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Weighted means and weighted mean equations

in lineated symmetric spaces

Pattrawut Chansangiam

Abstract. We develop further theory of weighted means in a lineated symmetric space. First,

we illustrate fundamental examples of that space involving some classical additive/multiplicative

groups of matrices and C∗-algebra elements. Then we investigate properties of weighted means in

which weights are arbitrary real numbers. Moreover, we investigate several (systems of) weighted

mean equations in lineated symmetric spaces. In fact, every mean problem considered here is

shown to has a unique solution in an explicit form.

1. Introduction

The concept of mean or midpoint shows up naturally in mathematics. One of
familiar means for positive real numbers is the geometric mean a#b =

√
ab, which

is the solution of the algebraic equation x2 = ab. This mean can be extended to
positive de�nite matrices A and B of the same size given by

A#B = A
1
2 (A− 1

2BA− 1
2 )

1
2A

1
2 .

Here, X
1
2 denotes the positive square root of a positive de�nite matrix X. This

de�nition was exhibited in [4], and it is equivalent to that given in [19]. Signi�cant
properties of matrix geometric mean were originally established in [5]. The next
observation is of signi�cant:

Proposition 1.1 ([3]). For positive de�nite matrices A and B of the same size,

the geometric mean X = A#B is the unique positive de�nite solution of the

Riccati equation XA−1X = B.

An alternative approach to the matrix geometric mean in terms of the Riccati
equation and the congruence transformation is provided in [12]. For any t ∈ [0, 1],
the t-weighted geometric mean of positive de�nite matrices A and B is de�ned by

A#tB = A
1
2 (A− 1

2BA− 1
2 )tA

1
2 . (1)

Mean equations for matrices have been investigated e.g. in [1, 2, 15, 18]. The
formula (1) can be extended to the context of positive invertible operators on a
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Hilbert space. An abstract theory of operator means was investigated by Kubo
and Ando [11]; see more information in [10, Ch. 5], [9, Sect. 3] and [7, 8]. Certain
mean equations for Hilbert space operators were investigated in [6]; in particular:

Proposition 1.2. Let A and B be positive invertible operators on the same Hilbert

space, and let t ∈ (0, 1). Then the equation A#tX = B has a unique positive

solution

X = A
1
2 (A− 1

2BA− 1
2 )

1
tA

1
2 =: A# 1

t
B.

Note that, in this case, the weight 1/t does not belong to the interval (0, 1) any-
more.

There are another axiomatic approaches for means in various frameworks, e.g.
in symmetric cones [17] and convex bodies [20]. Let us focus on the algebraic-
geometric setting of re�ection quasigroups, introduced by Lawson and Lim [13].
In this setting, a fundamental idea is that each point x is associated with a �sym-
metry� Sx. The symmetry sending x to y ought to be the point symmetry Sm

through the midpoint m of x and y. These geometric requirements as well as
Proposition 1.1 motivate the following de�nition.

De�nition 1.3 ([13, 16]). A symset is a set X together with a map S : x 7→ Sx,
here each Sx : X → X is called the symmetry or the point re�ection through x,
such that the following conditions hold for all a, b, c ∈ X:

(M1) Sa(a) = a;

(M2) SaSa(b) = b;

(M3) SaSb(c) = SSa(b)Sa(c).

In addition, if X satis�es the following property

(M4) the equation Sx(a) = b has a unique solution x ∈ X,

then X is called a re�ection quasigroup or a dyadic symset. The solution of the
equation Sx(a) = b is called the (geometric) mean or the midpoint of a and b,
denoted by a#b.

For a symset X, we de�ne the core operation of two elements a and b in X
by a • b = Sa(b). Then property (M4) states precisely that for each a, b ∈ X, the
equation x•a = b has a unique solution (cf. Proposition 1.1 with A•B = AB−1A).
Hence, in particular, every re�ection quasigroup is a right quasigroup with respect
to the core operation. It turns out that every re�ection quasigroup is equipped
with weighted means in which weights are dyadic rationals. These means are
de�ned through dyadic geodesics, see [13].

A topological version of a re�ection quasigroup was also investigated, and is
named a lineated symmetric space [16]. This space is equipped, through continuous
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symmetry homomorphism, with weighted geometric means in which weights are
arbitrary reals. Certain mean equations were investigated in [14].

In the present paper, we develop further theory of weighted means on lin-
eated symmetric spaces. First, we provide fundamental examples for lineated
symmetric spaces; see Section 3. Indeed, weighted means on some classical addi-
tive/multiplicative groups are given by weighted arithmetic means and weighted
geometric means, respectively. We then move to establish properties of weighted
means in which weights are arbitrary real numbers; see Section 4. Some of them
generalize those of dyadic rational numbers in [14]. Moreover, we investigate
weighted mean equations in lineated symmetric spaces in both single equations
and systems of equations; see Sections 5 and 6. All equations considered here are
consistent and, in fact, have unique solutions in explicit forms. Proposition 1.2
and the mean equations discussed in [14] are special cases of our particular results.

2. Preliminaries

In this section, we recall some terminologies and results for re�ection quasigroups
and lineated symmetric spaces. We start with a morphism in the category of
re�ection quasigroups as follows.

De�nition 2.1 ([13]). A function f : (X, •X)→ (Y, •Y ) between re�ection quasi-
groups is called a symmetry homomorphism or a •-homomorphism if

f(a •X b) = f(a) •Y f(b)

for all a, b ∈ X.

Let D be the set of dyadic rationals in R. Then D is a re�ection quasigroup
with respect to the symmetry Sa(b) = 2a− b for each a, b ∈ D.

Theorem 2.2 ([13]). For any re�ection quasigroup X and two elements x, y ∈ X,

there exists a unique symmetry homomorphism γ : D→ X such that γ(0) = x and

γ(1) = y.

A symmetry homomorphism from D into a re�ection quasigroup X is called a
dyadic geodesic in X. The function γ in Theorem 2.2 is always mean-preserving,
i.e. γ(a# b) = γ(a) # γ(b) for all a, b ∈ D. Theorem 2.2 allows us to de�ne the t-
weighted mean x#t y = γ(t) for each t ∈ D, where γ is the unique dyadic geodesic
such that γ(0) = x and γ(1) = y. It turns out that #−1 = •, see [14].

Theorem 2.3 ([16]). In a re�ection quasigroup X, the mean #t satis�es the

following properties for all u, v, w, z ∈ X, and all r, s, t ∈ D:

(1) (idempotency) u#t u = u,

(2) (commutativity) u#t v = v#1−t u,
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(3) (exponential law) u#r (u#s v) = u#rs v,

(4) (a�ne change of parameter) (u#r v) #t (u#s v) = u#(1−t)r+ts v,

(5) (limited mediality) if u#w = m = v# z, then (u#t v) # (w#t z) = m,

(6) (cancellability) u#t v = u#t w for some t 6= 0 implies v = w,

(7) u • (v#t w) = (u • v) #t (u • w).

A topological version of a re�ection quasigroup is of interest.

De�nition 2.4 ([16]). A lineated symmetric space is a symset X together with a
Hausdor� topology such that

(1) The map (x, y) 7→ Sx(y) : X ×X → X is continuous.

(2) For each x, y ∈ X, there is a unique continuous symmetry homomorphism
αx,y : R → X such that αx,y(0) = x and αx,y(1) = y. Here, R is equipped
with the natural symmetry homomorphism Sa(b) = 2a− b.

(3) The map (t, x, y) 7→ x#t y : R×X ×X → X is continuous.

The image αx,y(t) is also denoted x#t y, and is called the t-weighted mean of x
and y.

Every lineated symmetric space satis�es (M4) and, thus, is a re�ection quasi-
group ([16, Proposition 3.3]). By [16, Remark 3.4], we have that for all x, y ∈ X
and t ∈ R,

x#t y = y#1−t x. (2)

A pointed re�ection quasigroup (X, •, ε) is a re�ection quasigroup (X, •) to-
gether with a �xed element ε ∈ X, called a base point. In this case, we de�ne
xt = ε#t x for each x ∈ X and t ∈ D. The concept of pointed lineated symmetric

space is de�ned similarly. In this space, xt = ε#t x is de�ned for any t ∈ R.

Theorem 2.5 ([16]). Let (X, •, ε) be a pointed re�ection quasigroup endowed with

a Hausdor� topology such that

(i) the map (x, y) 7→ x • y : X ×X → X is continuous;

(ii) the map (q, x) 7→ xq : D × X → X can be extended to a continuous map

(t, x) 7→ xt : R×X → X.

Then X is a pointed lineated symmetric space.



Weighted means and weighted mean equations 201

3. Examples of lineated symmetric spaces

In this section, we provide fundamental examples of lineated symmetric spaces.

Example 3.1. Recall that (R,+) is an additive group. The natural core operation
on R is de�ned for each x, y ∈ R by x • y = 2x − y. Then (R, •) is a lineated
symmetric space.

Proof. It is easy to see that (R, •) is a symset. We equip R with the usual topology,
which is Hausdor�. The map (x, y) 7→ x • y is clearly continuous on R × R. Let
x, y ∈ R and de�ne αx,y : (R, •)→ (R, •) by

αx,y(t) = (1− t)x+ ty.

Then αx,y is a continuous •-homomorphism such that αx,y(0) = x and αx,y(1) = y.
For uniqueness, let β : (R, •) → (R, •) be another continuous •-homomorphism
such that β(0) = x and β(1) = y. Note that β(t) ∈ D for any t ∈ D. By [14,
Remark 3.3], the restriction β|D must be of the form β(t) = at+b for some a, b ∈ D.
Since both αx,y and β are continuous on R, αx,y = β on D, and D is dense in R,
we conclude αx,y = β on R. The map (t, x, y) 7→ x#t y = αx,y(t) = (1− t)x+ ty
is clearly continuous. Therefore, (R, •) is a lineated symmetric space.

Example 3.2. Recall that the set Mn(R) of n-by-n real matrices is a group
under addition. Its natural core operation is de�ned by A � B = 2A − B. Then
(Mn(R),�) is a lineated symmetric space.

Proof. It is easy to see that (Mn(R),�) is a symset. We equip Mn(R) with the
topology induced by a matrix norm (e.g. the Frobenius norm). Clearly, the map
(A,B) 7→ 2A−B is continuous. Let A,B ∈Mn(R) and de�ne

αA,B : (R, •)→ (Mn(R),�), αA,B(t) = (1− t)A+ tB.

Then, αA,B(0) = A and αA,B(1) = B. The map αA,B is a symmetry homomor-
phism since for any s, t ∈ R, we have

αA,B(s)� αA,B(t) = [(1− s)A+ sB]� [(1− t)A+ tB]

= [1− (s • t)]A+ (s • t)B
= αA,B(s • t).

To show the uniqueness, let β : (R, •) → (Mn(R),�) be another continuous sym-
metry homomorphism such that β(0) = A and β(1) = B. For each X ∈ Mn(R),
we de�ne πij(X) = Xij , the (i, j)-th entry of X. For any t, s ∈ R, we have

(πij ◦ β)(t • s) = πij(β(t)� β(s)) = πij(2β(t)− β(s))

= (2β(t)− β(s))ij = 2β(t)ij − β(s)ij

= β(t)ij • β(s)ij = (πij ◦ β)(t) • (πij ◦ β)(s).
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By Example 3.1, πij ◦β must be of the form (πij ◦β)(t) = (1− t)Aij + tBij . Hence,

β(t) = [(πij ◦ β)(t)]ij = [(1− t)Aij + tBij ]ij

= (1− t)A+ tB = αA,B(t).

Finally, note that the map (t, A,B) 7→ (1− t)A+ tB is continuous.

To provide the next example of lineated symmetric spaces, recall that a subset
T of a group is termed a twisted subgroup if it contains the identity and is closed
under the core operation x • y = xy−1x. In addition, if for each x ∈ T there is a
unique element a ∈ T such that a2 = x, then T is said to be a 2-powered twisted

subgroup. In this case, we call a the square root of x, denoted by x
1
2 .

Lemma 3.3. Let X be a 2-powered twisted subgroup of a group. Then, for each

a, b ∈ X, the equation xa−1x = b has a unique solution given by

x = a
1
2 (a−

1
2 ba−

1
2 )

1
2 a

1
2 . (3)

Proof. The proof is similar to that for matrices; see e.g. [12]. It is easy to see that

if x = a
1
2 (a−

1
2 ba−

1
2 )

1
2 a

1
2 , then xa−1x = b. For uniqueness, let x, y ∈ X be such

that xa−1x = b = ya−1y. Then

(a−
1
2xa−

1
2 )2 = a−

1
2xa−1xa−

1
2 = a−

1
2 ya−1ya−

1
2 = (a−

1
2 ya−

1
2 )2.

By the uniqueness of the square root, we have a−
1
2xa−

1
2 = a−

1
2 ya−

1
2 and hence

x = y.

Example 3.4. Let A be a C∗-algebra and let A+ be the set of positive invertible
elements in A. Then A+ is a 2-powered twisted subgroup of the group of invertible
elements in A. For each a, b ∈ A+ we de�ne

a� b = ab−1a.

Then (A+,�) is a lineated symmetric space in which the weighted mean #t is
given by

a#t b = a
1
2 (a−

1
2 ba−

1
2 )ta

1
2 , a, b ∈ A+, t ∈ R. (4)

Proof. It is straightforward to show that (A+,�) is a symset. Lemma 3.3 tells us
that the equation x�a = b has a unique solution. Thus, (X,�) is a re�ection quasi-
group. We equip A+ with the subspace topology inherited from the norm topology
on A. The map (a, b) 7→ ab−1a is continuous on A+×A+ by the continuities of the
multiplication and the inversion. Consider the map (q, a) 7→ aq : D × A+ → A+

and its extension Φ : R × A+ → A+, (t, a) 7→ at = et log a. Here, ea and log a
are de�ned via the continuous functional calculus on the spectrum of a. Since
the exponential map and the logarithm map on C∗-algebras are continuous, Φ is
continuous. Therefore, A+ is a lineated symmetric space by Theorem 2.5.
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In the rest, we shall show that the weighted mean on A+ is given by (4). By
uniqueness, it su�ces to prove that, for each a, b ∈ A+, the map αa,b : R → A+,
αa,b(t) = a#t b is a continuous symmetry homomorphism such that αa,b(0) = a
and αa,b(1) = b. Indeed, for each s, t ∈ R, we have

αa,b(s) � αa,b(t) = [a
1
2 (a−

1
2 ba−

1
2 )sa

1
2 ][a

1
2 (a−

1
2 ba−

1
2 )ta

1
2 ]−1[a

1
2 (a−

1
2 ba−

1
2 )sa

1
2 ]

= a
1
2 (a−

1
2 ba−

1
2 )sa

1
2 a−

1
2 (a−

1
2 ba−

1
2 )−ta−

1
2 a

1
2 (a−

1
2 ba−

1
2 )sa

1
2

= a
1
2 (a−

1
2 ba−

1
2 )2s−ta

1
2

= αa,b(s • t).

Clearly, the map αa,b is continuous, αa,b(0) = a and αa,b(1) = b.

4. Properties of weighted means

In this section, we establish further properties of weighted means in lineated sym-
metric spaces in which weights are arbitrary real numbers.

Theorem 4.1. Let X be a lineated symmetric space. Then the following properties

hold for all x, y, z, w ∈ X and r, s, t ∈ R:

(1) (x#r y) #t (x#s y) = x#(1−t)r+ts y,

(2) If x#w = m = y# z, then (x#t y) # (w#t z) = m,

(3) x#r (x#s y) = x#rs y,

(4) x • (y#t z) = (x • y) #t (x • z),

(5) (x#t y) #s x = x#t (y#s x),

(6) (y#t z)
−1 = y−1 #t z

−1, here we �x a base point.

Proof. To prove (1), let t, r, s ∈ R. Since D is dense in R, there are sequences
(tn), (rn) and (sn) in D such that tn → t, rn → r and sn → s. By (sequential)
continuity, we have x#rn y → x#r y and x#sn y → x#s y. It follows that

(x#rn y) #tn (x#sn y)→ (x#r y) #t (x#s y)

and hence x#(1−tn)rn+tnsn y → x#(1−t)r+ts y. By Theorem 2.3, we have

(x#rn y) #tn (x#sn y) = x#(1−tn)rn+tnsn y.

Since X is Hausdor�, we get (x#r y) #t (x#s y) = x#(1−t)r+ts y. The assertions
(2)-(4) can be proved in a similar manner to (1). To prove (5), we have by using
(3) that

(x#t y) #s x = x#1−s (x#t y) = x#(1−s)t y

= x#t (x#1−s y) = x#t (y#s x).

The assertion (6) follows immediately from (4) by setting the base point ε = x.
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The property (5) in Theorem 4.1 had been not noticed before in the literature.

Theorem 4.2. The following hold in a lineated symmetric space X:

(1) For each w ∈ X and t ∈ R− {1}, the map x 7→ x#t w is bijective.

(2) For each w ∈ X and t ∈ R− {0}, the map x 7→ w#t x is bijective.

(3) (right cancellability) y#t x = z#t x for some t 6= 1 implies y = z.

(4) (left cancellability) x#t y = x#t z for some t 6= 0 implies y = z.

(5) For each a, b ∈ X such that a 6= b, the map t 7→ a#t b is injective.

Proof. We shall provide proofs of (1) and (5); the assertion (2) can be similarly
proved. The assertions (3)-(4) follow from (1)-(2). To prove (1), let z ∈ X. Then,
by Theorem 4.1, we have

(w# 1
1−t

z) #t w = w#1−t (w# 1
1−t

z) = w#1 z = z.

Hence, the map x 7→ x#t w is surjective. To show the injectivity, let w, y, z ∈ X
be such that y#t w = z#t w. By Theorem 4.1, we get

y = w#1 y = w# 1
1−t

(w#1−t y) = w# 1
1−t

(w#1−t z) = z.

Thus, x 7→ w#t x is bijective. To prove (5), let a, b ∈ X with a 6= b. Then the
associated symmetry homomorphism αa,b is nonconstant since αa,b(0) 6= αa,b(1).
By [16, Proposition 3.3], the map αa,b is injective. It follows that if a#t b = a#s b,
then αa,b(t) = αa,b(s) and hence t = s.

5. Weighted mean equations

In this section, we investigate certain weighted mean equations in lineated sym-
metric spaces. Every equation considered here is shown to have a unique solution
in an explicit form. Our results generalizes the mean equations in [14]. Moreover,
we discuss new mean equations.

From now on, let X be a lineated symmetric space and a, b ∈ X. To solve
weighted mean equations in X, the property (2) will be frequently used without
recalling.

Theorem 5.1. Let t ∈ R − {0}. Then the equation a#t x = b has a unique

solution x = a# 1
t
b.

Proof. By Theorem 4.1, we have a#t (a# 1
t
b) = a#1 b = b. For uniqueness, let

y ∈ X be such that a#t y = b. Then

a# 1
t
b = a# 1

t
(a#t y) = a#1 y = y.
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Theorem 5.1 includes Proposition 1.2 as a special case.

Corollary 5.2. Let s ∈ R− {0} and t ∈ R− {1}. Then, the equation

(a#s x) #t a = b

has a unique solution x = a# 1
s(1−t)

b.

Proof. By Theorem 4.1, we have

(a#s x) #t a = a#1−t (a#s x) = a#s(1−t) x.

Thus, the equation (a#s x) #t a = b is equivalent to a#s(1−t) x = b. Theorem 5.1
implies that x = a# 1

s(1−t)
b is a unique solution of this equation.

Corollary 5.3. Let s, t ∈ R be such that s(1− t) 6= 1. Then the equation

(x#s a) #t x = b

has a unique solution x = a# 1
1−s(1−t)

b.

Proof. Using Theorem 4.1, we get

(x#s a) #t x = x#1−t (x#s a)

= x#s(1−t) a

= a#1−s(1−t) x.

Hence, the equation (x#s a) #t x = b is equivalent to a#1−s(1−t) x = b. By
Theorem 5.1, we conclude that x = a# 1

1−s(1−t)
b is the unique solution of this

equation.

Theorem 5.4. Let s, t ∈ R be such that st− s 6= −1. Then the equation

(a#s x) #t b = x (5)

has a unique solution x = a# t
st−s+1

b.

Proof. The cases s = 0 and t = 0 are trivial. Now, consider the case s, t 6= 0. Set
y = a#s x. From the equation (5) and Theorem 5.1, we have y#t b = x = a# 1

s
y.

It follows from Theorem 4.1 that

(a#s x) # 1
t
x = y# 1

t
(a# 1

s
y) = y# 1

t
(y#1− 1

s
a)

= y# s−1
st
a = a# st−s+1

st
y.

Hence, the equation (5) is equivalent to a# st−s+1
st

y = b. By Theorem 5.1, this

equation has a unique solution

y = a# st
st−s+1

b.
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Therefore, the solution of (5) is given by

x = a# 1
s
y = a# 1

s
(a# st

st−s+1
b) = a# t

st−s+1
b.

Corollary 5.5. For each s, t ∈ R such that s 6= t, the equation

a#s x = b#t x

has a unique solution x = a# 1−t
s−t

b.

Proof. If s = 0, then by Theorem 5.1 the equation a = b#t x has a unique solution
x = a# t−1

t
b. Now, assume that s 6= 0. By Theorem 5.1, one can transform the

equation a#s x = b#t x to the following equation

(b#t x) # s−1
s
a = x.

Theorem 5.4 implies that this equation has a unique solution

x = b# s−1
s−t

a = a# 1−t
s−t

b.

Theorem 5.6. Let r, s, t ∈ R be such that s− sr + rt 6= 0. Then the equation

(x#s a) #r (x#t b) = x (6)

has a unique solution

x = a# rt
rt−rs+s

b. (7)

Proof. If r = 0, then the condition s− sr + rt 6= 0 implies s 6= 0. In this case, the
equation (6) is reduced to x#s a = x, which has a unique solution x = a. Now,
assume r 6= 0. According to Theorem 5.1, the equation (6) is equivalent to

x#t b = (x#s a) # 1
r
x.

Using Theorem 4.1, we transform this equation to

a# r+s−rs
r

x = b#1−t x.

By Corollary 5.5, the above equation has a unique solution given by (7).

As a special case of Theorem 5.6 when s = t, we have:

Corollary 5.7. Let r, t ∈ R with t 6= 0. Then the mean x = a#r b is a unique

solution of the equation (x#t a) #r (x#t b) = x.
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6. Systems of weighted mean equations

In this �nal section, we solve certain systems of weighted mean equations in lin-
eated symmetric spaces. Our results include systems of mean equations in [14] as
special cases.

Theorem 6.1. For each s, t ∈ R such that s 6= t, the system of equations

x#s y = a,

x#t y = b
(8)

has a unique solution x = a# s
s−t

b and y = a# s−1
s−t

b.

Proof. If s 6= 0 and t = 0, then the system (8) has a unique solution x = b and
y = a# s−1

s
b. If s = 0 and t 6= 0, then (8) has a unique solution x = a and

y = a# 1
t
b. Now, consider the case s, t 6= 0 with s 6= t. For uniqueness, let

x, y ∈ X be such that (8) holds. Note that the equation x#s y = a is equivalent
to y = x# 1

s
a by Theorem 5.1. Similarly, the equation x#t y = b is equivalent to

y = x# 1
t
b. We have

a = x#s (x# 1
t
b) = x# s

t
b = b#1− s

t
x.

By Theorem 5.1, x = b# t
t−s

a = a# s
s−t

b. It follows that

y = x# 1
t
b = b#1− 1

t
(b# t

t−s
a)

= b# t−1
t−s

a = a# s−1
s−t

b.

For existence, it is straightforward to verify that the above formulas of x and y
satisfy the system (8).

Corollary 6.2. For each t ∈ R− {−1}, the system of equations

x • y = a,

x#t y = b

has a unique solution x = a# 1
1+t

b and y = a# 2
1+t

b.

Proof. From Theorem 6.1, put s = −1 and use the fact that #−1 = •.

Theorem 6.3. Let s, t, p, q ∈ R be such that q 6= 1 and s(1−q)+(q−t)(1−p) 6= 0.
Then the system

y#p a = b#s x,

y#q x = a#t x
(9)

has a unique solution given by x = a#k b and y = a#lb where

k =
(s− 1)(1− q)

s(1− q) + (q − t)(1− p)
, l =

(s− 1)(t− q)
s(1− q) + (q − t)(1− p)

.
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Proof. Suppose that x and y satisfy the system (9). By Theorems 4.1 and 5.1, we
can deduce from the equation y#p a = b#s x that

y = a# 1
1−p

(b#s x) = (b#s x) # p
p−1

a. (10)

Similarly, the equation y#q x = a#t x implies

y = x# 1−t
1−q

a. (11)

From (10) and (11), we have by using Corollary 5.5 that a = (b#s x) #r x, where

r :=
pt− t− pq + q

pt− t− pq + 1
.

Rewrite it as a = (x#1−s b) #r x. Corollary 5.3 now implies that

x = b# 1
1−(1−s)(1−r)

a = a#k b.

It follows from (11) that

y = a# (t−q)k
1−q

b = a#lb.

For existence, it is straightforward to prove that x = a#k b and y = a#l b satisfy
the system (9).

Corollary 6.4. Let s, t ∈ R be such that s 6= t+ 1. Then the system

y • a = b#s x,

y • x = a#t x

has a unique solution given by x = a# s−1
s−t−1

b and y = a# (t+1)(s−1)
2(s−t−1)

b.

Proof. Put p = q = −1 in Theorem 6.3 and use the fact that #−1 = •.

Corollary 6.5. Let p, q ∈ R be such that 2q − p− pq 6= 0. Then the system

y#p a = b • x,
y#q x = a • x

(12)

has a unique solution given by x = a# 2(q−1)
2q−p−pq

b and y = a# 2(q+1)
2q−p−pq

b.

Proof. If q = 1 and 2q − p − pq 6= 0, then p 6= 1 and the system (12) has a
unique solution given by x = a and y = a# 2

1−p
b. To treat the case q 6= 1 and

2q − p − pq 6= 0, we apply Theorem 6.3 when s = t = −1, and use the fact that
#−1 = •.
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