Quasigroups and Related Systems 26 (2018), 251 — 262

On irreducible pseudo-prime spectrum

of topological le-modules
Manas Kumbhakar and Anjan Kumar Bhuniya

Abstract. An le-module M over a ring R is a complete lattice ordered additive monoid having
the greatest element e together with a module like action of R. A proper submodule element n of
rM is called pseudo-prime if (n:e) = {r € R:re < n} is a prime ideal of R. In this article we
introduce the Zariski topology on the set X s of all pseudo-prime submodule elements of M and
discuss interplay between topological properties of the Zariski topology on X, and algebraic
properties of M. If gM is pseudo-primeful, then irreducibility of Xp; and Spec(R/Ann(M))
are equivalent. Also there is a one-to-one correspondence between the irreducible components of
X and the minimal pseudo-prime submodule elements in M. We show that if R is a Laskerian
ring then X, has only finitely many irreducible components.

1. Introduction

Inspired by the theory of multiplicative lattices [1], [17], [18], [19], [20], and lattice
modules [7], [8], [9], [10], [11], [14], [21], we introduced the notion of le-modules
in [2]. An le-module is a complete lattice ordered monoid endowed with a module
like action of a commutative ring. Motivation behind introducing this new notion
is to create a new avenue similar to what we do in module theory for studying
commutative rings. In [2] and [12] we find several results on the interplay between
properties of an le-module M and properties of the ring R acting on M. We con-
sidered uniqueness of primary decompositions of the primary submodule elements
in a Laskerian le-module in [2].

In this article, we introduce the Zariski topology on the set X, of all pseudo-
prime submodule elements of an le-module M over a commutative ring R. Inspi-
ration comes from the enlightening interplay between the Zariski topology on the
prime spectrum Spec(R) of a commutative ring R and the ring theoretic proper-
ties of R [6], [13], [15], [16]; and interplay between the Zariski topology on the
pseudo-prime spectrum of a module A over R and the algebraic properties of g A
and R [4], [5]. Besides basic characterizations of the Zariski topology on X, we
find several conditions on M under which X,; may be an irreducible topological
space.

The organization of this article is as follows. This introduction is followed by
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a section to recap definition and basic properties of le-modules. Also we recall
a few notions on rings. In Section 3, we introduce the Zariski topology on X,
and characterize its basic properties. We show that X is always Ty and it is T}
if and only if each pseudo-prime submodule element of zM is maximal in Xy;.
Annihilator of M is an ideal of R, which induces a natural mapping v from X,
into Spec(R/Ann(M)). Interplay of the properties of Xy, and Spec(R/Ann(M))
is reflected prominently in the nature of this natural map . Here we show
that if 1 is surjective, then connectedness of Xj; implies the connectedness of
Spec(R/Ann(M)). Section 4 characterizes irreducibility of Xas. If ¢ is surjective
then irreducibility of X, and Spec(R/Ann(M)) are equivalent. As a consequence
of the necessary and sufficient characterization of the irreducible closed subsets,
presented here, we establish a bijective correspondence between the irreducible
components of X,; and the minimal pseudo-prime submodule elements of zpM.
Also we prove that if a ring R is Laskerian then for every le-module pM, the
pseudo-prime spectrum X, has only finitely many irreducible components.

2. Preliminaries

In this article, every ring R is commutative and contains 1; and N denotes the
set of all natural numbers. An le-semigroup (M,+,<,e) is such that (M, <) is
a complete lattice with the greatest element e, (M, +) is a commutative monoid
with the zero element 0y, and for all m, m; € M,i € I it satisfies

(S) m+ (Viermi) = Vier(m + my).

Let R be a ring and (M, +,<,e) be an le-semigroup. Then M is called an
le-module over R if there is a mapping R x M — M which satisfies

(M1) r(my +me2) = rmy +rma,
(M2) (r1 4+ ro)m < rym + rom,

(M3) (rirz)m = ri(rem),

(M4) 1gpm =m; Ogm =710y = O,
(M5) r(Vier(mi)) = Vier(rmi),

for all r,r1,79 € R and m,my,ms, m; € M, and i € I.
We denote an le-module M over R by gpM or by M. From (M5), we have,

(M5)" my < mg = rmy < rmg, for all r € R and my,ms € M.

An element n of M is said to be a submodule element if n + n,rn < n, for all
r € R. We call a submodule element n proper if n # e. Note that 0p; = 0gn < n,
for every submodule element n of M. Also n +n = n, i.e., every submodule
element of M is an idempotent. Let {n;};c; be a family of submodule elements of
M. Then their sum is defined by:
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Zielni:\/{(ml +ng, + - +ng,) k€ Nand iq,i9,- -+ ik € I},

It is easy to check that ), ; n; is a submodule element of M.
For an ideal I of R, we define

Ie:\/{Zleaie:kEN;al,ag,--- ,ai € I}

Then e is a submodule element of M. Also for any two ideals I and Jof R, I C J
implies that Ie < Je.
Let n be a submodule element of M. We denote

(n:e)={re R:re<n}.

Then (n : e) is an ideal of R. For any two submodule elements n,l of M, n <1
implies that (n:e) C (I : e). Also if {n;};cs is an arbitrary family of submodule
elements in g M, then (A;crn; : €) = Nier(n; : €). For every submodule element n
of M and ideal I of R, Ie < n if and only if I C (n : e). This result, proved in
[2], is useful here.

A proper submodule element n of an le-module pM is called a pseudo-prime
submodule element if (n : e) is a prime ideal of R. The pseudo-prime spectrum of
rM is the set of all pseudo-prime submodule elements of M and it is denoted by
X - A pseudo-prime submodule element p of M is said to be maximal if for any
pseudo-prime submodule element ¢ of M, p < g implies p = ¢. Minimal pseudo-
prime submodule elements are defined dually. A submodule element n of M is said
to be pseudo-semiprime if n is a meet of some pseudo-prime submodule elements
of M. A pseudo-prime submodule element p of M is called extraordinary if for
any two pseudo-semiprime submodule elements n and [ of M, n Al < p implies
that either n < p or I < p. An le-module g M is said to be topological if Xy = )
or every pseudo-prime submodule element of M is extraordinary.

For every submodule element n of M, we denote

V(n) = {l € Xy:n< l}
The following result have some use in this article.

Lemma 2.1. (cf. [12]) Let gM be an le-module. Then for any ideals I and J of
R, V((IJ)e) =V (Ie)UV(Je) =V ((INJ)e).

Now we recall some notions from rings. We denote the set of all prime ideals of
R by Spec(R). A topology, known as the Zariski topology is defined on Spec(R).
The closed sets in the Zariski topology on Spec(R) are of the form

VE(I)={P € Spec(R) : I C P}

There are many useful characterizations associating arithmetical properties of R
and topological properties of Spec(R) [13], [15], |16].
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3. Pseudo-prime spectrum of topological le-modules

Here we introduce a topology on Xj; analogous to the Zariski topology on the set
of all pseudo-prime submodules of a module over a ring.

Lemma 3.1. Let gM be an le-module. Then
(i) V(Ou) = Xur
(17) V(e) =0.
(ii1) NierV (ng) =V (3_;c;na) for any family of submodule elements {n;}icr of M.

Proof. (i) and (i4) are obvious.

(i73). We have V(}_,.;ni) € V(n;) for each i € I, and hence V (3, ;(n;)) C
NicrV(n;). Now let p € NierV(n;). Then n; < p for all ¢ € I implies that
Yoicrmi < p,and so p € V(3 2,c;(ng)). Thus NierVi(ng) € V(3 ,c;ni). Conse-
quently, NierV(ni) = V(3 ;crni)- O

Let us denote
Vr(M) ={V(n): n is a submodule element of M}.

In general, Vg (M) is not closed under finite unions. If V(M) is closed under finite
unions, then the le-module r M is called a top le-module [12]. Thus an le-module
rM is a top le-module if and only if for every submodule elements n,[ of M there
is a submodule element k of M such that V(n) UV () = V(k). Also we assume
that every le-module g M such that X;; = 0 is a top le-module. Following result
shows that the classes of top and topological le-modules are same and establishes
an useful characterization of the le-modules in this class.

Theorem 3.2. The following statements are equivalent for an le-module r M.
(1) rM is a top le-module.
(ii) Every pseudo-prime submodule element of M is extraordinary.

(#it) V(n) UV () = V(n Al), for any pseudo-semiprime submodule elements n
and l of M.

Proof. If X3; = 0 then the results hold trivially. Suppose X # 0.

(i) = (i7). Let p be any pseudo-prime submodule element of M and let n and [ be
two pseudo-semiprime submodule elements of M such that n Al < p. Since g M is
a top le-module, there exists a submodule element k of M such that V(n)UV () =
V (k). Now n = Ap;, for some collection of pseudo-prime submodule elements p;
of M. Then n < p; implies that p; € V(n) C V (k) for each ¢ € I. It follows that
k < p; for each 7 € I and hence k < n. Similarly & < [. Thus k < n Al which
implies that V(nAl) CV (k). Now V(n)UV () CV(nAl) CV(k)=V(n)uV ().
So, V(n) UV () =V(nAl). Also p € V(nAl) =V (n) UV (l) shows that either
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peV(n)orpeV(l),ie., either n < p or I < p. Hence p is extraordinary.

(#9) = (417). Let n and I be two pseudo-semiprime submodule elements of M.
We have V(n) UV () C V(nAl). Let p € V(n Al). Then p is a pseudo-prime
submodule element and n Al < p. Since p is extraordinary, either n < p or I < p,
equivalently, either p € V(n) or p € V(I). Hence p € V(n) U V(). Consequently,
V(n)UV(I)=V(nAl.

(i43) = (7). Let n and [ be any two submodule elements of M. If V(n) = 0, then
V(n) UV (l) = V(1) and the result holds. Assume that both V(n) and V(I) are
nonempty. Then V(n) UV () = V(Apev(np) U V(Aevyp) = V((Apevnp) A
(Apev@yp)), by (i7). Thus rM is a top le-module. O

From the equivalence of (i) and (i7) in the above result, we have:

Corollary 3.3. Anle-module g M is a top le-module if and only if it is a topological
le-module.

Thus in view of Lemma 3.1, it follows that Vr(M) satisfies the axioms of a
topological space for the closed subsets if and only if gk M is topological. If g M is
a topological le-module, then this topology is said to be the Zariski topology on
Xs-

Henceforth, in this article, we assume that every le-module g M is a topological
le-module.

Recall that a topological space X is 73 if and only if every singleton subset of
X is a closed subset. For each subset Y of X,;, we denote the closure of Y in X,
by Y, and meet of the elements of Y by J(Y), i.e., 3(Y) = Apeyp. If Y = 0, then
we take (V) =e.

A subset Y of a topological space X is called dense in X if Y has non-empty
intersection with every non-empty open subset of X. Equivalently, Y is dense in
X if and only if Y = X.

Proposition 3.4. Let R M be an le-module and Y C X ;.
(i) Then Y = V(S(Y)). Hence Y is closed if and only if Y = V(3(Y)). In

particular, {1} =V (1), for everyl € Xy;.
(i6) If Opr €Y, then Y is dense in Xyy.
111) Xpr is a Ty-space.
(i) 0-5p

(iv) X is a Ty-space if and only if each pseudo-prime submodule element of M
is a maximal element in X;.

Proof. (i). Clearly Y C V(3(Y)). Let V(n) be any closed subset of X, containing
Y. Since $(V(n)) < S(Y), we have V(S(Y)) C V(3(V(n))) = V(n). Thus
V(3(Y)) is the smallest closed subset of Xj; containing Y. Hence, Y = V((Y)).
(ét). This is clear by (7).

(#i1). Let n and [ be two distinct elements of X ;. Then by (i),
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{n}=vn) £ V) ={1}.

Now by the fact that a topological space is a Ty-space if and only if the closures
of distinct elements are distinct, we conclude that X, is a Ty-space.

(iv). Let Xps be a Ti-space and let p be a pseudo-prime submodule element of M.
Then {p} is closed, hence

{p} = {p} = V(p), by (4).

Thus p is a maximal element in X;.
Conversely, suppose p is a maximal element in X, then by (i), we have

{r} =V(p) = {p}.

Thus {p} is closed and hence X, is a T}-space. O

Let g M be an le-module. Then the ideal (0ps : €) of R is called the annihilator
of M. It is denoted by Ann(M). Thus

Ann(M)={re R:re< 0y} ={re€ R:re=0p}.

Consider the canonical epimorphism ¢ : R — R/Ann(M). The image of every
element r and every ideal I of R such that Ann(M) C I under ¢ : R — R/Ann(M)
will be denoted by 7 and I respectively. It is well known in quotient rings that for
every prime ideal P of R such that Ann(M) C P, the ideal P = P/Ann(M) is
prime in R = R/Ann(M). Hence the mapping 1 : X5y — Spec(R) defined by

P(p) = (p:e) for every p € Xy

is well defined. We call ¢ the natural map on X,;. An le-module g M is called
pseudo-primeful if either M = 07 or M # 0j4 and the natural map 1 is surjective.
Also rM is called pseudo-injective if the natural map 1) is injective.

Recall that if I is an ideal of a ring R, then the radical of I is defined by

Rad(I) = {a € R: a™ € I, for some positive integer n}

Since R is commutative Rad(]) is also an ideal of R and I C Rad(I). Also Rad([)
is the intersection of all prime ideals P such that I C P. An ideal I of R is called
a radical ideal if I = Rad(I).

Proposition 3.5. Let RM be a nonzero pseudo-primeful le-module and I be a
radical ideal of R. Then (Ie : e) = I if and only if Ann(M) C I. In particular, Pe
is pseudo-prime submodule element of M for every prime ideal P of R containing

Ann(M).

Proof. Assume that Ann(M) C I. Since I is a radical ideal, Ann(M) C I =
Nrcp, P;, where P; are prime ideals of R. Since g M is a pseudo-primeful le-module
and Ann(M) C P;, there exists a pseudo-prime submodule element p; of M such
that (p; : €) = P;. Therefore I C (Ie:e) = (Nrcp,Bi)e :e) C Nicp,(Pie:e) =
Nrcp, P; = 1. Hence (Ie:e) = 1. O
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It is well known that the prime spectrum Spec(R) of a ring R is connected if
and only if R contains no idempotents other than 0 and 1 [3]. Now we have the
following:

Theorem 3.6. Let g M be a pseudo-primeful le-module and the pseudo-prime
spectrum Xp; be connected. Then Spec(R) is connected and hence the ring R
contains no idempotents other than 0 and 1.

Proof. First we show that the natural map ¢ : X, — SpeE(R) is continuous. Let
I be an ideal of R such that Ann(M) C I and p € ¢~ (VE(I). Then there exists
J € VE(I) such that ¢(p) = J, i.e, (p:e) = J. This implies that (p:e) =J D[

and so Ie < (p : e)e < p. Hence p € V(Ie). Therefore ¢~ (VE(I)) C V(Ie).
Now let ¢ € V(Ie). Then I C (e :e) C (q: e) implies that I C (¢ :e). Hence

g € v YVE)). Thus V(Ie) € ¢~ Y(VE(T)). Therefore v~ (VE(T)) = V(Ie).
Hence 1 is continuous. Thus the theorem follows from the fact that the map v is
surjective and the continuous image of a connected set is connected. O

4. Irreducible pseudo-prime spectrum

A topological space X is irreducible if and only if for every pair of closed subsets
Yi,Yoof X, X =Y, UY; implies X = Y; or X = Y5. A nonempty subset YV
of a topological space X is called an irreducible subset if the subspace Y of X
is irreducible. An idrreducible component of a topological space X is a maximal
irreducible subset of X. A subset Y of X is irreducible if and only if its closure Y
is irreducible. Thus irreducible components of X are closed. Since every singleton
subset of X, is irreducible, its closure is also irreducible.

The following result is a direct consequence of Proposition 3.4(¢) and hence we
omit the proof.

Lemma 4.1. V(1) is an irreducible closed subset of Xy for every pseudo-prime
submodule element | of an le-module r M.

Theorem 4.2. Let pM be a nonzero pseudo-primeful le-module. Then the fol-
lowing statements are equivalent:

(1) X is an irreducible space;

(ii) Spec(R) is an irreducible space;
(iii) VE(Ann(M)) is an irreducible space;
(iv) Rad(Ann(M)) is a prime ideal of R;

(v) Xy =V (Ie) for some I € VE(Ann(M)).
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Proof. (i) = (ii). In the proof of Theorem 3.6, we have seen that the mapping
¥ Xy — Spec(R) is continuous. Thus (i7) follows from the fact that « is surjec-
tive and continuous image of an irreducible space is irreducible.

(ii) = (4ii). Note that the mapping ¢ : Spec(R) — Spec(R) defined by P ~ P is
a homeomorphism. Hence VF(Ann(M)) is an irreducible space.

(#i1) = (iv). Obvious.

(iv) = (v). Assume that Rad(Ann(M)) is a prime ideal of R. Then by Propo-
sition 3.5, (Rad(Ann(M)))e is a pseudo-prime submodule element of M. Let
p € Xp. Then Rad(Ann(M)) C (p : e) which implies that (Rad(Ann(M)))e <
(p:ee < p. Thus p € V((Rad(Ann(M)))e) and hence Xy = V(Ie), where
I = Rad(Ann(M)) € VE(Ann(M)).

(v) = (4). This is a direct consequence of the Proposition 3.5 and Lemma 4.1. [

For a submodule element n of M, the pseudo-prime radical of n, denoted by
Prad(n), is the meet of all pseudo-prime submodule elements of M containing n,
that is,

Prad(n) = Apev(n)p-

If V(n) = 0, then we set Prad(n) = e. Note that n < Prad(n) and that
Prad(n) = e or Prad(n) is a pseudo-semiprime submodule element of M. Also
V(n) = V(Prad(n)). A submodule element n of M is said to be a pseudo-prime
radical submodule element if n = Prad(n).

It is well-known that in a ring R, a subset Y of Spec(R) is irreducible if and
only if J(Y) is a prime ideal of R [3]. The next theorem is a analogue of this fact
for topological le-modules.

Theorem 4.3. Let gRM be an le-module and Y C Xyps. Then S(Y) is a pseudo-
prime submodule element of M if and only if Y is irreducible in X ;.

Proof. Let Y be irreducible, I and J be two ideals of R such that I.J C (3(Y) : e).
Then (IJ)e < $(Y). Now, we have

Y CV(S(Y)) CV({IJ)e) =V (Ie)uV(Je), by Lemma 2.1.

Since Y is irreducible, so either Y C V(Ie) or Y C V(Je). Hence, either e <
(Prad(Ie)) = S(V(Ie)) < S(Y) or Je < (Prad(Je)) = S(V(Je)) < S(Y). This
implies that I C (X(Y) : e) or J C (¥(Y) : e). Thus X(Y) is a pseudo-prime
submodule element of M.

Conversely let S(Y') be a pseudo-prime submodule element of M and let Y C

Y1UY5, where Y7 and Y5 are two closed subset of X ;. Then there exist submodule
elements n and [ of M such that Y7 = V(n) and Y5 = V(). Hence

Prad(n) APrad(l) = S(V(n)) AS(V(1)) =3S(V(n)uV (1) =31 UY2) <S(Y).
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Since g M is a topological le-module, (Y) is an extraordinary submodule element.
Hence, We have irad(n) < S(Y) or Prad(l) < S(Y). Thus Y C V(3(Y)) C
V(Prad(n)) =V(n) =Y; or Y C Ys. Therefore Y is irreducible. O

For every I € Spec(R), we denote
XMJ:{]DGXMi(pZG):I}.

Corollary 4.4. Let gM be an le-module, n be a submodule element of M and
I € Spec(R). Then

(1) V(n) is irreducible in Xy if and only if Prad(n) is a pseudo-prime submodule
element of M.

(i¢) Xnr is an irreducible topological space if and only if Prad(0pr) is a pseudo-
prime submodule element of M.

(i13) If Xar,r # 0 then Xagp is an irreducible space.

Proof. (). Since Prad(n) = I(V(n)), the result follows from Theorem 4.3.
(#4). This is obvious.

(#73). We have ((Xar1) @ €) = (Apexp Pt €) = Npexy, (p:e) =1 € Spec(R)
and hence the result follows from Theorem 4.3. O

Corollary 4.5. Let gM be an le- module such that Oy € Xpr. Then Xy is an
irreducible space.

Let Y be closed subset of a topological space X. An element y € Y is called a
generic point of Y if Y = {y}. In Proposition 3.4, we have seen that every element
I of Xy is a generic point of the irreducible closed subset V'(I). The next theorem
shows that the irreducible closed subset of Xj; are determined completely by the
pseudo-prime submodule elements of M. Also there is a one-to-one correspondence
between the set of minimal pseudo-prime submodule elements of M and the set
of irreducible components of X ;.

Theorem 4.6. Let g M be an le-module and Y C X;.

(1) Then'Y is an irreducible closed subset of Xns if and only if Y = V(p) for
some p € Xpr. Thus every irreducible closed subset of Xy has a generic
point.

(ii) The correspondence V (p) — p is a bijection of the set of all irreducible com-

ponents of X onto the set of all minimal pseudo-prime submodule elements
of M.

Proof. (i). Let Y be an irreducible closed subset of X,;. Then there exists a
submodule element n of M such that Y = V(n). By Theorem 4.3,
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S(Y) =3(V(n)) =Prad(n) € Xp.

Hence Y = V(n) = V(Prad(n)). Converse part follows from the Lemma 4.1.

(it). Let Y be an irreducible component of X;;. Then Y is an irreducible closed
subset of Xs and so by (i), we have Y = V(p) for some p € Xjs. Since each
irreducible component is a maximal irreducible closed subset, V(p) is a maximal
irreducible closed subset of Xj;. Let ¢ be a pseudo-prime submodule element of
M such that ¢ < p. Then V(q) is an irreducible closed subset and V(p) C V(q)
implies that V(p) = V(q). Thus p = ¢q. Hence p is a minimal element of X},.
Now let p be a minimal element of X);. Then by Corollary 4.1, V(p) is an
irreducible closed subset of X ;. Let V(p) C V(q) for some g € Xps. Then

q = Prad(q) = 3(V(g)) < S(V(p)) = Prad(p) = p,

and hence p = ¢. Therefore V(p) = V(q). Thus V(p) is an irreducible component

Theorem 4.7. Let gM be a pseudo-primeful le-module. Then the mapping ¢ :
V(p) = (p:e) is a bijection from the set of all irreducible components of Xy onto
the set of all minimal prime ideals of R.

Proof. Let V(p) be an irreducible component of X ;. Then by Theorem 4.6(ii),
p is a minimal pseudo-prime submodule element of M and so (p : e)/Ann(M) is
a prime ideal of R. We show that (p : €)/Ann(M) is a minimal prime ideal of R.
Let J/Ann(M) € Spec(R/Ann(M)) be such that J/Ann(M) C (p : e)/Ann(M).
Then Je < (p : e)e < p. Since pM is pseudo-primeful and Je is a proper
submodule element of M, Je is a pseudo-prime submodule element of M with
(Je : e) = J, by Proposition 3.5. By the minimality of p, Je = p and hence
(p:e)/Ann(M) = J/Ann(M). Thus (p: e)/Ann(M) is a minimal prime ideal of
R. Thus ¢ is well-defined.

Now suppose that P/Ann(M) is a minimal prime ideal of R/Ann(M). Then
by Proposition 3.5, (Pe : ¢) = P and Pe is a pseudo-prime submodule element of
M. To show Pe is a minimal pseudo-prime submodule element of M let ¢ < Pe
for some pseudo-prime submodule element ¢ of M. Then (¢ : e)/Ann(M) C
(Pe : e)/Ann(M) = P/Ann(M). By the minimality of P/Ann(M) we have (q :
e)/Ann(M) = P/Ann(M) and so (¢ : e) = P. Thus Pe = (q: e)e < ¢ < Pe which
implies that ¢ = Pe. Hence Pe is a minimal pseudo-prime submodule element
of M. Therefore V(Pe) is a irreducible component of X, by Theorem 4.6(ii).
Thus ¢ is a surjection. Now let V(p) and V(¢) be two irreducible components
of X, such that (p:e) = (¢:e). Then by Theorem 4.6(ii), both p and ¢ are
minimal pseudo-prime submodule elements of M. It follows from (p:e) = (q:e)
that (p : e) = (¢ : e) which implies that (p : e)e < (¢ : e)e < ¢. Now by Proposition
3.5, (p : e)e is a pseudo-prime submodule element, and hence, by the minimality
of ¢, (p: e)e = ¢q. Then g < p and so ¢ = p. Therefore, V(p) = V(q). Hence ¢ is
an injection. O
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A ring R is called Laskerian if every proper ideal of R has a primary decom-
position. In the following result we show that if R is a Laskerian ring then the
irreducible components of X, are precisely determined by the primary decompo-
sition of the ideal Ann(M) of R and they are finite in numbers.

Theorem 4.8. Let rpM be a nonzero pseudo-primeful le-module. Then the fol-
lowing statements hold:

(i) The set of all irreducible components of Xys is of the form
T ={V(Ie) : I is a minimal element of VE(Ann(M)).

(i) If R is a Laskerian ring then Xy has only finitely many irreducible compo-
nents.

Proof. (i). Let Y be an irreducible component of Xj;. Then by Theorem 4.6(i),
Y = V(n) for some n € Xp;. Now (n : e) is a prime ideal of R containing
Ann(M) so by Proposition 3.5, (n : e)e is a pseudo-prime submodule element of
M. Also (n: e)e < n implies that Y = V(n) C V((n : e)e). Since Y is irreducible
component of X, V(n) = V((n : e)e). Thus (n : e)e = n. We show that
(n: e) is a minimal element of VT (Ann(M)). Let J € VE(Ann(M)) be such that
J C (n:e). Then J/Ann(M) € Spec(R/Ann(M)). Since g M is a pseudo-primeful
le-module, there exists | € X such that (I : e) = J. Also (I : e)e is a pseudo-
prime submodule element of M, by Proposition 3.5. Then Y =V(n) CV((l: e)e)
and so V(n) = V((l : e)e), since Y is irreducible component. Thus n = (I : e)e <
which implies that (n:e) C(I:e)=J C (n:e). Hence (n:e) = J.

Now let Y € T. Then there exists a minimal element J of VE(Ann(M)) such
that Y = V(Je). Since g M is a pseudo-primeful le-module, Je is a pseudo-prime
submodule element of M and (Je : e) = J, by Proposition 3.5. Thus V(Je) is an
irreducible space, by Lemma 4.1. Let Y = V(Je) C V(I) for some [ € Xj;. Then
Je € V(I) implies that | < Je which implies that (I : e) C (Je : e) = J. By the
minimality of J we have (I : e) = J. Thus Je = (I : e)e < [ and so V(I) C V(Je).
Hence Y = V(Je) = V(I) and so Y is an irreducible component of X ;.

(7). Let R be a Laskerian ring then every proper ideal of R has a primary decom-
position. Let I be a minimal element of VZ(Ann(M)) and Ann(M) = NP, Q; is
a minimal primary decomposition. Then there exists 1 < 7 < n such that Q; C I

and hence by minimality of I we have I = Rad(Q);). Thus irreducible components
of Xy are V(Rad(Q;)e), by (4). O
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