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Some remarks on ideals of commutative semirings

Peyman Nasehpour

Abstract. The main purpose of this paper is to investigate the prime, primary, and maximal

ideals of semirings. The localization and primary decomposition of ideals in semirings are also

studied.

1. Introduction

Semirings are ring-like algebraic structures that subtraction is either impossible or
disallowed. Other ring-like algebraic structures include pre-semirings [13], hemir-
ings [10], and near-rings [30].

Vandiver introduced a simple type of a ring-like algebraic structure, with the
term �semi-ring�, in which the cancellation law of addition does not hold [33]. In
many references (see the explanations in page 3 of the book [8]), a semiring is an
algebraic structure (S,+, ·, 0, 1) with the following properties:

1. (S,+, 0) is a commutative monoid,
2. (S, ·, 1) is a monoid with 1 6= 0,
3. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ S,
4. a · 0 = 0 · a = 0 for all a ∈ S.
Note that while the last axiom, i.e. a · 0 = 0 · a = 0 for all a ∈ S, is omitted

from the de�nition of a ring, since it follows from the other ring axioms, but here
it does not, and it is necessary to state it in the de�nition (see Example 5.1.2. in
[13]). A semiring S is commutative if ab = ba for all a, b ∈ S. In this paper all
semirings are commutative.

Semirings have applications in science and engineering especially in computer
science and are an interesting generalization of rings and bounded distributive
lattices [10]. They can also be used to model algebraic properties of probability
and modular functions [29]. For general books on semiring theory, one may refer
to the resources [1, 5, 10, 11, 13, 14, 18].

The ideal-theoretic method for studying commutative rings has a long and
fruitful history [16]. Some of the topics related to the ideals of commutative rings
have been generalized and investigated for semirings [6, 17, 19, 22, 24, 25, 26,
27, 28]. Also, see Chapter 7 of the book [10]. The main purpose of this paper
is to investigate the prime, primary, and maximal ideals of semirings and related
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concepts such as localization and primary decomposition. Here is a brief sketch of
the contents of our paper:

In Section 2, we bring some primitive properties of ideals in semirings. We
will use those properties in the paper, sometimes without mentioning them. We
also �x some terminologies in this section. In Section 3, we investigate prime and
maximal ideals of semirings. Let us recall that W is an MC-set if and only if
it is a submonoid of (S, ·). In this section, similar to commutative algebra, we
prove that the maximal elements of the set of all ideals disjoint from an MC-set
of a semiring are prime ideals (check Theorem 3.3). Note that in the proof of this
theorem, we use �Zorn's lemma� and since one of the corollaries of this important
theorem is that any semiring has a maximal ideal (Corollary 3.5), one may ask
if the converse holds, i.e., if each semiring has at least one maximal ideal, then
Zorn's lemma is true. In fact, in Corollary 3.9, by using the main theorem of a
paper by Hodges [15], we see that in Zermelo-Fraenkel set theory, the following
statements are equivalent:

1. The Axiom of Choice holds;

2. Every semiring with 1 6= 0 has a maximal ideal;

3. Every commutative ring with 1 6= 0 has a maximal ideal;

4. Every unique factorization domain has a maximal ideal.

Let us recall that a semiring S is called Artinian if any descending chain of
ideals of S stabilizes, i.e., if I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · is a descending chain of
ideals of S, then there is an m ∈ N such that Im = Im+k for all k > 0. In this
section, we also prove that if S is Artinian, it has �nitely many maximal ideals
(see Theorem 3.18).

Section 4 is devoted to contraction and extension of ideals in semirings. We use
some of the general results of this section for proving the statements for localization
of semirings and semimodules given in Section 5. For instance, in Section 5, we
prove that if S is a semiring and U an MC-set of S, then every ideal of SU -
localization of S at U - is an extended ideal. Also, in Theorem 5.4, we show that if
S is a semiring and U an MC-set of S, then the prime ideals of SU are in one-to-one
correspondence with the prime ideals of S disjoint from U .

In Section 6, we bring the primitive properties of primary ideals of semirings.
Then we pass to Section 7 to discuss irreducible ideals and primary decompositions.
Let us recall that an ideal I of a semiring S is called irreducible if for any ideals
J and K of S, I = J ∩K implies that I = J or I = K. We also recall that an
ideal J of a semiring S is subtractive if a+ b ∈ J and a ∈ J implies that b ∈ J for
all a, b ∈ S. In Theorem 7.4, we show that if S is a Noetherian semiring and I a
subtractive irreducible ideal of S, then it is primary.

Finally, let us recall that a semiring S is Noetherian if and only if each ideal
of S is �nitely generated [10, Proposition 6.16]. A semiring is subtractive if each
ideal of S is subtractive. In Corollary 7.5, we prove that if S is a subtractive
Noetherian semiring, then each ideal of S can be represented as an intersection of
a �nite number of primary ideals of S.
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2. Ideals of semirings and operations on them

The concept of ideals for semirings was introduced by Bourne in [4].

De�nition 2.1. A nonempty subset I of a semiring S is said to be an ideal of S,
if a + b ∈ I for all a, b ∈ I and sa ∈ I for all s ∈ S and a ∈ I. It is clear that
the zero element 0 belongs to each ideal of S. We denote the set of all ideals of S
by Id(S). An ideal I of a semiring S is called a proper ideal of the semiring S if
I 6= S.

Proposition 2.2. Let S be a semiring and I, J , and K be ideals of S. If we

de�ne the addition and multiplications as follows:

I + J := {x+ y : x ∈ I, y ∈ J} and I · J :=
{∑
i6k

xiyi : xi ∈ I, yi ∈ J, k ∈ N
}
,

then the following statements hold:

1. The sets I + J and I · J are ideals of S.
2. I + (J +K) = (I + J) +K and I(JK) = (IJ)K.

3. I + J = J + I and IJ = JI.
4. I(J +K) = IJ + IK.

5. I + I = I, I + (0) = I, IS = I, I(0) = (0) and I + S = S.
6. If I + J = (0) then I = J = (0).
7. IJ ⊆ I ∩ J and if I + J = S, then IJ = I ∩ J .
8. (I + J)(I ∩ J) ⊆ IJ .

It is easy to verify that if Iα is a family of ideals of the semiring S, then
⋂
α Iα

is also an ideal of S.
Note that if {Iα}α∈A is a family of ideals of S, it can be easily seen that the

subset {sα1 +sα2 + · · ·+sαn : sαj ∈ Iαj , αj ∈ A,n ∈ N} of S, denoted by
∑
α∈A Iα,

is an ideal of S. More generally if A is a subset of a semiring S, we denote the
set of the intersection of all ideals of S, which contain A by (A). Since S contains
A, this intersection is nonempty. Obviously, (A) is the smallest ideal containing
A. One can easily see that the elements of (A) can be obtained from all possible
linear combinations of elements of A. This is perhaps why the ideal (A) is said to
be an ideal of S generated by A. Note that if {Iα}α∈A is a family of ideals of S,
then

∑
α∈A Iα is generated by

⋃
Iα.

Let us recall that in semiring theory, the multiplication of ideals distributes
over �nite addition of ideals. Also, it is a routine exercise to check that if J is also
an ideal of S, then J ·

∑
α∈A Iα =

∑
α∈A J · Iα, which means that multiplication of

ideals distributes over in�nite addition of ideals as well. One may interpret some
of these properties as follows:

Proposition 2.3. Let S be a semiring. If we denote the set of all ideals of S by

Id(S), then the following statements hold:

1. (Id(S),+, ·) is an additively-idempotent semiring.



284 P. Nasehpour

2. (Id(S),⊆) is a bounded lattice, where (0) is the least and S is the greatest

element of this lattice and sup{I, J} = I + J and inf{I, J} = I ∩ J .
3. (Id(S),Σ, ·) is an example of c-semirings [3, 2.1 p. 23].

For the ideals I, J of a semiring S, it is de�ned that [I : J ] = {s ∈ S : sJ ⊆ I}.

Proposition 2.4. Let I, J,K, Iα, and Jα be ideals of a semiring S. The following

statements hold:

1. I ⊆ [I : J ],

2. [I : J ]J ⊆ I,
3. [[I : J ] : K] = [I : JK] = [[I : K] : J ],

4. [
⋂
α Iα : J ] =

⋂
α[Iα : J ],

5 [I :
∑
α Jα] =

⋂
α[I : Jα],

6 [I : J ] = [I : I + J ].

Cancellation ideals were introduced and investigated by Susan LaGrassa in her
Ph.D. Thesis [19].

De�nition 2.5. A nonzero ideal I of a semiring S is called a cancellation ideal,
if IJ = IK implies J = K for all ideals J and K of S.

Remark 2.6. Let us recall that an element s of a semiring S is said to be multi-
plicatively cancelable, if sb = sc implies b = c for all b, c ∈ S. If s is a multiplica-
tively cancelable element of S, then the principal ideal (s) is a cancellation ideal
and the proof is as follows:

Take I, J to be arbitrary ideals of S such that (s)I = (s)J and imagine x ∈ I,
then obviously sx ∈ (s)J , which means that there is a y ∈ J such that sx = sy.
But s is a multiplicatively cancelable element. So, x = y, which implies that I ⊆ J .
Similarly, it is proved that J ⊆ I, which means that (s) is cancellation.

The following proposition taken from [6] is the semiring version of a statement
mentioned in [7, Exercise. 4, p. 66].

Proposition 2.7. Let S be a semiring and I be a nonzero ideal of S. Then the

following statements are equivalent:

1. I is a cancellation ideal of S,

2. [IJ : I] = J for any ideal J of S,

3. IJ ⊆ IK implies J ⊆ K for all ideals J,K of S.

Proof. By considering this point that the equality [IJ : I]I = IJ holds for all
ideals I, J of S, it is, then, easy to see that (1) implies (2). The rest of the proof
is straightforward.
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Let I be an ideal of S. The radical of I, denoted by
√
I, is de�ned to be the

set of all elements of the form sn, where s ∈ I and n ∈ N.

Proposition 2.8. Let S be a semiring and I, J be ideals of S. Then the following

statements hold:

1. I ⊆
√
I and

√
I =

√√
I.

2.
√
IJ =

√
I ∩ J =

√
I ∩
√
J .

3.
√
I = S if and only if I = S.

4.
√
I + J =

√√
I +
√
J .

Proof. Straightforward.

3. Prime and maximal ideals of semirings

Prime ideals

We start this section by de�ning prime ideals:

De�nition 3.1. A proper ideal P of a semiring S is called a prime ideal of S, if
ab ∈ P implies either a ∈ P or b ∈ P . We denote the set of all prime ideals of S
by Spec(S).

It is straightforward to see that P is a prime ideal of S if and only if P 6= S and
IJ ⊆ P implies either I ⊆ P or J ⊆ P for all ideals I and J of S [10, Corollary
7.6]. This implies the following proposition:

Proposition 3.2. Let P be a prime ideal of a semiring S and I1, I2, . . . , In be

arbitrary ideals of S. Then the following statements are equivalent:

1. P ⊇ Ik for some 1 6 k 6 n.

2. P ⊇
⋂

16k6n Ik.

3. P ⊇
∏

16k6n Ik.

A nonempty subset W of a semiring S is said to be a multiplicatively closed set

(for short an MC-set) if 1 ∈ W and for all w1, w2 ∈ W , we have w1w2 ∈ W . In
other words, W is an MC-set if and only if it is a submonoid of (S, ·). It is clear
that an ideal P of S is a prime ideal of S if and only if S − P is an MC-set. The
following theorem is semiring version of a theorem in commutative algebra due to
German mathematician Wolfgang Krull (1899-1971):

Theorem 3.3. The maximal elements of the set of all ideals disjoint from an

MC-set of a semiring are prime ideals.

Proof. Let S be a semiring and W ⊆ S an MC-set. Let
∑

be the set of all ideals
disjoint from W . If {Iα} is a chain of ideals belonging to

∑
, then

⋃
Iα is also an
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ideal disjoint fromW and an upper bound for the chain {Iα}. Therefore according
to Zorn's Lemma,

∑
has a maximal element. Let P be a maximal element of

∑
.

We prove that P is actually a prime ideal of S.
Let a /∈ P and b /∈ P . Then obviously P ⊂ P + (a) and P ⊂ P + (b). This

means that P +(a) and P +(b) are ideals of S such that they are not disjoint from
W . So there exist w1, w2 ∈W such that w1 = p1 + xa and w2 = p2 + yb for some
p1, p2 ∈ P and x, y ∈ S. But w1w2 = p1p2 +p1yb+p2xa+xyab. Now it is obvious
that if ab ∈ P , then w1w2 ∈ P , which contradicts this fact that P is disjoint from
W . Therefore ab /∈ P and P is a prime ideal of S.

Maximal ideals

We continue this section by investigating maximal ideals.

De�nition 3.4. Let S be a semiring. A proper ideal m of the semiring S is called
a maximal ideal of S, if m ⊆ I ⊆ S for any ideal I of S implies either I = m or
I = S. We denote the set of all maximal ideals of S by Max(S).

Corollary 3.5. Any semiring S possesses at least one maximal ideal and all max-

imal ideals of S are prime ideals.

Proof. In Theorem 3.3, take W = {1}.

Theorem 3.6. Any proper ideal of S is a subset of a maximal ideal of S.

Proof. If I is a proper ideal of S (i.e., I 6= S), then a chain of all proper ideals of
S containing I has an upper bound (the union of all those ideals) and by Zorn's
Lemma, the proper ideals containing I have at least one maximal element that is,
in fact, a maximal ideal of S. This means that any proper ideal I of S is a subset
of a maximal ideal of S.

Remark 3.7. The proof of Theorem 1.3 in [2] shows that �Axiom of Choice�
(which is equivalent to Zorn's lemma [23, �3]) implies that every commutative
ring with 1 6= 0 has a maximal ideal. Dana Scott [31] had asked whether the
converse holds: If every commutative ring with 1 6= 0 has a maximal ideal, then
the Axiom of Choice is true. The answer is �yes�. In fact, Wilfrid Hodges in [15]
proved the following:

Theorem 3.8. In Zermelo-Fraenkel set theory, the statement �Every unique fac-

torization domain has a maximal ideal� implies the Axiom of Choice.

Corollary 3.9. In Zermelo-Fraenkel set theory, the following statements are equiv-

alent:

1. The Axiom of Choice holds;

2. Every semiring with 1 6= 0 has a maximal ideal;

3. Every commutative ring with 1 6= 0 has a maximal ideal;

4. Every unique factorization domain has a maximal ideal.
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Remark 3.10 (Zariski Topology for Semirings). By Corollary 3.5, it is clear that
∅ 6= Max(S) ⊆ Spec(S) ⊆ Id(S). By Theorem 3.6, V (I) = {P ∈ Spec(S) : P ⊇ I}
is a nonempty set if and only if I is a proper ideal of S. On the other hand, one
can easily check that V (I1)∪V (I2) = V (I1∩I2) and

⋂
α V (Iα) = V (

∑
α Iα). Also,

V (0) = Spec(S) and V (S) = ∅. From this, it follows that C = {V (I) : I ∈ Id(S)}
de�nes a topology on Spec(S), known as Zariski's topology, which its closed sets
are all elements of C. Zariski topology, due to Kiev-born American mathematician
Oscar Zariski (1899�1986), is an important topology used in algebraic geometry.
Zariski with his French student, Pierre Samuel (1921�2009), wrote a two-volume
book in commutative algebra [34, 35] that is a classic.

The ring version of the following theorem is credited to Wolfgang Krull (1899-
1971):

Theorem 3.11. Let S be a semiring and I an ideal of S. Then the following

statements hold:

1.
√
I =

⋂
P∈V (I) P , where V (I) = {P ∈ Spec(S) : P ⊇ I}.

2.
√
I is an ideal of S.

Proof. (1). It is straightforward that
√
I ⊆

⋂
P∈V (I) P . Now let s /∈

√
I. It is

clear that Ws = {sn : n > 0} is an MC-set of S disjoint from
√
I. So there exists

a prime ideal containing I and not containing s.
(2). Since

√
I is an intersection of some ideals, it is an ideal and this completes

the proof.

An element s of a semiring S is said to be invertible (unit) if there is an s′ ∈ S
such that s · s′ = 1. The set of all invertible elements of S is denoted by U(S). It
is obvious that U(S) is an Abelian multiplicative group and is called the group of
units of S. Obviously, I is a proper ideal of S if and only if it contains no invertible
element of S.

Proposition 3.12. Let S be a semiring. Then U(S) = S− (
⋃

m∈Max(S) m), where

by U(S) we mean the set of all invertible elements of S.

Proof. Let S be a semiring and take U(S) to be the set of all invertible elements
of S. If s ∈ U(S), then s cannot be an element of a maximal ideal of S. On the
other hand, if s is not invertible, then the principal ideal (s) of S is proper and by
Theorem 3.6, (s) is contained in a maximal ideal m of S and therefore s ∈ m.

Corollary 3.13. Let S be a semiring. Then the following statements hold:

1. The semiring S has a unique maximal ideal if and only if S − U(S) is an

ideal of S.

2. The semiring S is a semi�eld if and only if (0) is a maximal ideal of S.
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De�nition 3.14. (S,m) is a local semiring if S is a semiring and m is its unique
maximal ideal. A semiring S is semi-local if it possesses a �nite number of maximal
ideals, i.e., | Max(S) |<∞.

Two ideals I, J of S are called comaximal if I + J = S. The ideals {Ik}nk=1 of
S are said to be pairwise comaximal if Ik + Il = S for any 1 6 k < l 6 n.

Proposition 3.15. Let S be a semiring. Then the following statements hold:

1. If the ideals I, J of S are comaximal, then I ∩ J = IJ .

2. If the ideals {Ik}nk=1 of S are pairwise comaximal, then
⋂n
k=1 Ik =

∏n
k=1 Ik.

3. If {mk}nk=1 is a set of n distinct maximal ideals of S, then they are pairwise

comaximal and
⋂n
k=1 mk =

∏n
k=1 mk.

4. The ideals I and J are comaximal if and only if
√
I and

√
J are comaximal.

Proof. (1). Let I and J be comaximal. Then I ∩J = (I +J)(I ∩J) ⊆ IJ ⊆ I ∩J .
(2). Let the ideals {Ik}nk=1 be pairwise comaximal. Let J =

⋂n−1
k=1 Ik. We

claim that J and In are comaximal. Suppose not. Then J + In is a proper ideal of
S and so is contained in a maximal ideal m of S. This implies that J ⊆ m, which
causes Ik ⊆ m for some 1 6 k 6 (n − 1). From this, we get that Ik + In ⊆ m,
which contradicts our assumption that Ik and In are comaximal. So J and In are
comaximal and J ∩ In = JIn. Now by induction, the claim

⋂n
k=1 Ik =

∏n
k=1 Ik is

proved.
(3). Let m1 and m2 be two distinct maximal ideals of S. Then clearly m1 ⊂

m1 +m2 and by maximality of m1, we have m1 +m2 = S. Therefore if m1 and m2

of S are two distinct maximal ideals of S, m1∩m2 = m1m2. From this, we get that
if {mk}nk=1 is a set of n distinct maximal ideals of S, they are pairwise comaximal
and

⋂n
k=1 mk =

∏n
k=1 mk.

(4). Straightforward.

Remark 3.16. In this remark, without using Zorn's lemma, we give an alternative
proof of this fact that if the ideals {Ik}nk=1 are pairwise comaximal, then

⋂n
k=1 Ik =∏n

k=1 Ik.

Proof. In Proposition 3.15, we have seen that if I+J = S, i.e., I, J are comaximal
ideals of S, then I ∩ J = IJ . Now �x a natural number n > 2 and suppose
that any family of pairwise comaximal ideals of {Ik}nk=1 of S has this property
that

⋂n
k=1 Ik =

∏n
k=1 Ik. Now we prove that the statement is also true for n + 1

pairwise comaximal ideals of S. Set A =
⋂n+1
k=1 Ik. Now we have A = A · S =

A · (I1 + · · · + In+1) = A · I1 + · · · + A · In+1. But by induction hypothesis,

A · Ik ⊆
∏n+1
k=1 Ik and the proof is complete.

De�nition 3.17. A semiring S is called Artinian if any descending chain of ideals
of S stabilizes, i.e., if I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · is a descending chain of ideals of
S, then there is an m ∈ N such that Im = Im+k for all k > 0.
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Theorem 3.18. If S is an Artinian semiring, then S is semi-local.

Proof. Let S be an Artinian semiring and {mk}∞k=1 a family of in�nite distinct
maximal ideals of S. We claim that m1m2 · · ·ml ⊃ m1m2 · · ·ml+1. On the contrary,
if m1m2 · · ·ml = m1m2 · · ·ml+1, then by Remark 3.15, J ∩ ml+1 = J , where J =
m1m2 · · ·ml. This implies that J ⊆ ml+1, which causes mi = ml+1 for some
1 6 i 6 l that is in contradiction with the distinctness of the maximal ideals
{mk}∞k=1. This gives us the following descending chain of ideals of S: m1 ⊃
m1m2 ⊃ · · · ⊃ m1m2 · · ·ml ⊃ · · · and the proof is complete.

4. Contraction and extension of ideals

First, we de�ne homomorphism between semirings.

De�nition 4.1. Let S and B be two semirings. By a semiring homomorphism

from S to B, we mean a function λ : S −→ B with the following properties:

1. λ(r + s) = λ(r) + λ(s) and λ(rs) = λ(r)λ(s) for all r, s ∈ S;
2. λ(0) = 0 and λ(1) = 1.

Contraction of ideals

Let S and B be two semirings and ϕ : S → B a semiring homomorphism. If J is
an ideal of B, then ϕ−1(J) is an ideal of S and is called contraction of J and is
denoted by Jc or sometimes J ∩ S. In particular, ϕ−1(0) is an ideal of S, known
as the kernel of ϕ and is denoted by ker(ϕ). Anyhow the kernel of a semiring
homomorphism does not obey the rules of a kernel of a ring homomorphism. For
example, if ϕ is injective, then ker(ϕ) = (0), while the converse of this statement
is not true. To check this, let S = {0, s, 1} be a totally ordered set and consider
the semiring (S,Max,min) and de�ne a function γ from S to the Boolean semiring
B = {0, 1} by γ(0) = 0 and γ(s) = γ(1) = 1. It is easy to see that γ is a semiring
homomorphism with ker(γ) = (0), while it is not one-to-one. For more on kernels
of semiring homomorphisms, refer to [10, Chap. 10].

The basic properties of contraction of ideals are collected in the following.

Proposition 4.2. If J, J1, J2 are ideals of a semiring B and ϕ : S → B is a

semiring homomorphism, then the following statements hold.

1. (J1 + J2)c ⊇ Jc1 + Jc2 .

2. (J1 ∩ J2)c = Jc1 ∩ Jc2 .
3. (J1 · J2)c ⊇ Jc1 · Jc2 .
4. (
√
J)c =

√
Jc.

5. If Q is a prime ideal of B, then Qc is a prime ideal of S.

Proof. Straightforward.
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Extension of ideals

Let S and B be two semirings and ϕ : S → B a semiring homomorphism. If I
is an ideal of S, then the set ϕ(I) ⊆ B does not need to be an ideal of B. Then
the extension Ie of I is de�ned to be the ideal generated by ϕ(I) in B. One can
easily check that Ie = {Σni=1aifi : ai ∈ I, fi ∈ B, i ∈ N}. The extension of the
ideal I is sometimes denoted by IB. The basic properties of extension of ideals
are collected in the following.

Proposition 4.3. If I, I1, I2 are ideals of a semiring S and ϕ : S → B is semiring

homomorphism, then the following statements hold.

1. (I1 + I2)e = Ie1 + Ie2 .

2. (I1 ∩ I2)e ⊆ Ie1 ∩ Ie2 .
3. (I1 · I2)e = Ie1 · Ie2 .
4. (
√
I)e ⊆

√
Ie.

Proof. Straightforward.

Note that in general if P is a prime ideal of S, then its extension PB does
not need to be a prime ideal of B. But in content semialgebras, primes extend to
primes [24, Proposition 31]. We end this section with the following proposition:

Proposition 4.4. If I is an ideal of a semiring S and J is an ideal of B and

ϕ : S → B is a semiring homomorphism, then the following statements hold.

1. I ⊆ Iec, J ⊇ Jce.
2. Ie = Iece, Jc = Jcec.

Proof. Straightforward.

5. Semirings and semimodules of fractions

Localization is a very powerful tool in commutative algebra. While apparently,
not all the techniques of localization are valid in commutative semiring theory,
but still, some of them work e�ciently. In this section, we introduce the semirings
and semimodules of fractions that is nothing but the localization of these algebraic
objects.

Let S be a semiring and U ⊆ S an MC-set. De�ne ∼ on S×U by (x, u) ∼ (y, v)
if there is a t ∈ U such that tvx = tuy. From the de�nition, it is clear that this
relation is re�exive and symmetric. In order to see that this is also a transitive
relation, assume that (x, u) ∼ (y, v) and (y, v) ∼ (z, w). So there exist t, t′ ∈ U
such that tvx = tuy and t′wy = t′vz. Use y as an intermediate to reach the
equality (t′tv)wx = (t′tv)uz, which obviously implies that (x, u) ∼ (z, w). This
means that ∼ is an equivalence relation.
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Set s/u for the equivalence class of (s, u) under ∼ and let SU = {s/u : s ∈
S, u ∈ U}. The operations �+" and � ·" on SU are de�ned as usual: x/u + y/v =
(xv + yu)/uv and x/u · y/v = xy/uv. It is a routine exercise to see that (SU ,+, ·)
is a semiring and γ : S → SU de�ned by γ(a) = a/1 is a semiring homomorphism.
We denote the extension of the ideal I of S in SU by I · SU or simply ISU .

Now let I be an ideal of S and de�ne IU := {x/u : x ∈ I, u ∈ U}. One can
easily check that IU is an ideal of SU . The set IU is called the localization of
the ideal I at U . We collect the basic properties of localization of ideals in the
following:

Proposition 5.1. Let S be a semiring, U an MC-set and I, I ′ ideals of S. Then

the following statements hold:

1. IU = I · SU .
2. If I ⊆ I ′ then IU ⊆ I ′U .
3. (I + I ′)U = IU + I ′U .

4. (I ∩ I ′)U = IU ∩ I ′U .

Proof. The proof of the statements (2), (3) and (4) is straightforward. We only
prove (1) as an example: Let S be a semiring, U an MC-set and I an ideal of S
and de�ne γ : S → SU by γ(x) = x/1. Obviously, if we take x ∈ I and u ∈ U ,
then x/u = (x/1)(1/u) = γ(x) · (1/u) = x · (1/u), which means that x/u ∈ I · SU .
On the other hand, any element of I ·SU is of the form

∑n
i=1(xi)(si/ui). Consider

the following calculation:

n∑
i=1

(xi) · (si/ui) =

n∑
i=1

(xi/1)(si/ui) =

n∑
i=1

(xisi)/ui = (

n∑
i=1

siaixi)/u

where u =
∏
ui and ai = u1u2 · · · ûi · · ·un.

This shows that
∑n
i=1(xi)(si/ui) ∈ IU and that is the proof of what it was

claimed.

Let, for the moment, J be an ideal of SU and de�ne γ : S → SU by γ(a) = a/1.
We know that the contraction of the ideal J, i.e., IJ =γ−1(J)={x :x ∈ S, x/1 ∈ J}
is an ideal of S.

Proposition 5.2. Let S be a semiring and U an MC-set. Then every ideal of SU
is an extended ideal.

Proof. Let J be an ideal of SU and let s/u ∈ J . It is clear that this implies s/1 ∈ J
and therefore s ∈ Jc, which implies that s/u ∈ Jce. But in general, we know that
J ⊇ Jce. So J = Jce, which means that every ideal of SU is an extended ideal.

Remark 5.3. Let S be a semiring and I an ideal of S. The equality Iec = I is
not always true even in commutative ring theory (Cf. [32, Remark 5.27]). By the
way, prime ideals behave much better as Theorem 5.4 will show us:
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Theorem 5.4. Let S be a semiring and U an MC-set in S. Then the prime ideals

of SU are in one-to-one correspondence with the prime ideals of S disjoint from

U .

Proof. Take P to be a prime ideal of S, disjoint from U and de�ne P e = PU =
{p/u : p ∈ P, u ∈ U}. It is easy to check that PU is a proper ideal of SU .
Now we prove that PU is a prime ideal of SU . Take x/u, y/v ∈ SU such that
(x/u)(y/v) ∈ PU . This means that there are some p ∈ P and w ∈ U such that
xy/uv = p/w and so there is a t ∈ U such that twxy = tuvp ∈ P . But tw ∈ U and
U is disjoint from P so tw /∈ P and therefore xy ∈ P which implies that either
x ∈ P or y ∈ P . This shows us that either x/u ∈ PU or y/v ∈ PU .

It is easy to see that the map P 7→ P e on the set of all prime ideals disjoint
from U is one-to-one. In order to prove that this map is onto, we must take a
prime ideal Q of SU and �nd a prime ideal P1 disjoint from U such that P e1 = Q.
We set P1 = Qc = {x : x ∈ S, x/1 ∈ Q}. It is easy to check that P1 is a (proper)
prime ideal S disjoint from U . At last P e1 = Qce = Q, since in general we know
that Jce = J and this �nishes the proof.

Examples of MC-sets include the set of multiplicatively cancelable elements
MC(S) of S andW = S−P , where P is a prime ideal of S. The caseW = S−P is
of special interest and the reason is that the set PSW = {x/w : x ∈ P,w ∈ S−P}
is the only maximal ideal of the semiring SW and the proof of our claim is as
follows:

If x/w ∈ SW−PSW , then x /∈ P , which means that x/w is an invertible element
of SW . On the other hand, if x/w is an invertible element of SW , then x /∈ P ,
which means that x/w ∈ SW − PSW . Therefore by Corollary 3.13, (SW , PSW ) is
a local semiring. The local semiring SW is usually denoted by SP and its unique
maximal ideal PSW by PSP and the process of constructing SP from S is called
localization of S at P .

Corollary 5.5. Let S be a semiring and P a prime ideal of S. Then the prime

ideals of the local semiring SP are in one-to-one correspondence with the prime

ideals of S contained in P .

Let S be a semiring and (M,+, 0) be a commutative monoid. The monoid
M is said to be an S-semimodule if there is a function, called the scalar product,
λ : S ×M →M , de�ned by λ(s,m) = s ·m such that the following conditions are
satis�ed:

1. s · (m+ n) = s ·m+ s · n for all s ∈ S and m,n ∈M ;

2. (s+ t) ·m = s ·m+ t ·m and (st) ·m = s · (t ·m) for all s, t ∈ S and m ∈M ;

3. s · 0M = 0M for all s ∈ S and 0S ·m = 0M and 1S ·m = m for all m ∈M .

A nonempty subset N of an S-semimoduleM is said to be an S-subsemimodule
of M if N is an S-semimodule itself.
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Let M be an S-semimodule. Then similar to semirings of fractions, one can
see that the relation ∼′ on M × U , de�ned by (m,u) ∼′ (n, v) if tvm = tun
for some t ∈ U is an equivalence relation and if we put m/u for the equivalence
class of (m,u) under ∼′ and let MU = {m/u : m ∈ M,u ∈ U} and de�ne the
addition �+" and the scalar product �·" as usual: m/u+n/v = (vm+un)/uv and
a/u ·m/v = am/uv, then MU is an SU -semimodule. Note that it is also possible
to consider MU as an S-semimodule with the scalar product s ·m/u = sm/u and
therefore γ : M →MU de�ned by γ(m) = m/1 is an S-semimodule homomorphism
with this property that if γ(m) = 0 then there exists a t ∈ U such that tm = 0.

Proposition 5.6. Let S be a semiring, I an ideal of S, and U an MC-set. Let

M be an S-semimodule and K,L be S-subsemimodules of M . Then the following

statements hold:

1. If K ⊆ L then KU ⊆ LU .
2. (K + L)U = KU + LU .

3. (K ∩ L)U = KU ∩ LU .
4. (IL)U = IULU .

Proof. Straightforward.

Let us recall that if x is an element of an S-semimodule M , then the set
Ann(x) := {s ∈ S : s · x = 0} is an ideal of S.

Theorem 5.7. Let M be an S-semimodule. Then the following statements are

equivalent:

1. M = 0,

2. Mp = 0 for all p ∈ Spec(S),

3. Mm = 0 for all m ∈ Max(S).

Proof. It is clear that (1)⇒ (2)⇒ (3). The proof of (3)⇒ (1) is as follows:
Let x ∈ M . Consider the ideal Ann(x) of S. If Ann(x) = S, then x = 0.

If Ann(x) 6= S, then there is a maximal ideal m of S such that Ann(x) ⊆ m.
Since x/1 = 0 in Mm, there is an s ∈ S − m such that sx = 0, which means that
s ∈ Ann(x), a contradiction. Therefore M = 0 and the proof is complete.

6. Primary ideals

Primary decomposition of ideals is an essential topic in traditional ideal theory in
commutative rings. The main scope of this section is to investigate the primary
ideals of semirings. We also encourage the reader to see the paper by Lescot on
prime and primary ideals of semirings [22].

Primary ideals for rings were introduced in commutative algebra by the Ger-
man mathematician Emanuel Lasker (1868�1941) [21] who was a student of David
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Hilbert (1862�1943). He was also a chess player [20] and philosopher. We begin
this section by de�ning primary ideals for semiring and then we bring their basic
properties.

Let us recall that an ideal Q of a semiring is called a primary ideal if Q is a
proper ideal of S and xy ∈ Q implies either x ∈ Q or yn ∈ Q for some n ∈ N [10,
p. 92].

Proposition 6.1. Let Q be a primary ideal of a semiring S. Then
√
Q is the

smallest prime ideal containing Q.

Proof. By Theorem 3.11, we only need to prove that
√
Q is a prime ideal of S.

Take xy ∈
√
Q, then by de�nition of the radical of an ideal, there is an m ∈ N such

that xmym ∈ Q. Now by de�nition of primary ideals, either xm ∈ Q or (xm)n ∈ Q
for some n ∈ N. This implies that either x ∈

√
Q or y ∈

√
Q and the proof is

complete.

Remark 6.2. If Q is a primary ideal of S and P =
√
Q, then Q is said to be

P -primary.

Proposition 6.3. If Q is an ideal of a semiring S such that
√
Q ∈ Max(S), then

Q is a primary ideal of S. In particular, any power of a maximal ideal is a primary

ideal.

Proof. Let Q be an ideal of a semiring S and
√
Q = m such that m ∈ Max(S). Take

xy ∈ Q such that y /∈
√
Q. Since

√
Q = m is a maximal ideal of S,

√
Q+ (y) = S.

This implies that
√
Q +

√
(y) = S and therefore Q + (y) = S, which means

that there are a ∈ Q and b ∈ S such that a + by = 1. From this, we get that
ax+ bxy = x. Since a, xy ∈ Q, we get that x ∈ Q and this �nishes the proof.

Note that each prime ideal is also a primary ideal. Now we introduce another
method for making primary ideals. Also, see Proposition 6.5.

Proposition 6.4. If all Qi for 1 6 i 6 n are P -primary, then so is Q =
⋂n
i=1Qi.

Proof. Take ab ∈ Q, while a /∈ Q. Then for any 1 6 i 6 n, there is an ni
such that bni ∈ Qi. This means that for any 1 6 i 6 n, b ∈

√
Qi. Note that√

Q =
√⋂n

i=1Qi =
⋂n
i=1

√
Qi = P . Hence, b ∈ Q.

Let us de�ne a new notation: For each ideal I of S and any element x ∈ S, we
de�ne [I : x] := {s ∈ S : sx ∈ I}.

Proposition 6.5. Let S be a semiring, x an element of S and Q be a P -primary

ideal. The following statements hold:

1. If x ∈ Q, then [Q : x] = S.

2. If x /∈ Q, then [Q : x] is a P -primary and
√

[Q : x] = P .

3. If x /∈ P , then [Q : x] = Q.
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Proof. (2). It is obvious that Q ⊆ [Q : x]. Now take y ∈ [Q : x]. So xy ∈ Q, which
obviously implies that y ∈ P . This means that Q ⊆ [Q : x] ⊆ P and therefore
by taking radical, we get

√
[Q : x] = P . Now let yz ∈ [Q : x]. This means that

xyz ∈ Q. Therefore if y /∈ Q, we have xz ∈ Q, which means that z ∈ [Q : x].

7. Decomposition of ideals

An ideal I of a semiring S is called irreducible if for any ideals J and K of S,
I = J ∩K implies that I = J or I = K [10, p. 92].

Proposition 7.1. Let s be a nonzero element of a semiring S and I an ideal of

S not containing s. Then there exists an irreducible ideal J of S containing I and

not containing s.

Proof. Let Jα be a chain of ideals containing I and not containing s. It is easy to
check that

⋃
α Jα is also an ideal containing I and not containing s. Therefore by

Zorn's Lemma, we can �nd an ideal J that is a maximal element of the set of all
ideals of S containing I and not containing s. Imagine J = K ∩ L, where K and
L properly contain J . This implies that a ∈ K and a ∈ L. But this means that
a ∈ K ∩ L = J , a contradiction. Therefore J is irreducible.

Proposition 7.2. If I is a proper ideal of a semiring S, then I is the intersection

of all irreducible ideals of S containing it.

Proof. Let I be a proper ideal of S. This means that 1 /∈ I. So by Proposition
7.1, there is an irreducible ideal containing I. Let J be the intersection of all
irreducible ideals of S containing I. It is vivid that I ⊆ J . Our claim is that
I = J . Suppose not. Then there is an element s ∈ J − I and by Proposition 7.1,
there is an irreducible ideal K containing I but not the element s that is clearly a
contradiction. Thus I = J and the proof is complete.

Proposition 7.3. Let S be a Noetherian semiring. Then every ideal of S can be

represented as an intersection of a �nite number of irreducible ideals of S.

Proof. Let I be the set of all ideals of S which are not a �nite intersection of
irreducible ideals of S. We claim that I = ∅. On the contrary, assume that I 6= ∅.
Since S is Noetherian, I has a maximal element I. Since I ∈ I, it is not a �nite
intersection of irreducible ideals of S. Especially it is not irreducible, which means
that there are ideals J and K properly containing I with I = J ∩K. Since I is
a maximal element of I, J,K /∈ I. Therefore J and K are a �nite intersection of
irreducible ideals of S. But, then, I = J ∩K is a �nite intersection of irreducible
ideals of S, a contradiction.

Theorem 7.4. Let S be a Noetherian semiring and I a subtractive ideal of S. If

I is irreducible, then it is primary.
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Proof. Let I be a non-primary ideal of S. This means that there are s, t ∈ S such
that st ∈ I but t /∈ I and sn /∈ I for all n ∈ N. Since st ∈ I, t ∈ [I : s]. But t /∈ I.
So I ⊂ [I : s]. Now by Proposition 2.4, we have that [I : sn] ⊆ [[I : sn] : s] ⊆ [I :
sn+1], which gives us the following ascending chain of ideals:

I ⊂ [I : s] ⊆ · · · ⊆ [I : sn] ⊆ [I : sn+1] ⊆ · · · .

Since S is Noetherian, this chain must stop somewhere, which means that there
is some m ∈ N such that [I : sm] = [I : sm+i] for any i > 0. Our claim is that
I = [I : sm] ∩ (I + (sm)). Obviously, [I : sm] and I + (sm) contain I. Now let
x ∈ [I : sm]∩ (I+ (sm)). Since x ∈ I+ (sm), there are some y ∈ I, z ∈ S such that
x = y + zsm. But x ∈ [I : sm], which means that ysm + zs2m = xsm ∈ I. Since I
is a subtractive ideal of S, we have zs2m ∈ I, which means that z ∈ [I : s2m]. But
[I : s2m] = [I : sm], so zsm ∈ I and this �nally causes x ∈ I. This means that I is
reducible, the thing it was required to have shown.

Now we prove the so-called primary decomposition of ideals in semirings:

Corollary 7.5. Let S be a subtractive Noetherian semiring. Then every ideal of

S can be represented as an intersection of a �nite number of primary ideals of S.

A primary decomposition of an ideal I of a semiring S is a presentation of I
as a �nite intersection of primary ideals of S like the following:

(PD) I =
⋂n
i=1Qi, where Qi is a primary ideal of S for any 1 6 i 6 n.

If in addition, the prime ideals Pi =
√
Qi are all distinct and Qi +

⋂
j 6=iQj for

any 1 6 i 6 n, then it is said that the primary decomposition (PD) is minimal.
Using Proposition 6.4, it is clear that any primary decomposition can be reduced
to its minimal form. The prime ideals Pi (1 6 i 6 n) in the minimal decomposition
of the ideal I are said to belong to I. The minimal elements of the set of all primes
belonging to I are said to be minimal prime ideals belonging to I.

Proposition 7.6. Let S be a semiring and the ideal I of S possess a primary

decomposition. Then the following statements hold:

1. Any prime ideal P ⊇ I contains a minimal prime ideal belonging to I.

2. The minimal prime ideals belonging to I are precisely the minimal elements

in the set of all prime ideals containing I.

Proof. (1). Let P ⊇ I be a prime ideal of S and I =
⋂n
i=1Qi its minimal primary

decomposition. Then P =
√
P ⊇

√
I =

√⋂n
i=1Qi =

⋂n
i=1

√
Qi =

⋂n
i=1 Pi. By

Corollary 3.2, P ⊇ Pi for some i. The statement (2) is a direct consequence of (1)
and the proof is complete.
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