The aim of this section is to compute the symmetry groups, their orbits and
GP index of the para chain of length n, 3−uniform cactus chain, caterpilar
CAT (n1, . . . , nr), corona product Pn◦P2, an ortho-chain of length n, ladder graph
Ln and the 2−connected linear polymer with triangular faces Rn. These graphs
will be de�ned later. We start by computing the GP index of a para chain of
length n, Figure 1.

Suppose G is a group and X is a set. An action of G on X is a function
? : G ×X −→ X such that for all g, h ∈ G and x ∈ X, e ? x = x and (gh) ? x =
g ? (h ? x). The orbit of an element x ∈ X is de�ned as G ? x = {g ? x | g ∈ G}.
We usually write gx as g ? x when there is no confusion. The size of an orbit is
called its length.

Let G be a connected graph, A∪B ⊆ V (G) and V1, V2, . . . , Vr be the orbits of
Aut(G) under its natural action on V (G). De�ne d(A,B) =

∑
u∈A

∑
v∈B d(u, v).

Then it can easily seen that W (G) = 1
2d(V, V ). Graovac and Pisanski [8], proved

that GP (G) = |V |
∑r

i=1
W (Vi)
|Vi| , where W (Vi) = 1

2d(Vi, Vi). We apply this result

to compute the GP index of all polymers presented in this paper.

Theorem 2.1. The Graovac-Pisanski index of a para chain Qn of length n can

be computed as follows:

GP (Qn) =

{
9
4n

3 + 15
4 n

2 + 7
4n+ 1

4 n is odd and n 6= 1,

9
4n

3 + 15
4 n

2 + n n is even.

1 2 n

a1 a2 a3 an

b1
b2 b3

bn

x1
x2 x3

xn+1

Figure 1: A para chain of length n.
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Proof. The case of n = 1 is clear. Suppose n > 1 is even and consider the
subset X = {x1, x2, . . . , xn+1} ⊆ V (Qn), see Figure 1. It is easy to see that
for each automorphism α, α({x1, xn+1}) = {x1, xn+1}. Hence (α(x1) = x1 and
α(xn+1) = xn+1) or (α(x1) = xn+1 and α(xn+1) = x1). If α(x1) = x1 and
α(xn+1) = xn+1 then by de�nition of graph automorphism, α|X = (), where α|X
denotes the restriction of α on the set X and () is the identity permutation. If
α(x1) = xn+1 and α(xn+1) = x1 then α|X = (x1 xn+1)(x2 xn) . . . (xn

2
xn+4

2
).

De�ne H = 〈(a1 b2), . . . , (an bn)〉. There are two permutations β1 and β2 induced
by the unique automorphism of order two in the path graph Pn+1 with vertex set
V (Pn+1) = {1, 2, . . . , n+1} and edge set E(Pn+1) = {12, 23, 34, 45, . . . , (n)(n+1)}.
These permutations can be de�ned as follows:

β1 =

{
(a1 an)(a2 an−1) . . . (an

2
an+2

2
) 2 | n.

(a1 an)(a2 an−1) . . . (an−1
2

an+3
2

) 2 - n, ,

β2 =

{
(b1 bn)(b2 bn−1) . . . (bn

2
bn+2

2
) 2 | n,

(b1 bn)(b2 bn−1) . . . (bn−1
2

bn+3
2

) 2 - n.

It is now easy to prove γ = αβ1β2 is an automorphism of order 2 in Qn.
De�ne K = 〈γ〉. Since all generators of H has order two and they are disjoint
permutations,

H ∼= Z2 × · · · × Z2︸ ︷︷ ︸
n times

.

It is clear |H ∩K| = 1 and for each element t ∈ X and each automorphism γ ∈ H,
γ(t) = t. Thus, HEAut(Qn). If an automorphism γ ∈ Aut(Qn) �xes elementwise
each element of X then γ ∈ H and in other case γ can be written as the product
of an element of H by αβ1β2. This proves that G = H : K ∼= (Z2× · · · ×Z2) : Z2.
Therefore, the automorphism group of Qn can be generated by automorphisms
γ and (ai bi), for 1 6 i 6 n. A similar argument shows that, when n is odd,
the group Aut(Qn) can be generated by αβ1β2 and n permutations (ai bi) for
1 6 i 6 n. Therefore,

Aut(Qn) ∼=


(Z2 × · · · × Z2︸ ︷︷ ︸)

n times

: Z2 n is even,

Z2 ×

(Z2 × · · · × Z2︸ ︷︷ ︸)
n-1 times

: Z2

 n is odd and n 6= 1.

This proves that |Aut(Qn)| = 2n+1, n 6= 1, and Aut(Q1) ∼= D8. If n is even,
then the orbits of Aut(Qn) on V (Qn) are V1 = {x1, xn+1}, V2 = {a1, b1, an, bn},
V3 = {x2, xn}, V4 = {a2, b2, an−1, bn−1}, V5 = {x3, xn−1}, . . ., Vn−1 = {xn/2,
xn/2+2}, Vn = {an/2, an/2+1, bn/2, bn/2+1} and Vn+1 = {xn/2+1}. If n is odd
and n 6= 1, then the orbits of Aut(Qn) on V (Qn) will be U1 = {x1, xn+1},
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U2 = {a1, b1, an, bn}, U3 = {x2, xn}, U4 = {a2, b2, an−1, bn−1}, . . ., Un−1 =
{a(n−1)/2, b(n−1)/2, a(n+3)/2, b(n+3)/2}, Un = {x(n+1)/2, x(n+3)/2} and Un+1 =
{a(n+1)/2, b(n+1)/2}. To compute the Graovac-Pisanski index of this graph, we
consider the following cases:

1. n is even. In this case, Aut(Qn) has exactly n + 1 orbits under its natural
action on V (Qn). Since |Vn+1| = 1, W (Vn+1) = 0. On the other hand,
we have exactly n

2 orbits of size 2 and n
2 orbits of size 4. Now a simple

calculation shows that W (V1) = 2n, W (V2) = 8n − 4, . . ., W (Vn−3) = 8,
W (Vn−2) = 28, W (Vn−1) = 4 and W (Vn) = 4. Therefore,

GP (Qn) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= (3n+ 1)

(
4 + 8 + · · ·+ 2n

2
+

12 + 28 + · · ·+ 8n− 4

4

)
=

9

4
n3 +

15

4
n2 + n.

2. n is odd and n 6= 1. In this case, again Aut(Qn) has exactly n + 1 orbits
under its natural action on V (Qn). On the other hand, by above calculations
n+3

2 orbits have length 2 and other orbits have length 4. For orbits of length
2, we have W (Un+1) = 2, W (Un) = 2, W (Un−2) = 6, . . ., W (U1) = 2n, and
for orbits of length 4, W (Un−1) = 20, W (Un−3) = 36, . . ., W (U2) = 8n− 4.
Therefore,

GP (Qn) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= (3n+ 1)

(
2

2
+

2 + 6 + . . .+ 2n

2
+

20 + 36 + . . .+ 8n− 4

4

)
=

9

4
n3 +

15

4
n2 +

7

4
n+

1

4
.

This completes the proof.

1 2 n...

x1 x2 x3 xn+1xn

a1 a2 anan-1

Figure 2: A 3-uniform cactus chain Tn.
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Theorem 2.2. The Graovac-Pisanski index of a 3-uniform cactus chain Tn, Fig-
ure 2, can be computed as follows:

GP (Tn) =

{
1
2n

3 + 5
4n

2 + n+ 1
4 n is odd and n 6= 1,

1
2n

3 + 5
4n

2 + 3
2n+ 1

2 n is even.

Proof. If n is odd and n 6= 1, then the automorphism group of Tn can be generated
by (x1 an)(a1 xn+1) (x2 xn)(x3 xn−1) · · · (xn+1

2
xn+3

2
)(a2 an−1) · · · (an−1

2
an+3

2
),

(x1 a1) and (an xn+1). Moreover, if n is even, then Aut(Tn) is generated by α =
(x1 an)(a1 xn+1)(x2 xn) · · · (xn

2
xn

2 +2)(a2 an−1) · · · (an
2
an

2 +1) and β = (x1 a1).
Since αβ 6= βα and αβ has order 4, Aut(Tn) ∼= D8. Note that two non-commuting
elements δ and τ of order two generate a dihedral group of order 2O(δτ). Therefore,

Aut(Tn) ∼=
{
S3 n = 1
D8 n 6= 1

.

To compute the GP index of Tn, we �rst calculate the orbits of Aut(Tn) under
its natural action on V (Tn). If n is even, then Aut(Tn) has exactly n orbits
containing one orbit of length 1, one orbit of length 4 and n − 2 orbits of length
2. These are V1 = {xn

2 +1}, V2 = {a1, x1, an, xn+1}, Vi = {xi, xn−i+2} and V ′i =
{ai, an−i+1}, 2 6 i 6 n

2 . Our calculations show that W (V1) = 0, W (V2) = 4n+ 2
and W (Vi) = W (V ′i ) = n− 2i+ 2, 2 6 i 6 n

2 . Therefore,

GP (Tn) = |V |
n∑

i=1

W (Vi)

|Vi|

= (2n+ 1)

(
4n+ 2

4
+

1

2
× 2× (2 + 4 + · · ·+ (n− 2))

)
=

1

2
n3 +

5

4
n2 +

3

2
n+

1

2
.

We now assume that n is odd. Then we have one orbit of length 1, one
orbit of length 4 and n − 2 orbits of length 2. These are U1 = {an+1

2
}, U2 =

{a1, x1, an, xn+1}, U3 = {xn+1
2
, xn+3

2
}, U4 = {x2, xn}, U5 = {a2, an−1}, U6 =

{x3, xn−1}, U7 = {a3, an−2}, . . ., Un−1 = {an−1
2
, an+3

2
} and Un = {xn−1

2
, xn+5

2
}.

By our calculations, W (U1) = 0, W (U2) = 4n+2, W (U3) = 1, W (U4) = W (U5) =
n− 2, W (U6) = W (U7) = n− 4, . . ., W (Un−1) = W (Un) = 3. Therefore,

GP (Tn) = |V |
n∑

i=1

W (Vi)

|Vi|

= (2n+ 1)

(
4n+ 2

4
+

1

2
+

1

2
× 2× (3 + 5 + · · ·+ (n− 2))

)
=

1

2
n3 +

5

4
n2 + n+

1

4
,

which completes our proof.
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The caterpilar CAT (n1, . . . , nr) is a tree with vertex set

{v1, . . . , vr}︸ ︷︷ ︸
A

∪{v11, . . . , v1n1}︸ ︷︷ ︸
A1

∪ . . . ∪ {vr1, . . . , vrnr}︸ ︷︷ ︸
Ar

in which A is the vertex set for a path v1, v2, . . ., vr and Ai, 1 6 i 6 r, is a set of
pendant vertices that all of them are adjacent with vi, see Figure 3.

v11
v1 v21

v2
vr1 vr

v1 v2 vr

n1 n2
nr

Figure 3: The caterpilar CAT (n1, . . . , nr).

Theorem 2.3. The Graovac-Pisanski index of CAT (n1, . . . , nr) can be computed

as follows:

(1) If for some i and j with i+ j = r + 1, we have ni 6= nj then

GP (CAT (n1, . . . , nr)) =

(
r∑

i=1

ni

)2

− r2.

(2) If n1 = n2 = · · · = nr = n, then

GP (CAT (n, . . . , n)) =


f(n, r) r is even,

g(n, r) r is odd,

where f(n, r) =

(
1

8
r3 + r2

)
n2 +

(
1

2
r2 +

1

4
r3

)
n− 1

2
r2 +

1

8
r3 and

g(n, r) =

(
1

8
r3 + r2 − 1

8
r

)
n2 +

(
−3

4
r +

1

2
r2 +

1

4
r3

)
n− 5

8
r − 1

2
r2 +

1

8
r3.

Proof. Set L = CAT (n1, . . . , nr) and P is the induced subgraph of A. It is easy
to see that SAi 6 Aut(L), 1 6 i 6 r. Since Ai ∩ Aj = ∅, 1 6 i 6= j 6 r, one
can easily seen that SA1

SA2
. . . SAr

∼= SA1
× SA2

× · · · × SAr
and so Aut(L) has a

subgroup H isomorphic to SA1
× SA2

× · · · × SAr
. Our main proof will consider

two separate cases as follows:
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1. Suppose for some i and j with i+ j = r + 1, we have ni 6= nj . From Figure
3, one can easily seen that H = Aut(L) and H has exactly 2r orbits under
its natural action on V (L). These orbits are {v1}, {v2}, . . ., {vr} and A1,
. . . , Ar. Since W (Ai) = ni

2 − ni, |Ai| = ni and |V | = r +
∑r

i=1 ni,

GP (L) = |V |
2r∑
i=1

W (Vi)

|Vi|

=

(
r +

r∑
i=1

ni

)(
r∑

i=1

ni
2 − ni
ni

)

=

(
r∑

i=1

ni

)2

− r2.

2. n1 = n2 = · · · = nr = n. Choose f to be the automorphism of order 2 in
Aut(P ) and extend f to an automorphism f of L by de�ning f(x) = x, for
each x ∈

⋃r
i=1Ai. If r is even then Aut(L) = H∪fH and so Aut(L) ∼= (SA1

×
SA2
× · · · × SAr

) : Z2. Furthermore, Aut(L) can be generated by (vi1 vi2),
(vi1 vi3), . . . , (vi1 vini

) and
∏

(vi vj)(vi1 vj1)(vi2 vj2)(vi3 vj3) · · · (vini
vjni

),
where 1 6 i 6 n

2 ,
n
2 + 1 6 j 6 n and i + j = r + 1. Therefore, Aut(L) has

exactly r orbits such that r
2 of them have length 2 and others have length 2n.

These are Vi = {vi, vj} and V ′i = {vi1, vi2, vi3, . . . , vin, vj1, vj2, vj3, . . . , vjn},
where 1 6 i 6 r

2 ,
r
2 + 1 6 j 6 r and i + j = r + 1. Our calculations show

that, W (Vi) ∈ {1, 3, 5, 7, . . . , r − 1} and W (V ′i ) ∈ {5n2 − 2n, 5n2 − 2n +
2n2, . . . , (r + 3)n2 − 2n}, where 1 6 i 6 r

2 . Therefore,

GP (L) = |V |
r∑

i=1

W (Vi)

|Vi|

= (n+ 1)r

[
1 + 3 + · · ·+ r − 1

2
+

5n2 − 2n+ · · ·+ (r + 3)n2 − 2n

2n

]
=

(
1

8
r3 + r2

)
n2 +

(
1

2
r2 +

1

4
r3

)
n− 1

2
r2 +

1

8
r3.

If r is odd then SA r+1
2

will be a characteristic subgroup and

Aut(L) ∼=
[(

SA1 × SA2 × · · · × SA r−1
2

× SA r+3
2

× · · · × SAr

)
: Z2

]
× SA r+1

2

∼=

(Sn × Sn × · · · × Sn × Sn × · · · × Sn)︸ ︷︷ ︸
r-1 times

: Z2

× Sn.

Moreover, Aut(L) can be generated by (vi1 vi2), . . . , (vi1 vini
) and

∏
(vi vj)

(vi1 vj1) · · · (vini
vjni

), where 1 6 i 6 n−1
2 , n+3

2 6 j 6 n and i + j = r + 1.
On the other hand, Aut(L) has exactly r + 1 orbits, one orbit of length 1,
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one orbit of length n, r−1
2 orbits of length 2, and r−1

2 orbits of length 2n.
These are U1 = {v r+1

2
}, U2 = {v r+1

2 1, v r+1
2 2, · · · , v r+1

2 n}, Ui = {vi, vj} and
U ′i = {vi1, vi2, . . . , vin, vj1, vj2, . . . , vjn}, where 1 6 i 6 r−1

2 , r+3
2 6 j 6 r

and i + j = r + 1. By our calculations, W (U1) = 0, W (U2) = n(n − 1),
W (Ui) ∈ {2, 4, . . . , r−1} andW (U ′i) ∈ {6n2−2n, 8n2−2n, . . . , (r+3)n2−2n}.
Therefore,

GP (L) = |V |
r+1∑
i=1

W (Vi)

|Vi|

= (n+ 1)r

[
n(n− 1)

n
+

2 + 4 + · · ·+ r − 1

2

+
6n2 − 2n+ · · ·+ (r + 3)n2 − 2n

2n

]
=

(
1

8
r3 + r2 − 1

8
r

)
n2 +

(
−3

4
r +

1

2
r2 +

1

4
r3

)
n− 5

8
r − 1

2
r2 +

1

8
r3.

This completes our argument.

Note that our previous theorem covers the case when for some i, j with i+ j =
r + 1, ni is not equal to nj and another case when all ni are the same. It is
easy to see that Aut(L) = H or H : Z2. For example, we do not cover the
case that CAT (2, 3, 4, 3, 2). Our method shows that Aut(CAT (2, 3, 4, 3, 2)) ∼=
(Z2 × S3 × S4 × S3 ×Z2) : Z2 and a simple GAP program shows that in this case
GP (L) = 399.

Suppose G and H are two graphs. The corona product G ◦ H is a graph
constructed from G and |V (G)| copies of H by connecting the ith vertex of G to
each vertex of the ith copy of H, 1 6 i 6 |V (G)|.

vi2v11

v1

v12

vi

vi1 vn2

vn

vn1

Figure 4: The corona product Pn ◦ P2.

Theorem 2.4. The Graovac-Pisanski index of Pn ◦P2, Figure 4, can be computed

by the following formula:

GP (Pn ◦ P2) =


9
8n

3 + 15
4 n

2 n is even,

9
8n

3 + 15
4 n

2 − 27
8 n n is odd,

3 n = 1.



96 F. Koorepazan-Moftakhar, A. R. Ashra� and O. Ori

Proof. Depending on whether n is an even or odd number, our proof will consider
two cases.

1. n is even. In this case, the generators of Aut(Pn◦P2) are (vk1 vk2), 1 6 k 6 n,
and

∏
(vi vj)(vi1 vj1)(vi2 vj2), 1 6 i 6 n

2 ,
n
2 + 1 6 j 6 n and i+ j = n+ 1.

Our calculations show that the orbits of this action are Vi = {vi, vj} and
V ′i = {vi1, vi2, vj1, vj2}. Furthermore, W (V1) = n − 1, W (V2) = n − 3, . . .,
W (Vn

2
) = 1, W (V ′1) = 4n+ 6, W (V ′2) = 4n−2, . . ., W (V ′n

2
) = 14. Therefore,

GP (Pn ◦ P2) = |V |
n∑

i=1

W (Vi)

|Vi|

= 3n

[
1 + 3 + · · ·+ n− 1

2
+

14 + 22 + 30 + · · ·+ 4n+ 6

4

]
=

9

8
n3 +

15

4
n2.

2. n is odd. The generators of Aut(Pn ◦ P2) are (vk1 vk2), 1 6 k 6 n and∏
(vi vj)(vi1 vj1)(vi2 vj2), 1 6 i 6 n−1

2 , n+3
2 6 j 6 n and i+ j = n+ 1. This

group has exactly n + 1 orbits under its natural action. These orbits are
U = {vn+1

2
}, U ′ = {vn+1

2 1, vn+1
2 2},

n+1
2 orbits Ui = {vi, vj} of size 2 and n−1

2

orbits U ′i = {vi1, vi2, vj1, vj2} of size 4. Moreover, W (U) = 0, W (U ′) = 1,
W (U1) = n − 1, W (U2) = n − 3, . . ., W (Un−1

2
) = 2, W (U ′1) = 4n + 6,

W (U ′2) = 4n− 2, . . ., W (U ′n−1
2

) = 18. Therefore,

GP (Pn ◦ P2) = |V |
n+1∑
i=1

W (Vi)

|Vi|

= 3n

[
0 +

1

2
+

2 + 4 + · · ·+ n− 1

2
+

18 + 26 + · · ·+ 4n+ 6

4

]
=

9

8
n3 +

15

4
n2 − 27

8
n.

This completes the proof.

Theorem 2.5. The Graovac-Pisanski index of an ortho-chain On, Figures 5− 7,
of length n is computed as follows:

GP (On) =

{
9
8n

3 + 33
8 n

2 + 17
4 n+ 1 n is even,

9
8n

3 + 33
8 n

2 + 19
8 n+ 3

8 n is odd.

Proof. There are two possible cases, depending on whether n is even or odd.

1. n is even. It can be proved that the automorphism group Aut(On) is gen-
erated by the permutations (1 a2), (n+ 1 bn−1) and (a1 bn)(1 bn−1)(a2 n+
1)(2 n)(b1 an)(a3 bn−2)(3 n−1) (b2 an−1)(a4 bn−3)· · · (n

2
n
2 +2)(bn

2−1 an
2 +2)
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(an
2 +1 bn

2
). Moreover, the group has exactly 3n

2 orbits. These orbits are
U1 = {n2 + 1}, U2 = {an

2 +1, bn
2
}, U3 = {n2 ,

n
2 + 2}, U4 = {an

2
, bn

2 +1},
U5 = {n2 − 1, n2 + 3}, U6 = {bn

2−1, an
2 +2}, U7 = {an

2−1, bn
2 +2}, U8 =

{n2 − 2, n2 + 4}, U9 = {bn
2−2, an

2 +3}, . . ., U 3n−10
2

= {a3, bn−2}, U 3n−8
2

=

{2, n}, U 3n−6
2

= {b2, an−1}, U 3n−4
2

= {b1, an}, U 3n−2
2

= {a1, bn} and U 3n
2

=

{1, a2, bn−1, n + 1}. On the other hand, W (U1) = 0, W (U2) = W (U3) = 2,
W (U4) = W (U5) = W (U6) = 4, W (U7) = W (U8) = W (U9) = 6, W (U 3n−10

2
)

= W (U 3n−8
2

) = W (U 3n−6
2

) = n− 2, W (U 3n−4
2

) = n, W (U 3n−2
2

) = n+ 2 and

W (U 3n
2

) = 4n+ 4.

Therefore,

GP (On) = |V |

3n
2∑

i=1

W (Vi)

|Vi|

= (3n+ 1)

[
0

1
+

2 + 2

2
+

4 + 4 + 4

2
+

6 + 6 + 6

2

+ · · ·+
n− 2 + n− 2 + n− 2

2
+
n

2
+
n+ 2

2
+

4n+ 4

4

]

= (3n+ 1)

0 + 2 +
3

2

4 + 6 + · · ·+ n− 2︸ ︷︷ ︸
n−4
2

+
n

2
+
n+ 2

2
+ n+ 1


=

9

8
n3 +

33

8
n2 +

17

4
n+ 1.

1 2 3 2+n/2 n

1

2 n

n/2 1+n/2

a1 a2 a3 an
an/2 a1+n/2

b1 b2 bn/2-1 bn/2
bn-1bn-2

1+n

bnbn/2 + 1

Figure 5: An ortho-chain of length n, n is even.

2. n is odd. The generators ofAut(On) are (1 1+n)(2 n) · · · ( 1+n
2

3+n
2 ) (a1 a1+n)

(a2 an) · · · (a 1+n
2

a 3+n
2

) (b1 bn−1) (b2 bn−2) · · · (bn−1
2

bn+1
2

), (1 a2) and

(1+n an). Furthermore, the number of orbits of this group under its natural
action is 3n−1

2 and the orbits are V1 = {an+1
2
, an+3

2
}, V2 = {n+1

2 , n+3
2 }, V3 =

{bn−1
2
, bn+1

2
}, V4 = {n−1

2 , n+5
2 }, V5 = {an−1

2
, an+5

2
}, V6 = {n−3

2 , n+7
2 }, V7 =

{bn−3
2
, bn+3

2
}, V8 = {an−3

2
, an+7

2
}, V9 = {n−5

2 , n+9
2 }, V10 = {bn−5

2
, bn+5

2
},

. . ., V 3n−11
2

= {a3, an−1}, V 3n−9
2

= {2, n}, V 3n−7
2

= {b2, bn−2}, V 3n−5
2

=

{b1, bn−1}, V 3n−3
2

= {a1, an+1} and V 3n−1
2

= {1, a2, 1 + n, an}.
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1 2 3 n 1+n

1

2

n

(1+n)/2 (3+n)/2

a1 a2 a3 a1+n
ana(1+n)/2 a(3+n)/2

b1 b2 b(n-1)/2 b(n+1)/2
bn-1bn-2

Figure 6: An ortho-chain of length n, n
4≡ 1.

1 2 3 n 1+n

1

2

n

(1+n)/2 (3+n)/2

a1 a2 a3 a1+n
ana(1+n)/2 a(3+n)/2

b1 b2 b(n-1)/2 b(n+1)/2 bn-1bn-2

Figure 7: An ortho-chain of length n, n
4≡ 3.

To compute the Graovac-Pisanski index of this graph, n 6= 3, we note that
W (V5) =W (V6) =W (V7) = 5,W (V8) =W (V9) =W (V10) = 7,W (V 3n−11

2
) =

W (V 3n−9
2

) =W (V 3n−7
2

) = n−2,W (V 3n−5
2

) = n,W (V 3n−3
2

) = n+2,W (V 3n−1
2

)

= 4n+ 4. Finally, if n
4≡ 1 then W (V1) = W (V2) = 1, W (V3) = W (V4) = 3,

and if n
4≡ 3 then W (V2) = W (V3) = 1 and W (V1) = W (V4) = 3.

Therefore,

GP (On) = |V |

3n−1
2∑

i=1

W (Vi)

|Vi|

= (3n+ 1)

[
1 + 1

2
+

3 + 3

2
+

5 + 5 + 5

2
+

7 + 7 + 7

2

+ · · ·+
n− 2 + n− 2 + n− 2

2
+
n

2
+
n+ 2

2
+

4n+ 4

4

]
= (3n+ 1)

[
1 + 3 +

3

2
(5 + 7 + · · ·+ n− 2) +

n

2
+
n+ 2

2
+ n+ 1

]
=

9

8
n3 +

33

8
n2 +

19

8
n+

3

8
.

This completes the proof of our theorem.

In the next theorem the Graovac-Pisanski index of ladder graph Ln, Figures
8− 9, which is also known as the linear polyomino is computed [6].
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Theorem 2.6. The Graovac-Pisanski index of the ladder graph Ln can be com-

puted as follows:

GP (Ln) =

{
n3

2 + 5n2

2 + 3n+ 1 n is even,

n3

2 + 5n2

2 + 7n
2 + 3

2 n is odd.

Proof. We �rst note that Aut(L1) ∼= D8 and Aut(Ln) ∼= Z2×Z2, for n 6= 1. If n is

even, then Aut(Ln) can be generated by
∏n+1

k=1(ak bk) and
∏n−1

i=1 (ai ai+1)(bi bi+1),

i is odd. If n is odd, then the permutations
∏n+1

t=1 (at bt) and
∏n

j=1(aj aj+1)
(bj bj+1) will generate the group Aut(Ln), where j is odd positive integer.

a1

b1 b3

a3

bn -1

an -1

bn

an

b4

a4

b2

a2

an+1

bn+1

1 n

Figure 8: The graph Ln, when n is even.

If n is even, then this group has n
2 + 1 orbits, and the orbits are V1 =

{an+1, bn+1} of length 2 and other orbits which have length 4 are V2 ={a1, b1, a2, b2},
V3 = {a3, b3, a4, b4}, . . ., Vn

2 +1 = {an−1, bn−1, an, bn}. On the other hand,W (V1) =
1, W (Vn

2 +1) = 12, W (Vn
2

) = 20, W (Vn
2−1) = 28, . . ., W (V2) = 4n+ 4. Therefore,

GP (Ln) = |V |
n
2 +1∑
i=1

W (Vi)

|Vi|

= (2n+ 2)

(
1

2
+

12 + 20 + 28 + · · ·+ 4n+ 4

4

)
=
n3

2
+

5n2

2
+ 3n+ 1.

a1

b1 b3

a3

bn

an

bn+1

an+1

b4

a4

b2

a2

1 n

Figure 9: The graph Ln, when n is odd.

If n is odd, then this group has n+1
2 orbits of length 4, and the orbits are V1 =

{a1, b1, a2, b2}, V2 = {a3, b3, a4, b4}, . . ., Vn+1
2

= {an, bn, an+1, bn+1}. Furthermore,
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W (Vn+1
2

) = 8, W (Vn−1
2

) = 16, W (Vn−3
2

) = 24, . . ., W (V1) = 4n+ 4. Therefore,

GP (Ln) = |V |

n+1
2∑

i=1

W (Vi)

|Vi|

= (2n+ 2)

(
8 + 16 + 24 + · · ·+ 4n+ 4

4

)
=
n3

2
+

5n2

2
+

7n

2
+

3

2
,

which completes our argument.

We end this paper by computing the Graovac-Pisanski index of a 2-connected
linear polymer with triangular faces Rn.

Theorem 2.7. The Graovac-Pisanski index of a 2−connected linear polymer with

triangular faces Rn, Figure 10, is computed as

GP (Rn) =

{
n3

16 + n2

2 + 5n
4 + 1 n is even,

n3

16 + 3n2

8 + 11n
16 + 3

8 n is odd.

b2

b3

b4

b1

b(n+1)/2

c

a(n+1)/2 a4

a3

a2

a1

b2

b3b1 bn/2+1

an/2+1

a4

a3

a2

a1

1
2

3 n

1
2 n

(b)

(a)

Figure 10: (a) Rn, n is odd; (b) Rn, n is even.

Proof. It is clear that Aut(R1) ∼= S3, Aut(R2) ∼= Z2×Z2 and Aut(Rn) ∼= Z2, when
n ≥ 3. To compute the Graovac-Pisanski index, we �rst assume that n is even.
Then Vi = {ai, bi}, 1 6 i 6 n

2 + 1, W (V1) = n
2 + 1, W (V2) = n

2 , . . ., W (Vn
2

) = 2
and W (Vn

2 +1) = 1. Therefore,

GP (Rn) = |V |
n
2 +1∑
i=1

W (Vi)

|Vi|

= (n+ 2)

(
1 + 2 + 3 + · · ·+ n

2 + 1

2

)
=
n3

16
+
n2

2
+

5n

4
+ 1.
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If n is odd then Vj = {aj , bj}, 1 6 j 6 n+1
2 , Vn+3

2
= {c}, W (V1) = n+1

2 ,

W (V2) = n−1
2 , . . ., W (Vn−1

2
) = 2, W (Vn+1

2
) = 1 and W (Vn+3

2
) = 0. Therefore,

GP (Rn) = |V |

n+3
2∑

j=1

W (Vj)

|Vj |

= (n+ 2)

(
0

1
+

1 + 2 + 3 + · · ·+ n+1
2

2

)
=
n3

16
+

3n2

8
+

11n

16
+

3

8
.
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