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Unified method for defining finite

associative algebras of arbitrary even dimensions
Nikolay Moldovyan

Abstract. There is introduced a general method for defining finite associative algebras of
arbitrary even dimension. The method consists in defining the multiplication operation in the
finite vector space of even dimension with using some unified basis vector multiplication table.
In the cases m = 2 and m = 4 the constructed algebras are commutative rings. In the cases
m > 6 the algebras are non-commutative rings. Finite non-commutative associative algebras
of dimension greater or equal to 6 are useful for defining discrete logarithm problem in hidden
cyclic group which is attractive as primitive of the post-quantum cryptographic algorithms and

protocols.

1. Introduction

One of the actual problems in the area of cryptography relates to construction of
the post-quantum public-key cryptoschemes [2, 10].

The computational difficulty of the discrete logarithm problem (DLP) in hid-
den cyclic group defined in a finite non-commutative algebra was proposed as
primitive for designing post-quantum cryptoschemes [5, 7, 9]. However, it has
been shown in [1] that for the known implementations of mentioned hard problem
the last can be reduced to DLP in finite fields. Therefore, to provide high secu-
rity (against cryptanalysis with using quantum computers) of the cryptoschemes
based on computational difficulty of DLP in hidden group one should define the last
problem in some other finite non-commutative associative algebras (FNAAs) [1].
Unfortunately, in the literature few m-dimensional FNAAs are presented for cases
m =2 [3], m =3 [4], m =4 [5], and m = 8 [6].

In this paper, a unified method for defining FNAAs of arbitrary even dimen-
sion m > 6 is introduced. The method consists in defining the multiplication
operation in the m-dimensional vector space by using basis vector multiplication
table (BVMT) of some general type. The proposed BVMT defines an operation
for multiplying the vectors in all cases of the even dimension m. It is shown that
this operation is associative, non-commutative for m > 6 and commutative for
m =2 and m = 4.
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2. Defining FNA As of even dimensions

Suppose €g, €1, ... e,,_1 are m formal basis vectors and a,, a1, ...an_1 € GF(pd)
(where p > 2 is a prime number and d > 1 is a natural number) are coordinates
of the vector A that is represented in the following two forms:

A=apeg+ae; +- -+ am_1€m_1;

A= (ao,al,...,am,l).

Terms a;e;, where i = 0,1,...,m — 1, are called components of the vector.
Addition of two vectors A = Y7 " a;e; and B = Z;n:_ol bje; is defined in the
usual form by
m—1

i=0
Note that + denotes the addition operation in the m-dimensional vector space and
the addition operation in the field GF (p?).
The multiplication operation o of two m-dimensional vectors A and B as ele-
ments of some finite associative algebra is defined with the following formula

m—1 m—1 m—1m—1
AoB = <Z aiei> O Z bjej = Z Z aibjei e} ej, (1)
=0 7=0 j=0 i=0

where the product e; oe; for all possible pairs of the values ¢ and j is to be replaced
by some one-component vector in accordance with the BVMT shown in Table 1,
where p € GF(p?) is some fixed value called structural coefficient, assuming that
the left basis vector e; defines the row and the right one e; defines the column.
Thus, the intersection of the ¢th row and jth column gives the value of the product
e; 0 ej.

The structure of the Table 1 is described as follows. For every even value ¢ the
ith row represents result of the left rotation of the initial row (eg,e1,...,€m—1)
by i positions. The (i + 1)th row represents result of the right rotation of the
sequence of the single-component vectors ueg, €,—1, 4€m—2, ..., ez, €1 by i + 1
positions, where the structural coefficient p is written at the basis vectors having
even numbers.

For all pairs of integers ¢,j € {0,1,,...,m — 1} Table 1 defines the following
simple formula for product of the basis vectors e; and e; :

eit;,for even ¢
e, 0oe; ={ e;_;,for odd i and even j (2)
pe;—j,for odd 7 and odd j

It is supposed that in formula (2) addition and subtraction are performed
modulo m. Using (1) and (2) one can easily prove the following statement.
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Proposition 2.1. The multiplication operation defined by Table 1 is associative.

Proof. Using formula (1) for product of three vectors A, B, and C' = ka:_ol Crek
one can get the following

m—1m—-1m-—1
(AoB)oC = a;bjcy (e; 0 €j) o eg;

i=0 j=0 k=0

m—1m—1m-—1 (3)
Ao(Bo(C) = a;bjcpe; o (ejoey).

i=0 j=0 k=0

Thus, it is sufficient to show that for arbitrary possible triple (i, 7, k) the fol-
lowing formula holds
(eioej)oe, =e;o(ejoex). (4)

We have the following cases.
Case 1: each one of the values ¢ and j is even (k is even or odd). Then from
(2) one gets
(eioej)oer =eirjoer = eitjik;
e;o(ejoey) =e€;0ej 1y =ejik
Case 2: the value i is even and the each of the values j and k is odd.
(eioej)oey =e;rjoe, = i€ k;
e;jo(ejoey) =e;o(uej_r) = i€itjk-
Case 3: each one of the values ¢ and k is even and the values j is odd.
(e;o0 ej) O€f =€;4;j0€L = €i1j k;
e o(ejoey) =€ 0€j_j =€ k-
Case 4: every one of the values 7, j, and k is odd .
(eioej)oe, = pe;_joey = ue_jik;
e; o (ejoe;) =e;o(uej_k) = €—jik-
Case 5: each one of the values 7 and j is odd and the value & is even.
(ejo ej) O€r = U€;_j O €L = lU€;_jik;
e o(ejoer) =€ 0€j_j = € _j k.
Case 6: the value 7 is odd and each one of the values j and k is even.
(ejoej)oe, =e€;_j0e, =e€i_j_g;

e; o (ej o ek) =€,0€j1p =€k
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Case 7: each one of the values ¢ and k is odd and the value j is even.
(ejoej)oer =€;_j0e, = [i€_j_k;
e; o (ej o ek) =€,0€j1p = UCi_j_F-

Thus, in all cases formula (4) is valid and therefore, Proposition 2.1 holds. [

Proposition 2.2. The vector U = (ug, U1, ..., Ui, ..., Um—1), where ug = 1 and
=0 fori = 1,2,...,m — 1, is the bi-side unit of the m-dimensional finite
associative algebra in which the multiplication operation is defined by Table 1.

Proof. Using formula (1) for products Ao U and U o A, where A is an arbitrary
vector of the m-dimensional FNAA, one can get

m—1m—1 m—1 0 m—1
AoU = E E a;u; (e; o e;) E g a;uj(e;0e;) = g a;up€iro = A
=0 5=0 =0 j5=0 =0
m—1m—1 0 m—1 m—1
UoA= E E u;a; (e; o e;) E E uoa; (eg o €;) E aje; =
=0 j=0 =0 j= 7=0
Thus, AoU =Uo A= A. O

Table 1: The BVMT for defining m-dimensional FNAA (addition and subtraction
is performed modulo m; the value ¢ is even; j is odd)

o €p e €9 €; €en—1
€p €p (3] (SD) €; €en—1
(31 (S3] Heqo €en—1 He1—j Hneg
€e; €e; €41 €42 €itj €i+m—1
€1 €1 ne; €e;_1 Heit1—j4 /lei+1_(7n_1)
€mn—1 | €m—-1 HUem—-2 ©€n-3 s M€ _(m—1) Heq

It is easy to see that for the cases m = 2 and m = 4 Table 1 defines finite
algebras with commutative multiplication operation. For even dimensions m > 6
the defined finite algebras are non-commutative. Indeed, in a general case the
operation o is non-commutative. For example, for even 7 and odd j we have

€; 0 €5 = €iij;
€;0€e; =¢€;_;.
In the case of 4-dimensional vectors one can define FNAAs insetting some addi-

tional structural coefficient equal to p — 1 in several cells of the BVMT as it is
shown in Table 2 for the following variants:
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Table 2: Defining the 4-dimensional FNAAs

o ‘ € e €9 €3
€ €o (5] €9 €3
e e T € TeEes [V1SD)
€2 €9 oeg geqp (31

€3 €3 gT e geTey eueq

i)

p—Lit=0=1,
io=p—Lit=€e=1,
fii)r=p—1;e=0=1, and
ivyo=p=p—17r=¢c=1.
Note the last case represents the finite algebra of quaternions [7].

€
g
T

3. Some properties of the 6-dimensional FNAAs
In the case m = 6 the vector equation
AoX =F

can be reduced to the following system of six linear equations with unknowns
T, 1, T2, T3, T4, T5 € GF(p?)

apxo + pai1r1 + agxe + pasrs + asxy + pasrs =1
a1xg + agxr1 + azre + asx3 + asxs + asrg =0
a2 + pazxy + a2 + pasxs + agxs + payrs =0
azxg + asx1 + asTs + apgxs3 + a1x4 + agxs =0

asxg + Has5T1 + asxo + Ha1x3 + aprg + nazxrs = 0

asxo + asx1 + a1To + asxsz + azxy + agrs =0

If the determinant A4 of the system (5) is not equal to zero, then the vector A
is invertible and its inverse value A~! can be computed as a solution of (5). If
A 4 = 0, then the vector A is non-invertible one.

If the vector A is invertible, then the sequence A, A2, ..., A%, ... (fori =1,2,3,...)
is periodic and for some two integers h and z > h we have A" = A* and A* =
A*ho Ah = Aho A#~h e, for some minimum integer w (called order of the vector
V) the equality AY = E holds. From the last formula one can get A=! = A“~1,

The performed computational experiments have shown that in the 6-dimensional
FNAA defined over the ground field GF(p) for different values p the invertible vec-
tors have orders that divide the value

pP—1=@p-1p+1).



268 N.A. Moldovyan

For defining the DLP in hidden group [5] there are to be used FNAAs that contain
elements having sufficiently large prime order. Besides, as it was shown in [6]
for designing cryptoschemes base on the DLP in a hidden group one should use
vectors order of which does not divide the value p — 1. To satisfy the mentioned
requirements one can choose primes p such that the divisor ¢ = ”TH is prime. The
following example illustrate the last fact:

p = 134308781033319330362776166404271867531448198177182217544
8157873325740229551204472554965682845532836768511501;

g = 671543905166596651813880832021359337657240990885911087724
078936662870114775602236277482841422766418384255751.

We propose the following modification of the DLP in hidden group, which is
described by the following formula for computing the public key:

Y=VY  oN"oV?, (6)

where V is some invertible vector having order equal to w = p? — 1; N is some
non-invertible vector having local order equal to the value ¢|p + 1; the pair of
integers (s,x) is the private key.

The notion of the local order is connected with the notion of the local unit
element E’ such that: i) ' # F and ii) E' o N = N o E/ = N. The performed
experiments have shown that in the considered 6-dimensional FNAA there exist

non-invertible vectors N’ having local order equal to the value p? — 1. Using such
2
vectors one can easily compute the vectors N = N "

order ¢|(p + 1).

A computationally efficient method for generating non-invertible vectors can
be proposed on the base of consideration of the value of the main determinant A
of the system (5). One can derive the following formula for the determinant A :

that have the required

1
A= Z((ao + a9 +a4)2 —p(a; +as +a5)2)><

X ((a() — a2)2 + (ao — a4)2 + (CLQ — a4)2 — (7)

— g (a1 —as)? — (a1 — as)” — pu (as — as)?)?

A vector N = (ag, a1, as, a3, ag,as) is non-invertible if its coordinates satisfy the
condition A = 0. The expression (7) shows that two different subsets of non-
invertible vectors are contained in the considered FNAA. The first subset includes
the vectors satisfying the condition

(agp + a2 + a4)2 =pu(a; +az+ a5)2 ) (8)

The second subset includes the vectors satisfying condition

(ap — a2)2 + (ag — CL4)2 + (ag — a4)2 =pu ((al - a3)2 + (a1 — a5)2 + (az — a5)2) )
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From the equation (8) one obtains that: if the structural coefficient p is a
quadratic non-residue modulo p, then the first subset contains only the zero vector
(0,0,0,0,0,0).

If the value p is a quadratic residue modulo p, then a non-invertible vector

= (ag, a1, a2, as, aq, as) contained in the first subset can be found as follows:

1. Generate random values ay, as, a3, aq, a5 € GF(p).

2. Compute the value g = p (a1 + a3 + as) mod p.

3. Compute the value ag = g — a2 — a4 mod p.

If the value p is a quadratic non-residue modulo p, then a non-invertible vector

Ny = (ap, a1, a2, as, a4, as) contained in the second subset can be found as follows:
1. Generate random values a1, as, as, aq, a5 € GF(p).

N

2. Compute the value h = ((al —a3)’ + (a1 —a5)* + (a3 — a5)2) mod p.
3. Compose the quadratic equation

h+ (ag — as)® + a2 + a2
2

2% — 2(ag + ag) + = 0 mod p. (9)

(with the unknown value z) and compute discriminant of the equation (9):

de <a2+a4)2h+(a2—a4)2+a%+ai
B 2 2 '

4. If d is a quadratic residue modulo p, then compute one of the roots of the
equation (9): zg = 2259 — /d. Otherwise go to step 1.
5. Take the value zg as the value ay, i.e., ag = zp.

4. Conclusion

A general method for defining FNA As for arbitrary even dimension m > 6 has been
introduced. The method also provides construction of finite associative algebras
for cases m = 2 and m = 4, however the algebras are commutative in those
cases. In the case of defining finite associative algebra over 4-dimensional vector
space, the non-commutativity of the multiplication operation can be obtained by
insetting a structural coefficient equal to p—1 in some cells of the proposed general
BVMT. As a particular case we have the finite algebra of quaternions.

In the cases m > 6 the algebras are non-commutative rings with a global bi-
side unit. The finite algebras of the dimensions m = 6 and m = 8 are useful as
carriers of the discrete logarithm problem in a hidden cyclic group. A modification
of the DLP in hidden group has been given, in which non-invertible elements of
the FNAA are used. In the case of the 6-dimensional FNAA methods for finding
non-invertible vectors have been proposed. Detailed investigation of the properties
of the 6- and 8-dimensional FNAAs appear to be a topic of an individual study.
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