Maximal non-commuting set in finite odd order metacyclic *p*-group

Pradeep Kumar

Abstract. Let G be a finite group and W be a subset of G. If $ab \neq ba$ for any two distinct elements a and b in W, then W is said to be a non-commuting set. Further, if $|W| \ge |X|$ for any other non-commuting set X in G, then W is said to be a maximal non-commuting set. Fouladi and Orfi determined in [3] the size of maximal non-commuting sets in finite non-abelian metacyclic p-groups. Below we give an elementary proof of this result.

1. Introduction

Let G be a finite group and W be a subset of G. If for any two distinct elements $a, b \in W$, $[a, b] = a^{-1}b^{-1}ab \neq 1$, then W is said to be a non-commuting set. The size of a maximal non-commuting set is denoted by w(G). Also w(G) is known as the clique number of the non-commuting graph of a finite group G. The non-commuting graph of a finite group G with the center Z(G) is a graph with vertex set $G \setminus Z(G)$ and two vertices are joined if and only if they do not commute. Moreover, w(G) is related to the index of Z(G). Namely, as proved Pyber [7], there is a constant c such that $|G : Z(G)| \leq c^{w(G)}$. By a famous result of Neumann [6], answering Erdős's question, the finiteness of w(G) is equivalent to the finiteness of the factor group G/Z(G). More interesting results on w(G) one can find in [1, 3, 4].

In this paper, we give an elementary proof of the theorem of Fouladi and Orfi for finite non-abelian metacyclic *p*-groups, i.e., finite non-abelian *p*-groups G with a cyclic normal subgroup H such that the factor group G/H is also cyclic.

2. Preliminaries

We will start with the basic facts that will be needed later.

Lemma 1. (cf. [4]) Let G be a group and W be a non-commuting set in G such that $G = \bigcup_{a \in W} C_G(a)$ and $C_G(a)$ is abelian for each $a \in W$. Then W is a maximal non-commuting set in G, and w(G) = |W|.

²⁰¹⁰ Mathematics Subject Classification: 20D15

 $^{{\}sf Keywords:}\ {\sf Metacyclic}\ p{\rm -group,\ non-commuting\ set,\ centralizer.}$

Proposition 1. (cf. [2, Proposition 1]) Let n be a natural number and p be a prime number. Let $V_p(n)$ denote the exact power of p dividing n. If $k \equiv 1 \pmod{p}$ and p > 2, then $V_p(n) = V_p(1 + k + k^2 + \dots + k^{n-1})$.

Lemma 2. Let $k \equiv 1 \pmod{p}$, $1 \leq t \leq p^l$ and p be an odd prime number. Then $1 + k + k^2 + k^3 + \cdots + k^{t-1} \equiv 0 \pmod{p^l}$ if and only if $t = p^l$. Moreover, if gcd(t,p) = 1, then $gcd(1 + k + \cdots + k^{t-1}, p) = 1$.

Proof. This follows from Proposition 1.

Let G be a finite odd order non-ablelian metacyclic p-group and $\langle a \rangle$ be a cyclic subgroup generated by element $a \in G$. Further, suppose a is such that $\langle a \rangle \trianglelefteq G$ and $G/\langle a \rangle$ is cyclic. Then there exists an element $b \in G$ and a number $k \ge 1$ such that $G = \langle b, a \rangle$ and $b^{-1}ab = a^k$. Every element of G can be written in the form $b^j a^i$ for $i, j \ge 0$. For more details see [8]. Let $\gamma_2(G)$ denote the commutator subgroup of the group G. With above notation, we have the following two lemmas:

Lemma 3. (cf. [3, Lemma 2.1])

- 1. $k \equiv 1 \pmod{p}$.
- 2. Any two arbitrary elements $g_1 = b^j a^i$ and $g_2 = b^s a^r$ in *G* commute if and only if $(1 + k + k^2 + \dots + k^{s-1})i \equiv (1 + k + k^2 + \dots + k^{j-1})r(\text{mod } |\gamma_2(G)|)$, where $i, j, r, s \ge 0$ and take $1 + k + \dots + k^{n-1} = 0$ for n = 0. 3. $(ba^i)^r = b^r a^{i(1+k+\dots+k^{r-1})}$ for $i, r \ge 1$.

Lemma 4. (cf. [5]) If $|\gamma_2(G)| = p^l$, then $Z(G) = \langle b^{p^l}, a^{p^l} \rangle$.

3. Construction of a maximal non-commuting set

We will construct a maximal non-commuting set by a method used in [4].

Let $G = \langle b, a \rangle$, where $b^{-1}ab = a^k$, be a non-abelian metacylic *p*-group of a finite odd order and $|\gamma_2(G)| = p^l$.

We will construct a non-commuting set X in G. It is clear that the elements of X are contained in distinct non-trivial cosets of Z(G) in G. By Lemma 4, we have

$$G = Z(G) \cup A_1 \cup A_2 \cup \left(\bigcup_{s=1}^{p^l - 1} A_{3,s}\right),$$

where $A_1 = \bigcup_{i=1}^{p^l-1} b^i Z(G)$, $A_2 = \bigcup_{i=1}^{p^l-1} a^i Z(G)$ and $A_{3,s} = \bigcup_{i=1}^{p^l-1} b^s a^i Z(G)$ for $1 \leq s \leq p^l - 1$.

It is evident that any two elements of A_m , m = 1, 2, commute with each other, so X can contain at most one element from each A_m , m = 1, 2. We have that $ba \neq ab$. So, take $b \in A_1$ and $a \in A_2$ in the set X. Now, we determine the possible choices of elements from $A_{3,s}$ that can be included in the set X.

Suppose, s = 1. Then $[ba^i, a] = 1$ if and only if $1 \equiv 0 \pmod{p^l}$ (Lemma 3), that is not possible. Again, ba^i commutes with b if and only if $i \equiv 0 \pmod{p^l}$ (Lemma

3). Thus, for $i \in \{1, 2, \ldots, p^l - 1\}$, ba^i does not commute with a, b. Further, if $[ba^i, ba^r] = 1$, then $i \equiv r \pmod{p^l}$ (Lemma 3). Thus, X can contain at most $p^l - 1$ elements from $A_{3,1}$. Now take subset $\{ba^i \mid 1 \leq i \leq p^l - 1\}$ from $A_{3,1}$ in the set X. Thus $S_1 = \{b, a, ba^i \mid 1 \leq i \leq p^l - 1\} \subseteq X$.

Now, suppose $gcd(s, p^l) = 1$ and $s \neq 1$. By Lemma 3, $[b^sa^i, ba^r] = 1$ if and only if $i \equiv r(1+k+k^2+\cdots+k^{s-1}) \pmod{p^l}$. Since, by Lemma 2, $gcd(1+k+\cdots+k^{s-1}, p^l) = 1$, so the last congruence has a solution $r \in \{1, 2, \ldots, p^l - 1\}$. Thus for each $b^sa^i \in A_{3,s}$ there exists $r \in \{1, 2, \ldots, p^l - 1\}$ such that $[b^sa^i, ba^r] = 1$. So, X does not contain any element from $A_{3,s}$ in this case.

Again, take $s = p^{\alpha}$, $1 \leq \alpha \leq l-1$. We have $[b^{p^{\alpha}}a^{i}, b^{p^{\alpha}}a^{j}] = 1$ if and only if $i(1 + k + \dots + k^{p^{\alpha}-1}) \equiv j(1 + k + \dots + k^{p^{\alpha}-1})(\mod p^{l})$ (Lemma 3). By Lemma 2, there exists a positive integer k_{1} such that $1 + k + \dots + k^{p^{\alpha}-1} = p^{\alpha}k_{1}$, with $gcd(k_{1}, p) = 1$. Thus $b^{p^{\alpha}}a^{i}$ commutes with $b^{p^{\alpha}}a^{j}$ if and only if $i \equiv j(\mod p^{l-\alpha})$. Again $[b^{p^{\alpha}}a^{i}, b^{p^{\beta}}a^{j}] = 1$ for $0 \leq \beta \leq \alpha - 1$ if and only if $i(1 + k + \dots + k^{p^{\beta}-1}) \equiv j(1 + k + \dots + k^{p^{\alpha}-1})(\mod p^{l})$ (Lemma 3). By Lemma 2, there exist positive integers k_{1} and k_{2} such that $1 + k + \dots + k^{p^{\alpha}-1} = p^{\alpha}k_{1}$, with $gcd(k_{1}, p) = 1$ and $1 + k + \dots + k^{p^{\beta}-1} \equiv p^{\beta}k_{2}$, with $gcd(k_{2}, p) = 1$. Thus $b^{p^{\alpha}}a^{i}$ commutes with $b^{p^{\beta}}a^{j}$ if and only if $ik_{2}p^{\beta} \equiv jk_{1}p^{\alpha}(\mod p^{l})$. The last congruence is equivalent to $ik_{2} \equiv jk_{1}p^{\alpha-\beta}(\mod p^{l-\beta})$. Thus if $[b^{p^{\alpha}}a^{i}, b^{p^{\beta}}a^{j}] = 1$, then $p^{\alpha-\beta}|i$. Further, for given α, β and i such that $p^{\alpha-\beta}|i$, the equation $ik_{2}p^{\beta} \equiv jk_{1}p^{\alpha}(\mod p^{l})$ has a solution j, that is given α, β, i we can find some j such that $[b^{p^{\alpha}}a^{i}, b^{p^{\beta}}a^{j}] = 1$. Thus, if we choose $b^{p^{\alpha}}a^{i} \in A_{3,p^{\alpha}}$ such that p|i, then there exists j such that $b^{p^{\alpha-1}}a^{j}$ commutes with $b^{p^{\alpha}a^{i}}$. Clearly, in $\bigcup_{\alpha=1}^{l-1} A_{3,p^{\alpha}}$, the set $S_{2} = \{b^{p^{\alpha}}a^{i} \mid p \nmid i, 1 \leq i \leq p^{l-\alpha}, 1 \leq \alpha \leq l-1\}$ is non-commuting and its elements do not commute with any element of S_{1} . Thus, $S_{1} \cup S_{2} \subseteq X$.

Further, take $s = mp^{\alpha}$ for fixed α with gcd(m, p) = 1 and $m \neq 1$. Take an arbitrary element $b^{mp^{\alpha}}a^i \in A_{3,mp^{\alpha}}$. Now for $p \nmid i$, $[b^{mp^{\alpha}}a^i, b^{p^{\alpha}}a^r] = 1$ if and only if $r(1+k+\cdots+k^{mp^{\alpha}-1}) \equiv i(1+k+\cdots+k^{p^{\alpha}-1}) \pmod{p^l}$ (Lemma 3). By Lemma 2, there exist positive integers k_1 and k' such that $1 + k + \cdots + k^{p^{\alpha}-1} = p^{\alpha}k_1$, with $gcd(k_1, p) = 1$ and $1 + k + \dots + k^{mp^{\alpha}-1} = k'p^{\alpha}$, with gcd(k', p) = 1. Thus the last congruence is equivalent to $rk' \equiv ik_1 \pmod{p^{l-\alpha}}$. Since, $gcd(k', p^{l-\alpha}) = 1$, so for a given *i*, there exists $r \in \{1, 2, \dots, p^{l-\alpha}\}$ such that $rk' \equiv ik_1 \pmod{p^{l-\alpha}}$. Also $p \nmid i$, so $p \nmid r$. Thus $b^{mp} a^i$ commutes with $b^{p} a^r \in X$. Now, assume $i = t'p^e$, gcd(t',p) = 1 and $1 \leqslant e \leqslant \alpha$. By Lemma 3, $[b^{mp^{\alpha}}a^{t'p^{e}}, b^{p^{\alpha-e}}a^{r}] = 1$ if and only if $t'p^e(1+k+k^2+\cdots+k^{p^{\alpha-e}-1}) \equiv r(1+k+k^2+\cdots+k^{mp^{\alpha}-1})$. We have $1 + k + k^2 + \dots + k^{p^{\alpha^{-e}}-1} = p^{\alpha^{-e}}k_3 \text{ and } 1 + k + k^2 + \dots + k^{mp^{\alpha}-1} = p^{\alpha}k',$ where $p \nmid k_3$ and $p \nmid k'$. Thus $[b^{mp^{\alpha}}a^{t'p^e}, b^{p^{\alpha^{-e}}}a^r] = 1$ if and only if $t'k_3 \equiv$ $rk' \pmod{p^{l-\alpha}}$. Since $gcd(k', p^{l-\alpha}) = 1$, so the last congruence has the solution $r \in \{1, 2, \dots, p^{l-\alpha}\}$. Since $p \nmid r$, so $b^{mp^{\alpha}} a^{t'p^{e}}$ commutes with $b^{p^{\alpha-e}} a^{r} \in X$. Again for $i = t'p^e$, $\alpha < e \leq l-1$ and $gcd(t', p) = 1, b^{mp^{\alpha}}a^i$ commutes with some $ba^r \in X$. Indeed, if $b^{mp^{\alpha}}a^{t'p^{e}}$ commutes with ba^{r} , then $r(1+k+\cdots+k^{mp^{\alpha}-1}) \equiv t'p^{e} \pmod{p^{l}}$, that is equivalent to $rk' \equiv t' p^{e-\alpha} \pmod{p^{l-\alpha}}$. The last congruence has a solution $r \in \{1, 2, \dots, p^l - 1\}$. So, in this case X does not contain any element from $A_{3,s}$. Thus,

 $X = \{b, a\} \cup \{ba^i \mid 1 \leqslant i \leqslant p^l - 1\} \cup \{b^{p^{\alpha}}a^i \mid p \nmid i, 1 \leqslant i \leqslant p^{l - \alpha} \text{ and } 1 \leqslant \alpha \leqslant l - 1\}$ is a non-commuting set in G.

Now, by Lemma 3, it is easy to deduce that $C_G(a) = \langle a, b^{p^l} \rangle$ and $C_G(b) = \langle a^{p^l}, b \rangle$. Thus, $C_G(a)$ and $C_G(b)$ are abelian. Consider $b^{p^{\alpha}}a^i$ with $p \nmid i, 1 \leq i \leq p^{l-\alpha}$ and $1 \leq \alpha \leq l-1$. Since $p \nmid i, G = \langle b, b^{p^{\alpha}}a^i \rangle$. Thus, $C_G(b^{p^{\alpha}}a^i) = \langle b^{p^{\alpha}}a^i, b^{p^l} \rangle$ is abelian. Now for $i \in \{1, 2, \ldots, p^l - 1\}$, by Lemma 3, we have

$$C_{G}(ba^{i}) = \{b^{r}a^{s} \in G \mid i(1 + k + \dots + k^{r-1}) \equiv s(\text{mod }p^{l}), 1 \leq r \leq o(b)\},\$$

= $\{b^{r}a^{i(1+k+\dots+k^{r-1})+p^{l}t} \mid 1 \leq r \leq o(b), t \in \mathbb{Z}\},\$
= $\{(ba^{i})^{r}a^{p^{l}t} \mid 1 \leq r \leq o(b)\} = \langle ba^{i}, Z(G) \rangle.$

Obviously, $C_G(ba^i)$ is abelian. Moreover, from the construction of X it follows that $G = \bigcup_{x \in X} C_G(x)$. Thus by Lemma 1, X is a maximal non-commuting set and the size of X is equal to

$$|X| = 1 + 1 + (p^{l} - 1) + \sum_{\alpha=1}^{l-1} \phi(p^{l-\alpha}) = p^{l} + p^{l-1},$$

where $\phi(n)$ is Euler's function. Hence, we can conclude the following theorem.

Theorem 1. (Fouladi and Orfi) The size of a maximal non-commuting set in a finite non-abelian metacyclic p-group G, p > 2 is $p^{l} + p^{l-1}$, where $|\gamma_2(G)| = p^{l}$.

References

- A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), 468 - 492.
- F.R. Beyl, Cyclic subgroups of the prime residue group, Am. Math. Mon. 84 (1977), no. 1, 46-48.
- [3] S. Fouladi and R. Orfi, Maximum size of subsets of pairwise non-commuting elements in finite metacyclic p-groups, Bull. Aust. Math. Soc. 87 (2013), 18-23.
- [4] P. Kumar and V.K. Jain, Maximal non-commuting set in 2-generated p-groups of class two, J. Algebra Appl. 17 (2018), no. 9, 1850164.
- [5] X. Li and J. Zhang, Finite p-groups and centralizers of noncentral elements, Commun. Algebra 41 (2013), 3267 - 3276.
- [6] B. H. Neumann, A problem of Paul Erdős on groups, J. Aust. Math. Soc. Ser. A 21 (1976), 467 – 472.
- [7] L. Pyber, The number of pairwise non-commuting elements and the index of the center in a finite group, J. Lond. Math. Soc. 35 (1987), 287 - 295.
- [8] M. Xu, A complete classification of metacyclic p-groups of odd order, Adv. Math. (Beijing) 12 (1983), 72 - 73.

Received July 3, 2018

Department of Mathematics, Central University of South Bihar, Gaya - 824236, Bihar, India E-mail: 14p.shaoran@gmail.com