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Maximal non-commuting set in �nite odd order

metacyclic p-group

Pradeep Kumar

Abstract. Let G be a �nite group and W be a subset of G. If ab 6= ba for any two distinct

elements a and b in W , then W is said to be a non-commuting set. Further, if |W | > |X| for
any other non-commuting set X in G, then W is said to be a maximal non-commuting set.

Fouladi and Or� determined in [3] the size of maximal non-commuting sets in �nite non-abelian

metacyclic p-groups. Below we give an elementary proof of this result.

1. Introduction

Let G be a �nite group and W be a subset of G. If for any two distinct elements
a, b ∈ W , [a, b] = a−1b−1ab 6= 1, then W is said to be a non-commuting set.
The size of a maximal non-commuting set is denoted by w(G). Also w(G) is
known as the clique number of the non-commuting graph of a �nite group G. The
non-commuting graph of a �nite group G with the center Z(G) is a graph with
vertex set G\Z(G) and two vertices are joined if and only if they do not commute.
Moreover, w(G) is related to the index of Z(G). Namely, as proved Pyber [7], there
is a constant c such that |G : Z(G)| 6 cw(G). By a famous result of Neumann [6],
answering Erd®s's question, the �niteness of w(G) is equivalent to the �niteness
of the factor group G/Z(G). More interesting results on w(G) one can �nd in
[1, 3, 4].

In this paper, we give an elementary proof of the theorem of Fouladi and Or�
for �nite non-abelian metacyclic p-groups, i.e., �nite non-abelian p-groups G with
a cyclic normal subgroup H such that the factor group G/H is also cyclic.

2. Preliminaries

We will start with the basic facts that will be needed later.

Lemma 1. (cf. [4]) Let G be a group and W be a non-commuting set in G such

that G =
⋃
a∈W

CG(a) and CG(a) is abelian for each a ∈W . Then W is a maximal

non-commuting set in G, and w(G) = |W |.

2010 Mathematics Subject Classi�cation: 20D15
Keywords: Metacyclic p-group, non-commuting set, centralizer.



248 P. Kumar

Proposition 1. (cf. [2, Proposition 1]) Let n be a natural number and p be a

prime number. Let Vp(n) denote the exact power of p dividing n. If k ≡ 1(mod p)
and p > 2, then Vp(n) = Vp(1 + k + k2 + · · ·+ kn−1).

Lemma 2. Let k ≡ 1 (mod p), 1 6 t 6 pl and p be an odd prime number. Then

1 + k + k2 + k3 + · · · + kt−1 ≡ 0 (mod pl) if and only if t = pl. Moreover, if

gcd(t, p) = 1, then gcd(1 + k + · · ·+ kt−1, p) = 1.

Proof. This follows from Proposition 1.

Let G be a �nite odd order non-ablelian metacyclic p-group and 〈a〉 be a cyclic
subgroup generated by element a ∈ G. Further, suppose a is such that 〈a〉 E G
and G/〈a〉 is cyclic. Then there exists an element b ∈ G and a number k > 1
such that G = 〈b, a〉 and b−1ab = ak. Every element of G can be written in the
form bjai for i, j > 0. For more details see [8]. Let γ2(G) denote the commutator
subgroup of the group G. With above notation, we have the following two lemmas:

Lemma 3. (cf. [3, Lemma 2.1])
1. k ≡ 1(mod p).
2. Any two arbitrary elements g1 = bjai and g2 = bsar in G commute if and only

if (1 + k + k2 + · · ·+ ks−1)i ≡ (1 + k + k2 + · · ·+ kj−1)r(mod |γ2(G)|), where
i, j, r, s > 0 and take 1 + k + · · ·+ kn−1 = 0 for n = 0.

3. (bai)r = brai(1+k+···+k
r−1) for i, r > 1.

Lemma 4. (cf. [5]) If |γ2(G)| = pl, then Z(G) = 〈bpl, apl〉.

3. Construction of a maximal non-commuting set

We will construct a maximal non-commuting set by a method used in [4].
Let G = 〈b, a〉, where b−1ab = ak, be a non-abelian metacylic p-group of a

�nite odd order and |γ2(G)| = pl.
We will construct a non-commuting set X in G. It is clear that the elements

of X are contained in distinct non-trivial cosets of Z(G) in G. By Lemma 4, we
have

G = Z(G) ∪A1 ∪A2 ∪
( pl−1⋃
s=1

A3,s

)
,

where A1 =
⋃pl−1
i=1 biZ(G), A2 =

⋃pl−1
i=1 aiZ(G) and A3,s =

⋃pl−1
i=1 bsaiZ(G) for

1 6 s 6 pl − 1.
It is evident that any two elements of Am, m = 1, 2, commute with each other,

so X can contain at most one element from each Am, m = 1, 2. We have that
ba 6= ab. So, take b ∈ A1 and a ∈ A2 in the set X. Now, we determine the possible
choices of elements from A3,s that can be included in the set X.

Suppose, s = 1. Then [bai, a] = 1 if and only if 1 ≡ 0(mod pl) (Lemma 3), that
is not possible. Again, bai commutes with b if and only if i ≡ 0(mod pl) (Lemma
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3). Thus, for i ∈ {1, 2, . . . , pl − 1}, bai does not commute with a, b. Further, if
[bai, bar] = 1, then i ≡ r(mod pl) (Lemma 3). Thus, X can contain at most pl − 1
elements from A3,1. Now take subset {bai | 1 6 i 6 pl − 1} from A3,1 in the set
X. Thus S1 = {b, a, bai | 1 6 i 6 pl − 1} ⊆ X.

Now, suppose gcd(s, pl) = 1 and s 6= 1. By Lemma 3, [bsai, bar] = 1 if and
only if i ≡ r(1+k+k2+ · · ·+ks−1)(mod pl). Since, by Lemma 2, gcd(1+k+ · · ·+
ks−1, pl) = 1, so the last congruence has a solution r ∈ {1, 2, . . . , pl− 1}. Thus for
each bsai ∈ A3,s there exists r ∈ {1, 2, . . . , pl − 1} such that [bsai, bar] = 1. So, X
does not contain any element from A3,s in this case.

Again, take s = pα, 1 6 α 6 l − 1. We have [bp
α

ai, bp
α

aj ] = 1 if and only if
i(1 + k + · · · + kp

α−1) ≡ j(1 + k + · · · + kp
α−1)(mod pl) (Lemma 3). By Lemma

2, there exists a positive integer k1 such that 1 + k + · · · + kp
α−1 = pαk1, with

gcd(k1, p) = 1. Thus bp
α

ai commutes with bp
α

aj if and only if i ≡ j(mod pl−α).

Again [bp
α

ai, bp
β

aj ] = 1 for 0 6 β 6 α − 1 if and only if i(1 + k + · · ·+ kp
β−1) ≡

j(1 + k + · · · + kp
α−1)(mod pl) (Lemma 3). By Lemma 2, there exist positive

integers k1 and k2 such that 1 + k + · · ·+ kp
α−1 = pαk1, with gcd(k1, p) = 1 and

1 + k+ · · ·+ kp
β−1 = pβk2, with gcd(k2, p) = 1. Thus bp

α

ai commutes with bp
β

aj

if and only if ik2p
β ≡ jk1p

α(mod pl). The last congruence is equivalent to ik2 ≡
jk1p

α−β(mod pl−β). Thus if [bp
α

ai, bp
β

aj ] = 1, then pα−β |i. Further, for given α, β
and i such that pα−β |i, the equation ik2pβ ≡ jk1pα(mod pl) has a solution j, that

is given α, β, i we can �nd some j such that [bp
α

ai, bp
β

aj ] = 1. Thus, if we choose

bp
α

ai ∈ A3,pα such that p|i, then there exists j such that bp
α−1

aj commutes with

bp
α

ai. Clearly, in
⋃l−1
α=1A3,pα , the set S2 = {bpαai | p - i, 1 6 i 6 pl−α, 1 6 α 6 l−1}

is non-commuting and its elements do not commute with any element of S1. Thus,
S1 ∪ S2 ⊆ X.

Further, take s = mpα for �xed α with gcd(m, p) = 1 and m 6= 1. Take an
arbitrary element bmp

α

ai ∈ A3,mpα . Now for p - i, [bmpαai, bpαar] = 1 if and only
if r(1+k+ · · ·+kmpα−1) ≡ i(1+k+ · · ·+kpα−1)(mod pl) (Lemma 3). By Lemma
2, there exist positive integers k1 and k′ such that 1 + k + · · · + kp

α−1 = pαk1,
with gcd(k1, p) = 1 and 1 + k + · · · + kmp

α−1 = k′pα, with gcd(k′, p) = 1. Thus
the last congruence is equivalent to rk′ ≡ ik1(mod pl−α). Since, gcd(k′, pl−α) = 1,
so for a given i, there exists r ∈ {1, 2, . . . , pl−α} such that rk′ ≡ ik1(mod pl−α).
Also p - i, so p - r. Thus bmpαai commutes with bp

α

ar ∈ X. Now, assume i = t′pe,

gcd(t′, p) = 1 and 1 6 e 6 α. By Lemma 3, [bmp
α

at
′pe , bp

α−e
ar] = 1 if and only

if t′pe(1 + k + k2 + · · · + kp
α−e−1) ≡ r(1 + k + k2 + · · · + kmp

α−1). We have

1 + k + k2 + · · · + kp
α−e−1 = pα−ek3 and 1 + k + k2 + · · · + kmp

α−1 = pαk′,
where p - k3 and p - k′. Thus [bmp

α

at
′pe , bp

α−e
ar] = 1 if and only if t′k3 ≡

rk′(mod pl−α). Since gcd(k′, pl−α) = 1, so the last congruence has the solution

r ∈ {1, 2, . . . , pl−α}. Since p - r, so bmpαat′pe commutes with bp
α−e
ar ∈ X. Again

for i = t′pe, α < e 6 l−1 and gcd(t′, p) = 1, bmp
α

ai commutes with some bar ∈ X.
Indeed, if bmp

α

at
′pe commutes with bar, then r(1+k+· · ·+kmpα−1) ≡ t′pe(mod pl),

that is equivalent to rk′ ≡ t′pe−α(mod pl−α). The last congruence has a solution
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r ∈ {1, 2, . . . , pl − 1}. So, in this case X does not contain any element from A3,s.
Thus,
X = {b, a}∪{bai | 1 6 i 6 pl−1}∪{bpαai | p - i, 1 6 i 6 pl−α and 1 6 α 6 l−1}

is a non-commuting set in G.

Now, by Lemma 3, it is easy to deduce that CG(a) = 〈a, bpl〉 and CG(b) =

〈apl , b〉. Thus, CG(a) and CG(b) are abelian. Consider bp
α

ai with p - i, 1 6 i 6
pl−α and 1 6 α 6 l− 1. Since p - i, G = 〈b, bpαai〉. Thus, CG(bp

α

ai) = 〈bpαai, bpl〉
is abelian. Now for i ∈ {1, 2, . . . , pl − 1}, by Lemma 3, we have

CG(ba
i) = {bras ∈ G | i(1 + k + · · ·+ kr−1) ≡ s(mod pl), 1 6 r 6 o(b)},

= {brai(1+k+···+k
r−1)+plt | 1 6 r 6 o(b), t ∈ Z},

= {(bai)rap
lt | 1 6 r 6 o(b)} = 〈bai, Z(G)〉.

Obviously, CG(ba
i) is abelian. Moreover, from the construction of X it follows

that G = ∪x∈XCG(x). Thus by Lemma 1, X is a maximal non-commuting set
and the size of X is equal to

|X| = 1 + 1 + (pl − 1) +

l−1∑
α=1

φ(pl−α) = pl + pl−1,

where φ(n) is Euler's function. Hence, we can conclude the following theorem.

Theorem 1. (Fouladi and Or�) The size of a maximal non-commuting set in

a �nite non-abelian metacyclic p-group G, p > 2 is pl + pl−1, where |γ2(G)| = pl.
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