Action of the group $\langle x, y : x^2 = y^6 = 1 \rangle$ on imaginary quadratic fields

Abdul Razaq

Abstract. Let $H = \langle x, y : x^2 = y^6 = 1 \rangle$ be acting on $\mathbb{Q}(\sqrt{-n})$ and denote the subset $\left\{\frac{a+\sqrt{-n}}{3c}: a, \frac{a^2+n}{3c}, c \in \mathbb{Z} \setminus \{0\}\right\}$ of $\mathbb{Q}(\sqrt{-n})$ by $\mathbb{Q}^*(\sqrt{-n})$. Also d(n) denotes the arithmetic function which is defined as the number of positive divisors of n which are multiple of 3. In this paper, we show that the total number of orbits of $\mathbb{Q}^*(\sqrt{-n})$ under the action of H are

$$\begin{cases} 4 & \text{if } n = 3, \\ d(n) & \text{if } n \equiv 0 \pmod{3}, \text{ but } n \neq 3, \\ 2d(n+1) & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

1. Introduction

Let F be an extension field of degree two over the field \mathbb{Q} of rational numbers. Then any element $x \in F \setminus \mathbb{Q}$ is of degree two over \mathbb{Q} and is a primitive element of F (that is $F = \mathbb{Q}[x]$ and $\{1, x\}$ is a base of F over \mathbb{Q}). Let $p(x) = x^2 + bx + c$, where $b, c \in \mathbb{Q}$, be the minimal polynomial of such an element $x \in F$. Then $2x = -b \pm \sqrt{b^2 - 4c}$ and so, $F = \mathbb{Q}(\sqrt{b^2 - 4c})$. Since $b^2 - 4c$ is a rational number $\frac{u}{v} = \frac{uv}{v^2}$ with $u, v \in \mathbb{Z}$, we obtain $F = \mathbb{Q}(\sqrt{uv})$. In fact it is possible to write $F = \mathbb{Q}(\sqrt{n})$, where n is a square-free integer. If n is a negative square-free integer, then $\mathbb{Q}(\sqrt{n})$ is called an *imaginary quadratic field* and the elements of $\mathbb{Q}(\sqrt{n})$ are of the form $a + b\sqrt{n}$ with $a, b \in \mathbb{Q}$. The imaginary quadratic fields are usually denoted by $\mathbb{Q}(\sqrt{-n}) = \{a + b\sqrt{-n} : a, b \in \mathbb{Q}\},\$ where n is a square-free positive integer. Imaginary quadratic fields are the only type (apart from \mathbb{Q}) with a finite unit group. This group has order 4 for $\mathbb{Q}(\sqrt{-1})$ (and generator $\sqrt{-1}$), order 6 for $\mathbb{Q}(\sqrt{-3})$ (and generator $\frac{1+\sqrt{-3}}{2}$), and order 2 (and generator -1) for all other imaginary quadratic fields. We denote the subset $\left\{\frac{a+\sqrt{-n}}{3c}: a, \frac{a^2+n}{3c} \in \mathbb{Z} \text{ and } c \in \mathbb{Z} \setminus \{0\}\right\}$ of $\mathbb{Q}\left(\sqrt{-n}\right)$ by $\mathbb{Q}^*\left(\sqrt{-n}\right)$. Some fundamental properties of imaginary quadratic fields have been discussed in [2] and [3].

Let G be a group generated by the linear fractional transformations x and y satisfying the relations $x^2 = y^m = 1$. If $y : z \longrightarrow \frac{az+b}{cz+d}$ is to act on all imaginary

²⁰¹⁰ Mathematics Subject Classification: 20G40, 05C25

Keywords: Imaginary quadratic field, orbits, coset diagrams.

A. Razaq

quadratic fields, then a, b, c, d must be rational numbers and can taken to be integers, so that $\frac{(a+d)^2}{ad-bc}$ is rational. But if $y: z \longrightarrow \frac{az+b}{cz+d}$ is of order m, one must have $\frac{(a+d)^2}{ad-bc} = w + w^{-1} + 2$, where w is a primitive mth root of unity. Now $w + w^{-1}$ is rational, for a primitive mth root w, only if m = 1, 2, 3, 4 or 6. So these are the only possible orders of y. The group < x, y > is cyclic of order 2, when m = 1. When m = 2, it is an infinite dihedral group and does not give inspiring information while studying its action on imaginary quadratic numbers. For m = 3, the group < x, y > is the modular group $PSL(2,\mathbb{Z})$ and its action on real quadratic numbers has been discussed in detail in [4] and [5].

In this paper, we are interested in the action of the group $H = \langle x, y : x^2 = y^6 = 1 \rangle$, where $(z) x = \frac{-1}{3z}$ and $(z) y = \frac{-1}{3(z+1)}$ are linear fractional transformations, on $\mathbb{Q}^* (\sqrt{-n}) = \left\{ \frac{a + \sqrt{-n}}{3c} : a, \frac{a^2 + n}{3c} \in \mathbb{Z} \text{ and } c \in \mathbb{Z} \setminus \{0\} \right\}$. Note that, $\mathbb{Q}^* (\sqrt{-n})$ remains invariant under the action of H. We show that the total number of orbits of $\mathbb{Q}^* (\sqrt{-n})$ under the action of H are

$$\left\{ \begin{array}{ll} 4 & \text{if } n = 3 \\ d\left(n\right) & \text{if } n \equiv 0 \, (\text{mod } 3), \, \text{but } n \neq 3 \\ 2d\left(n+1\right) & \text{if } n \equiv 2 \, (\text{mod } 3) \end{array} \right. .$$

2. Coset Diagrams

We use coset diagrams for the group H and study its action on the projective line over imaginary quadratic fields. The coset diagrams for the group H are defined as follows. The six cycles of transformation y are represented by six unbroken edges of a hexagon (may be irregular) permuted counter-clockwise by y. Any two vertices which are interchanged by involution x, is joined by an edge. The fixed points of x and y, if they exist, are denoted by heavy dots. This graph can be interpreted as a coset diagram, with the vertices identified with the cosets of $Stab_v(H)$, the stabilizer of some vertex v of the graph, or as 1-skeleton of the cover of the fundamental complex of the presentation which corresponds to the subgroup $Stab_v(H)$. For more details about coset diagrams, one can refer to [1],[6],[7] and [8].

A general fragment of the coset diagram of the action of H on $\mathbb{Q}^*(\sqrt{-n})$ will look as follows.

Definition 2.1. If $\alpha = \frac{a+\sqrt{-n}}{3c} \in \mathbb{Q}^*(\sqrt{-n})$ is such that ac < 0 then α is called a *totally negative imaginary quadratic number* and it is called a *totally positive imaginary quadratic number* if ac > 0.

As $d = \frac{a^2 + n}{3c}$, so dc is always positive. Thus d and c will have the same sign. Hence an imaginary quadratic number $\alpha = \frac{a + \sqrt{-n}}{3c} \in \mathbb{Q}^* (\sqrt{-n})$ is totally negative if either a < 0 and d, c > 0 or a > 0 and d, c < 0. Similarly $\alpha = \frac{a + \sqrt{-n}}{3c} \in \mathbb{Q}^* (\sqrt{-n})$ is totally positive if either a, d, c > 0 or a, d, c < 0.

For $\alpha = \frac{a+\sqrt{-n}}{3c} \in \mathbb{Q}^*\left(\sqrt{-n}\right)$, norm of α is denoted by $\| \alpha \|$ and $\| \alpha \| = |a|$.

3. Main results

Theorem 3.1. If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$, then n does not change its value in the orbit αH .

Proof. Let $\alpha = \frac{a+\sqrt{-n}}{3c}$ and $d = \frac{a^2+n}{3c}$. Since $(\alpha)x = \frac{-1}{3\alpha} = \frac{-1}{3\left(\frac{a+\sqrt{-n}}{3c}\right)} = \frac{-c}{a+\sqrt{-n}} = \frac{-c}{a+\sqrt{-n}} = \frac{-c(a-\sqrt{-n})}{a^2+n} = \frac{-a+\sqrt{-n}}{3d}$, therefore the new values of a and c for $(\alpha)x$ are -a and d respectively. The new value of d for $(\alpha)x$ is $\frac{a^2+n}{3d} = \frac{a^2+n}{3\left(\frac{a^2+n}{3c}\right)} = c$. Since $(\alpha)y = \frac{-1}{3\left(\frac{a+\sqrt{-n}}{3c}+1\right)} = \frac{-1}{3\left(\frac{a+\sqrt{-n}}{3c}+1\right)} = \frac{-1}{3\left(\frac{a+\sqrt{-n}}{3c}+3c\right)} = \frac{-3c(a+3c-\sqrt{-n})}{3[(a+3c)^2+n]} = \frac{-a-3c+\sqrt{-n}}{3(2a+d+3c)}$, therefore the new values of a and c for $(\alpha)y$ are -a - 3c and (2a + d + 3c) respectively. Moreover, the new value of d for $(\alpha)y$ is $\frac{(-a-3c)^2+n}{3(2a+d+3c)} = \frac{a^2+n+9c^2+6ac}{3(2a+d+3c)} = c$. Similarly we can calculate the new values of a, d and c for $(\alpha)y^j$, where j = 2, 3, 4, 5.

α	a	d	3c
$(\alpha)x$	-a	с	3d
$(\alpha)y$	-a-3c	с	$3\left(2a+d+3c\right)$
$(\alpha)y^2$	-5a - 3d - 6c	2a+d+3c	$3\left(4a+3d+4c\right)$
$(\alpha)y^3$	-7a-6d-6c	4a + 3d + 4c	$3\left(4a+4d+3c\right)$
$(\alpha)y^4$	-5a - 6d - 3c	4a + 4d + 3c	$3\left(2a+3d+c\right)$
$(\alpha)y^5$	-a-3d	2a+3d+c	3d
$(\alpha)yx$	a+3c	(2a+d+3c)	3c
$(\alpha)y^2x$	5a+3d+6c	4a + 3d + 4c	$3\left(2a+d+3c\right)$
$(\alpha)y^3x$	7a + 6d + 6c	4a + 4d + 3c	$3\left(4a+3d+4c\right)$
$(\alpha)y^4x$	5a+6d+3c	2a+3d+c	$3\left(4a+4d+3c\right)$
$(\alpha)y^5x$	a+3d	d	$3\left(2a+3d+c\right)$
$(\alpha)xy$	a-3d	d	$3\left(-2a+3d+c\right)$
$(\alpha)xy^2$	5a - 6d - 3c	-2a + 3d + c	$3\left(-4a+4d+3c\right)$
$(\alpha)xy^3$	7a - 6d - 6c	-4a + 4d + 3c	$3\left(-4a+3d+4c\right)$
$(\alpha)xy^4$	5a - 3d - 6c	-4a + 3d + 4c	$3\left(-2a+d+3c\right)$
$(\alpha)xy^5$	a-3c	-2a + d + 3c	3c

(Table 1)

From above information we see that all the elements in αH are of the form $\frac{a+\sqrt{-n}}{3c}$. Hence non square positive integer n does not change its value in αH .

Theorem 3.2. The fixed points under the action of H on $Q^*(\sqrt{-n})$ exist only if n = 3.

Proof. Let g be a linear fractional transformation in H. Therefore (z)g can be taken as $\frac{az+b}{cz+d}$, where ad-bc = 1 or 3. Let $\frac{az+b}{cz+d} = z$ which yields quadratic equation $cz^2 + (d-a)z - b = 0$. It has imaginary roots only if $(a+d)^2 - 4(ad-bc) < 0$. If ad-bc = 1, then $(a+d)^2 < 4$ implies $a+d = 0, \pm 1$, and if ad-bc = 3, then $(a+d)^2 < 12$ implies $a+d = 0, \pm 1, \pm 2, \pm 3$. Hence we have the following cases.

(i) If a + d = trace(g) = 0, then g is involution and hence it is conjugate to the linear fractional transformation x or y^3 .

(*ii*) If trace(g) = ±1 and det (g) = 1, then (trace (g))² = det (g) implying that order of g is 3 and hence g is conjugate to y^2 or y^4 .

(*iii*) If trace(g) = ±3 and det(g) = 3, then $(\text{trace}(g))^2 = 3 \det(g)$ implying that order of g will be six and hence it is conjugate to the linear fractional transformation y or y^5 .

(iv) If trace(g) = ± 1 , det (g) $\neq 1$ or trace(g) = ± 3 , det (g) $\neq 3$ or trace(g) = ± 2 , then the order of g is infinite and it is conjugate to the linear fractional transformation $(xy)^n$.

Hence fixed points of g are imaginary if it is conjugate to the linear fractional transformation x, y, y^2, y^3, y^4 or y^5 . Since fixed points of x and y are $\pm \frac{\sqrt{-3}}{3}$ and $\frac{-3\pm\sqrt{-3}}{6}$ respectively, and the conjugates of x and y having the same discriminant. Hence fixed points exist only if n = 3.

Example 3.3. Let $g = xyx \in H$. Then (z)g = z yields the quadratic equation $3z^2 - 3z + 1 = 0$, which has roots $\frac{3\pm\sqrt{-3}}{6}$ which are fixed points of g = xyx.

Example 3.4. Let $g = yxy^{-1} \in H$. Then (z)g = z yields the quadratic equation $3z^2 + 6z + 4 = 0$. This equation has roots $\frac{-3\pm\sqrt{-3}}{3}$, which are fixed points of $g = yxy^{-1}$.

Theorem 3.5.

- (i) x maps a totally negative imaginary quadratic number onto a totally positive imaginary quadratic number and vice versa.
- (ii) If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$ is totally positive imaginary quadratic number, then $(\alpha)y^j$ is totally negative imaginary quadratic number for j = 1, 2, 3, 4, 5.

Proof. (i) Let α be a totally negative imaginary quadratic number, then ac < 0 implies that either a > 0 and c, d < 0 or a < 0 and c, d > 0. Now we have the following table.

α	a	d	3c
$(\alpha)x$	-a	c	3d

If a < 0 and c, d > 0, then from above information we can see that new values of a, d, c for $(\alpha)x$ are all positive. This implies that $(\alpha)x$ is totally positive imaginary quadratic number.

On the other hand, if a > 0 and c, d < 0 then new values of a, d, c are all negative. So $(\alpha)x$ is a totally positive imaginary quadratic number.

Similarly x maps a totally positive imaginary quadratic number to a totally negative imaginary quadratic number.

(*ii*) Following table gives the new values of a, d, c for $(\alpha)y^j$, where j = 1, 2, 3, 4, 5.

α	a	d	3c
$(\alpha)y$	-a-3c	с	$3\left(2a+d+3c\right)$
$(\alpha)y^2$	-5a - 3d - 6c	2a+d+3c	$3\left(4a+3d+4c\right)$
$(\alpha)y^3$	-7a - 6d - 6c	4a+3d+4c	$3\left(4a+4d+3c\right)$
$(\alpha)y^4$	-5a - 6d - 3c	4a+4d+3c	$3\left(2a+3d+c\right)$
$(\alpha)y^5$	-a - 3d	2a+3d+c	3d

Since α is a totally positive, so either a, d, c > 0 or a, d, c < 0. If a, d, c > 0, then $(\alpha)y^j$ are all totally negative imaginary quadratic numbers. Now if a, d, c < 0, then again from above table, we can see $(\alpha)y^j$ are all totally negative imaginary quadratic numbers. Thus $(\alpha)y^j$ are all totally negative imaginary quadratic numbers.

Theorem 3.6.

- (i) If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*\left(\sqrt{-n}\right)$, then $\|\alpha\| = \|(\alpha)x\|$.
- (ii) If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$ is totally positive imaginary quadratic number, then $\|\alpha\| < \|(\alpha)y^j\|$ for j = 1, 2, 3, 4, 5.

Proof. (i) Consider the following table.

α	a	d	3c
$(\alpha)x$	-a	c	3d

which implies $\|\alpha\| = |a| = \|(\alpha)x\|$. (*ii*) The values of $(\alpha)y^j$ for j = 1, 2, 3, 4, 5 are given in the following table.

α	a	d	3c
$(\alpha)y$	-a-3c	с	$3\left(2a+d+3c\right)$
$(\alpha)y^2$	-5a - 3d - 6c	2a+d+3c	$3\left(4a+3d+4c\right)$
$(\alpha)y^3$	-7a - 6d - 6c	4a + 3d + 4c	$3\left(4a+4d+3c\right)$
$(\alpha)y^4$	-5a - 6d - 3c	4a + 4d + 3c	$3\left(2a+3d+c\right)$
$(\alpha)y^5$	-a - 3d	2a+3d+c	3d

Since α is a totally positive imaginary quadratic number, so ac > 0. Therefore either a, d, c > 0 or a, d, c < 0. This implies $||(\alpha)y|| = |a + c| > |a|$. Also, $||(\alpha)y^2|| = |5a + 3d + 2c| > |a|$, $||(\alpha)y^3|| = |7a + 6d + 2c| > |a|$, $||(\alpha)y^4|| = |5a + 6d + c| > |a|$, $||(\alpha)y^5|| = |a + 3d| > |a|$. Thus $||\alpha|| < ||(\alpha)y^j||$ for j = 1, 2, 3, 4, 5. **Theorem 3.7.** If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$, then denominator of every element in αH has the same sign.

Proof.	Consider	the	following	• table.
--------	----------	-----	-----------	----------

α	a	d	3c
$(\alpha)x$	-a	c	3d
$(\alpha)y$	-a-3c	c	$3\left(2a+d+3c\right)$
$(\alpha)y^2$	-5a - 3d - 6c	2a+d+3c	$3\left(4a+3d+4c\right)$
$(\alpha)y^3$	-7a - 6d - 6c	4a + 3d + 4c	$3\left(4a+4d+3c\right)$
$(\alpha)y^4$	-5a - 6d - 3c	4a + 4d + 3c	$3\left(2a+3d+c\right)$
$(\alpha)y^5$	-a - 3d	2a+3d+c	3d

If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$ with c > 0, then d is also positive. So it can be easily observed from the above information that every element in αH has positive denominator. If $\alpha = \frac{a+\sqrt{-n}}{3c} \in Q^*(\sqrt{-n})$ with c < 0, then d is also negative. So it can be easily observed from the above information that every element in αH has negative denominator. \Box

 $\begin{array}{l} \textbf{Theorem 3.8.} \ If \ \alpha = \frac{a + \sqrt{-n}}{3c} \in Q^* \left(\sqrt{-n} \right), \ then \ there \ exists \ a \ sequence \ of \ positive \ integers \ \|\alpha_0\|, \|\alpha_1\|, \|\alpha_2\|, \ldots, \|\alpha_m\| \ such \ that \ \|\alpha_0\| > \|\alpha_1\| > \|\alpha_2\| > \ldots > \|\alpha_m\|, \ where \ \|\alpha_m\| = \left\{ \begin{array}{l} 0, 3 \quad if \ n \equiv 3 \\ 0 \quad if \ n \equiv 0 \ (\bmod 3), \ but \ n \neq 3 \\ 1 \quad if \ n \equiv 2 \ (\bmod 3) \end{array} \right. . \end{array} \right.$

Proof. Let $\alpha = \alpha_1$ be a totally positive imaginary quadratic number so $(\alpha_1)x$ is a totally negative imaginary quadratic number and $|| (\alpha_1)x || = || \alpha_1 ||$. Since $(\alpha_1)x$ is a totally negative imaginary quadratic number, then by Theorem 3.5 (ii), one of $(\alpha_1)xy^j$ for j = 1, 2, 3, 4, 5 is a totally positive imaginary quadratic number. If $(\alpha)xy^j = \alpha_2$ is a totally positive imaginary quadratic number, then by Theorem 3.6 (i) $\alpha_2 || < || (\alpha_1)x || = || \alpha_1 ||$. Similarly, we obtain another totally positive imaginary quadratic number α_3 in the adjacent hexagon to that containing α_2 such that $||\alpha_0|| > ||\alpha_1|| > ||\alpha_2|| \dots > ||\alpha_m||$. After a finite number of steps it must terminate.

(i) If n = 3, then after a finite number of steps we reach to α_m such that $\|\alpha_m\| = 0$ or 3. If $\alpha_m = \frac{-3\pm\sqrt{-3}}{6}$, then because $\frac{-3\pm\sqrt{-3}}{6}$ are fixed points of y, therefore, we can not reach at an imaginary quadratic number whose norm is equal to zero. Otherwise we reach at $\alpha_m = \frac{\sqrt{-3}}{\pm 3}$.

(ii) If $n \equiv 0 \pmod{3}$, but $n \neq 3$, then we reach at an imaginary quadratic number α_m such that $\|\alpha_m\| = 0$.

(*iii*) If $n \equiv 2 \pmod{3}$, then we reach at an imaginary quadratic number α_m such that $\|\alpha_m\| = 1$.

Example 3.9. Let $\alpha_1 = \frac{7+\sqrt{-2}}{3}$, which is totally positive imaginary quadratic number. Then $(\alpha_1)x = \frac{-7+\sqrt{-2}}{51}$, which is totally negative imaginary quadratic

number. Also in the hexagon containing $(\alpha_1) x$, $(\alpha_1) xy^5 = \frac{4+\sqrt{-2}}{3}$ is totally positive imaginary quadratic number. Take $\alpha_1 = \frac{4+\sqrt{-2}}{3}$, so $\|\alpha_1\| > \|\alpha_2\|$. Now $(\alpha_2)x = \frac{-4+\sqrt{-2}}{18}$ is totally negative imaginary quadratic number, then in the hexagon containing $(\alpha_2)x$, $(\alpha_2)xy^5 = \frac{1+\sqrt{-2}}{3}$ is totally positive imaginary quadratic number. Take $\alpha_3 = \frac{1+\sqrt{-2}}{3}$, implying that $\|\alpha_0\| > \|\alpha_1\| > \|\alpha_3\|$.

Theorem 3.10. There are exactly four orbits of $Q^*(\sqrt{-3})$ under the action of H.

Proof. Since we know that there exists a sequence of positive integers $\|\alpha_0\|$, $\|\alpha_1\|$, $\|\alpha_2\|, \ldots, \|\alpha_m\|$ such that $\|\alpha_0\| > \|\alpha_1\| > \|\alpha_2\| > \|\alpha_3\| > \|\alpha_4\| > \ldots > \|\alpha_m\|$, where $\|\alpha_m\| = 0$ or 3. If $\alpha_m = \pm \frac{\sqrt{-3}}{3}$ or $\frac{-3\pm\sqrt{-3}}{6}$, then $\pm \frac{\sqrt{-3}}{3}$ and $\frac{-3\pm\sqrt{-3}}{6}$ are fixed points of x and y respectively. Therefore in this case there are four orbits of $Q^*(\sqrt{-3})$. That is, $\frac{\sqrt{-3}}{3}H, \frac{-\sqrt{-3}}{3}H, \frac{-3+\sqrt{-3}}{6}H$ and $\frac{3+\sqrt{-3}}{-6}H$. Hence there are exactly four orbits of $Q^*(\sqrt{-3})$ under the action of H.

Theorem 3.11. Let $\alpha \in Q^*(\sqrt{-n})$, where $n \neq 3$.

- (i) If $\alpha = \frac{\sqrt{-n}}{3}$, where $n \equiv 0 \pmod{3}$ then $\frac{\sqrt{-n}}{3}$ and $\frac{\sqrt{-n}}{n}$ lie in αH .
- (ii) If $\alpha = \frac{1+\sqrt{-n}}{3}$, where $n \equiv 2 \pmod{3}$ then $\frac{1+\sqrt{-n}}{3}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αH .
- (iii) If $\alpha = \frac{-1+\sqrt{-n}}{3}$, where $n \equiv 2 \pmod{3}$ then $\frac{-1+\sqrt{-n}}{3}$ and $\frac{1+\sqrt{-n}}{n+1}$ lie in αH .
- (iv) If $\alpha = \frac{\sqrt{-n}}{3c}$, where $n \equiv 0 \pmod{3}$ and $c \neq \pm 1, \pm \frac{n}{3}$, $n = 3cc_1$ then $\frac{\sqrt{-n}}{3c}$ and $\frac{\sqrt{-n}}{3c_1}$ lie in αH .
- (v) If $\alpha = \frac{1+\sqrt{-n}}{3c}$ where $n \equiv 2 \pmod{3}$ and $n+1 = 3cc_1$, then $\frac{1+\sqrt{-n}}{3c}$ and $\frac{-1+\sqrt{-n}}{3c_1}$ lie in αH .
- (vi) If $\alpha = \frac{-1+\sqrt{-n}}{3c}$ where $n \equiv 2 \pmod{3}$ and $n+1 = 3cc_1$, then $\frac{-1+\sqrt{-n}}{3c}$ and $\frac{1+\sqrt{-n}}{3c_1}$ lie in αH .

Proof. (i) If $\alpha = \frac{\sqrt{-n}}{3}$, then we have the following information.

α	0	$\frac{n}{3}$	3
$(\alpha)x$	0	1	n
$(\alpha)y$	-3	1	n+9
$(\alpha)y^2$	-6 - n	$\frac{n+9}{3}$	$3\left(4+n\right)$
$(\alpha)y^3$	-2n-6	4+n	9 + 4n
$(\alpha)y^4$	-2n - 3	$\frac{9+4n}{3}$	3(n+1)
$(\alpha)y^5$	-n	n+1	n

Hence from the above table, we see that $\frac{\sqrt{-n}}{3}$ and $\frac{\sqrt{-n}}{n}$ lie in the same orbit.

α	1	$\frac{n+1}{3}$	3
$(\alpha)x$	-1	1	1+n
$(\alpha)y$	-4	1	16 + n
$(\alpha)y^2$	-12 - n	$\frac{16+n}{3}$	27 + 3n
$(\alpha)y^3$	-15 - 2n	9+n	25 + 4n
$(\alpha)y^4$	-10 - 2n	$\frac{25+4n}{3}$	12 + 3n
$(\alpha)y^5$	-2 - n	4 + n	1+n

(*ii*) If $\alpha = \frac{1+\sqrt{-n}}{3}$, then we have the following information.

Hence from the above table, we see that $\frac{1+\sqrt{-n}}{3}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αH . (*iii*) If $\alpha = \frac{-1+\sqrt{-n}}{3}$, then we have the following information.

α	-1	$\frac{n+1}{3}$	3
$(\alpha)x$	1	1	1+n
$(\alpha)y$	-2	1	4+n
$(\alpha)y^2$	-2 - n	$\frac{4+n}{3}$	$3\left(1+n\right)$
$(\alpha)y^3$	-1 - 2n	1+n	1 + 4n
$(\alpha)y^4$	-2n	$\frac{1+4n}{3}$	3n
$(\alpha)y^5$	-n	n	n+1

Hence from the above table, we see that $\frac{-1+\sqrt{-n}}{3}$ and $\frac{1+\sqrt{-n}}{n+1}$ lie in the same orbit. (*iv*) If $\alpha = \frac{\sqrt{-n}}{3c}$, then we have the following information.

α	0	c_1	3c
$(\alpha)x$	0	c	$3 c_1$
$(\alpha)y$	-3c	c	$3(3c+c_1)$
$(\alpha)y^2$	$-6c - 3c_1$	$3c + c_1$	$3(4c+3c_1)$
$(\alpha)y^3$	$-6c - 6c_1$	$4c + 3c_1$	$3(3c+4c_1)$
$(\alpha)y^4$	$-3c - 6c_1$	$3c + 4c_1$	$3(c+3c_1)$
$(\alpha)y^5$	$-3c_1$	$c + 3c_1$	$3c_1$

Hence from the above table, we see that $\frac{\sqrt{-n}}{3c}$ and $\frac{\sqrt{-n}}{3c_1}$ lie in the same orbit. (v) If $\alpha = \frac{1+\sqrt{-n}}{3c}$, then we have the following information.

α	1	c_1	3c
$(\alpha)x$	-1	с	$3 c_1$
$(\alpha)y$	-1 - 3c	с	$3(2+3c+c_1)$
$(\alpha)y^2$	$-5 - 6c - 3c_1$	$2 + 3c + c_1$	$3(4+4c+3c_1)$
$(\alpha)y^3$	$-7 - 6c - 6c_1$	$4 + 4c + 3c_1$	$3(4+3c+4c_1)$
$(\alpha)y^4$	$-5 - 3c - 6c_1$	$4 + 3c + 4c_1$	$3(2+c+3c_1)$
$(\alpha)y^5$	$-1 - 3c_1$	$2 + c + 3c_1$	$3c_1$

Hence from the above table, we see that $\frac{1+\sqrt{-n}}{3c}$ and $\frac{-1+\sqrt{-n}}{3c_1}$ lie in αH . (vi) If $\alpha = \frac{-1+\sqrt{-n}}{3c}$, then we have the following information.

α	-1	c_1	3c
$(\alpha)x$	1	С	$3 c_1$
$(\alpha)y$	1 - 3c	с	$3(2+3c+c_1)$
$(\alpha)y^2$	$5 - 6c - 3c_1$	$2 + 3c + c_1$	$3(4+4c+3c_1)$
$(\alpha)y^3$	$7 - 6c - 6c_1$	$4 + 4c + 3c_1$	$3(4+3c+4c_1)$
$(\alpha)y^4$	$5 - 3c - 6c_1$	$4 + 3c + 4c_1$	$3(2+c+3c_1)$
$(\alpha)y^5$	$1 - 3c_1$	$2 + c + 3c_1$	$3c_1$

Hence from the above table, we see that $\frac{-1+\sqrt{-n}}{3c}$ and $\frac{1+\sqrt{-n}}{3c_1}$ lie in αH .

Example 3.12. By using Theorem 9, the orbits of $Q^*(\sqrt{-30})$ are

(i) $\frac{\sqrt{-30}}{3}$ and $\frac{\sqrt{-30}}{30}$ lie in $\frac{\sqrt{-30}}{3}H$. (ii) $\frac{\sqrt{-30}}{-3}$ and $\frac{\sqrt{-30}}{-30}$ lie in $\frac{\sqrt{-30}}{-3}H$.

(*iii*)
$$\frac{\sqrt{-30}}{6}$$
 and $\frac{\sqrt{-30}}{15}$ lie in $\frac{\sqrt{-30}}{6}H$. (*iv*) $\frac{\sqrt{-30}}{-6}$ and $\frac{\sqrt{-30}}{-15}$ lie in $\frac{\sqrt{-30}}{-6}H$.

So, there are four orbits of $Q^*\left(\sqrt{-30}\right)$.

Example 3.13. By using Theorem 9, the orbits of $Q^*(\sqrt{-11})$ are

(i) $\frac{1+\sqrt{-11}}{3}$ and $\frac{-1+\sqrt{-11}}{12}$ lie in $\frac{1+\sqrt{-11}}{3}H$. (ii) $\frac{1+\sqrt{-11}}{-3}$ and $\frac{-1+\sqrt{-11}}{-12}$ lie in $\frac{1+\sqrt{-11}}{-3}H$. (iii) $\frac{-1+\sqrt{-11}}{3}$ and $\frac{1+\sqrt{-11}}{12}$ lie in $\frac{-1+\sqrt{-11}}{3}H$.

$$(iv) = \frac{-1+\sqrt{-11}}{-3}$$
 and $\frac{1+\sqrt{-11}}{-12}$ lie in $\frac{-1+\sqrt{-11}}{-3}H$.

(v)
$$\frac{1+\sqrt{-11}}{6}$$
 and $\frac{-1+\sqrt{-11}}{6}$ lie in $\frac{1+\sqrt{-11}}{6}H$

(vi)
$$\frac{1+\sqrt{-11}}{-6}$$
 and $\frac{-1+\sqrt{-11}}{-6}$ lie in $\frac{1+\sqrt{-11}}{-3}H$

So, there are six orbits of $Q^*\left(\sqrt{-11}\right)$.

Definition 3.14. If n is a positive integer, then d(n) denotes the arithmetic function defined by the number of positive divisors of n which are multiple of 3.

Theorem 3.15. If $n \neq 3$ then the total number of orbits of $Q^*(\sqrt{-n})$ under the action of H are

$$\begin{cases} d(n) & \text{if } n \equiv 0 \pmod{3}, \text{ but } n \neq 3. \\ 2d(n+1) & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

Proof. If $n \equiv 0 \pmod{3}$, then the divisors of n which are multiples of 3 are $\pm 3, \pm m_1, \pm m_2, \pm m_3, \ldots, \pm n$. Then by Theorem 3.11 (i) there exist two orbits of $Q^*(\sqrt{-n})$ corresponding to the divisors $\pm 3, \pm n$ of n. We therefore left with

2d(n) - 4 divisors of *n*. Then by Theorem 3.11 (iv), there exist $\frac{2d(n)-4}{2}$ orbits corresponding to the remaining 2d(n) - 4 divisors of *n*. Hence there are $2 + \frac{2d(n)-4}{2} = d(n)$ orbits of $Q^*(\sqrt{-n})$.

If $n \equiv 2 \pmod{3}$, then the divisors of n+1 which are multiples of 3 are $\pm 3, \pm n_1, \pm n_2, \pm n_3, \ldots, \pm (n+1)$. By Theorem 3.11 (*ii*) and (*iii*), there exist four orbits corresponding to the divisors $\pm 3, \pm (n+1)$ of n+1. Thus we are left with 2d (n+1)-4 divisors of n+1. By Theorem 3.11 (*v*) and (*vi*) corresponding to the remaining 2d (n+1) - 4 divisors of n+1, there exist 2d (n+1) - 4 orbits. Hence there are 4 + 2d (n+1) - 4 = 2d (n+1) orbits of $Q^* (\sqrt{-n})$.

Example 3.16. Consider $Q^*(\sqrt{-30})$. Then the positive divisors of 30 which are multiple of 3 are 3, 6, 15, 30. Therefore d(30) = 4, which implies that the total number of orbits are four.

Example 3.17. In $Q^*(\sqrt{-11})$. The number of positive divisors of 12 which are multiple of three are 3, 6, 12. Therefore d(12) = 3. Hence the total number of orbits are $2d(12) = 2 \times 3 = 6$.

Corollary 3.18. The action of H on $Q^*(\sqrt{-n})$ is intransitive.

References

- B. Everitt, Alternating quotients of the (3,q,r) triangle groups, Comm. Algebra 26 (1997), 1817-1832.
- [2] I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Hungar. 37 (1981) 159 - 164.
- M.P. Lingham Modular forms and elliptic curves over imaginary quadratic fields, Diss. University of Nottingham, 2005.
- [4] Q. Mushtaq, Modular group acting on real quadratic fields, Bull. Austr. Math. Soc. 37 (1988), 303 - 309.
- Q. Mushtaq, On word structure of the modular group over finite and real quadratic fields, Discr. Math. 178 (1998), 155 - 164.
- [6] Q. Mushtaq and G.C. Rota, Alternating groups as quotients of two generator group, Advances in Math. 96 (1992), 113 - 1211.
- [7] Q. Mushtaq and H. Servatius, Permutation representation of the symmetry groups of regular hyperbolic tessellations, J. Lond. Math. Soc. 48 (1993), 77 – 86.
- [8] A. Torstensson, Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group, J. Commut. Algebra 2 (2010), 501-514.

Received September 17, 2017

Department of Mathematics, University of Education, Lahore, Jauharabad, Pakistan E-mail: abdul.razaq@ue.edu.pk