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Generalized kernels of ordered semigroups

Pisan Summaprab and Thawhat Changphas

Abstract. We investigate three kinds of generalized kernels of an ordered semigroup. Those that

are the intersection of all prime ideals, the intersection of all maximal ideals, and the intersection

of all completely prime ideals. We obtain a structure of an ordered semigroup for which the

intersection of all prime ideals coincides with the intersection of all maximal ideals.

1. Preliminaries

Various kernels or radicals of a semigroup without order have been introduced and
studied by many authors. For examples, R. Fulp [3], J. Luh [6] and S. Schwarz [9].
What is more, three generalized kernels of a semigroup without order, namely, the
intersection of all prime ideals of S, denoted by Q∗, the intersection of all maximal
ideals, denoted by M∗, and the intersection of all completely prime ideals, denoted
by P ∗, were introduced and studied by M. Satyanarayana in [8]. In the present
paper followed [8] we investigate three kinds of generalized kernels of an ordered
semigroup. Analogously, the intersection of all prime ideals, denoted by Q∗, the
intersection of all maximal ideals, denoted by M∗, and the intersection of all
completely prime ideals, denoted by P ∗. We obtain a structure of an ordered
semigroup for which M∗ and Q∗ coincide.

Now, let us recall some certain de�nitions and results used throughout the
paper. A semigroup (S, ·) together with a partial order 6 that is compatible with
the semigroup operation, meaning that, for any x, y, z in S,

x 6 y implies zx 6 zy and xz 6 yz

is called a partially ordered semigroup (or simply an ordered semigroup) (cf. [1],
[2]). Under the trivial relation, x 6 y if and only if x = y, it is observed that every
semigroup is an ordered semigroup.

Let (S, ·,6) be an ordered semigroup. For a non-empty subset A of S we de�ne

(A] = {x ∈ S | x 6 a for some a ∈ A}.

In particular, we write Ax for A{x}, and similarly for xA. It is observed that the
following hold (see [5]):

(1) A ⊆ (A] (hence, S = (S]);
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(2) A ⊆ B ⇒ (A] ⊆ (B];

(3) (A](B] ⊆ (AB];

(4) (A ∪B] = (A] ∪ (B];

(5) ((A]] = (A].

Let (S, ·,6) be an ordered semigroup. A non-empty subset A of S is called a
left ideal (respectively, a right ideal) of S if it satis�es the following conditions:

(i) SA ⊆ A (respectively, AS ⊆ A);

(ii) A = (A], that is, for any x in A and y in S, y 6 x implies y ∈ A.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or
simply an ideal of S. It is known that the union or intersection of any two ideals
of S is an ideal of S.

For an element a of an ordered semigroup (S, ·,6), the principal ideal generated
by a of S will be denoted by I(a). And it is of the form

I(a) = (a ∪ Sa ∪ aS ∪ SaS].

A left ideal A of S is said to be proper if A ⊂ S. The symbol ⊂ stands for proper
subset of sets. A proper right ideal and a proper ideal of S are de�ned similarly. If
S does not contain proper ideals, then we call S simple. A proper ideal A of S is
said to be maximal if for any ideal B of S, A ⊂ B ⊆ S implies B = S.

In an ordered semigroup S the Green relation J is de�ned by aJ b if and only
if I(a) = I(b).

An ideal A of S is said to be

− prime if for any ideals B, C of S, BC ⊆ A implies B ⊆ A or C ⊆ A,

− completely prime if for any a, b in S, ab ∈ A implies a ∈ A or b ∈ A,

− completely semiprime if an ∈ A for any positive integer n implies a ∈ A.

The intersection of all ideals of S, if it is non-empty, is called a kernel of S, and
it will be denoted by K. The intersection of all prime ideals of S will be denoted
by Q∗. The intersection of all maximal ideals of S will be denoted by M∗. And
the intersection of all completely prime ideals of S will be denoted by P ∗.

2. Results

We begin this section with the following de�nition.

De�nition 2.1. An element x of an ordered semigroup (S, ·,6) is called a semisim-

ple element in S if x ∈ (xSxS] or x ∈ (SxSxS]. And S is said to be semisimple if
every element of S is semisimple.
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Example 2.2. Consider an ordered semigroup (S, ·,6) with S = {a, b, c, d, e} and

· a b c d e

a d b b d e
b b b b b e
c b b c b e
d d b b d e
e b b e b e

6= {(a, a), (a, b), (a, c), (a, e), (b, b), (b, c), (b, e), (c, c), (d, b), (d, c), (d, d), (d, e), (e, e)}
We have that the ordered semigroup is semisimple.

An element a of an ordered semigroup (S, ·,6) is said to be left regular (re-
spectively, right regular, regular, intra-regular) if there exist x, y in S such that
a 6 xa2 (respectively, a 6 a2x, a 6 axa, a 6 xa2y). It is observed that left regu-
lar elements, right regular elements, regular elements, and intra-regular elements
are all semisimple.

First, we have the following lemma.

Lemma 2.3. Let A be an ideal of an ordered semigroup (S, ·,6), and let x ∈ S\A.

If x is semisimple, then there exists a prime ideal Q containing A of S such that

x /∈ Q.

Proof. Assume that x is semisimple. Let T be the family of all ideals not containing
x of S. Then A ∈ T , and hence T is non-empty. By Zorn's Lemma, there exits
a maximal element Q in T . We assert that Q is a prime ideal of S. Let A and
B be ideals of S such that AB ⊆ Q. Suppose that A * Q and B * Q. By the
maximality of Q, x ∈ A∪Q and x ∈ B∪Q. Then x ∈ A and x ∈ B. If x ∈ (xSxS],
Then

x ∈ (xSxS] ⊆ (ASBS] ⊆ (AB] ⊆ Q.

This is a contradiction. Similarly, x ∈ (SxSxS] implies x ∈ Q. This is impossible.
Thus the assertion holds.

Lemma 2.4. Let (S, ·,6) be an ordered semigroup, and H = {x, x2, x3, ...} a

cyclic subsemigroup of S. If H ∩A = ∅ for some ideal A of S, then there exists a

prime ideal Q of S such that H ∩Q = ∅.

Proof. Let T be the collection of all ideals not meet H. Then A ∈ T , and hence
T is non-empty. By Zorn's Lemma, there exits a maximal element Q in T . We
assert that Q is a prime ideal of S. Let B and C be ideals of S such that BC ⊆ Q.
Suppose that B * Q and C * Q. By the maximality of Q, xn ∈ A ∪ Q and
xm ∈ B ∪ Q for some positive integers n,m. Hence xn ∈ B and xm ∈ C. Then
xn+m ∈ (BC] ⊆ Q. This is a contradiction. Thus the assertion holds.

Proposition 2.5. Let (S, ·,6) be an ordered semigroup, and let x ∈ Q∗. If A is

any proper ideal of S, then xn ∈ A for some positive integer n.
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Proof. Let x ∈ Q∗. If xn /∈ A for all positive integer n. By Lemma 2.4, then
there exists a prime ideal Q of S such that xn /∈ Q for all positive integer n. Thus
x /∈ Q∗. This is a contradiction.

An ordered semigroup (S, ·,6) is called archimedean if for any a, b in S there
exits a positive integer n such that an ∈ (SbS]. We have the following

Theorem 2.6. For an ordered semigroup (S, ·,6), Q∗ is an archimedean subsemi-

group of S.

Proof. Let x, y ∈ Q∗. By Proposition 2.5, xn ∈ I(y) for some positive integer n.
Thus xn ∈ (y] or xn ∈ (yS] or xn ∈ (Sy] or xn ∈ (SyS]. And each of the cases
implies xn+2 ∈ (Q∗yQ∗]. Hence Q∗ is an archimedean subsemigroup of S.

Consequently,

Corollary 2.7. For an ordered semigroup (S, ·,6), K is an archimedean subsemi-

group of S.

Theorem 2.8. Let (S, ·,6) be an ordered semigroup. If S is semisimple, then

Q∗ = K.

Proof. Let x ∈ Q∗. If x /∈ A for some ideal A of S, then by Lemma 2.3 we have
x /∈ Q∗. This is a contradiction.

Theorem 2.9. Let (S, ·,6) be an ordered semigroup, and let x /∈M∗.

(1) If x ∈ (S2], then x is semisimple.

(2) If x /∈ (S2], then either x2 is semisimple or x2 ∈M∗.

Proof. (1). Let x ∈ (S2]\M∗. Then there exits a maximal ideal M of S such that
x /∈M . Then S = M ∪ I(x). We have

(SM ∪ SI(x)] ⊆ (M ∪ S(x ∪ xS ∪ Sx ∪ SxS]] ⊆M ∪ (Sx ∪ SxS].

Then x ∈ (Sx] or x ∈ (SxS]. If x ∈ (SxS], then x 6 a1xa2 for some a1, a2 ∈ S.
Since x /∈M , we have a1, a2 /∈M . And a1, a2 ∈ I(x). This implies that x ∈ (xSxS]
or x ∈ (SxSxS]. Thus x is semisimple. Similarly, in the second case, if x ∈ (Sx],
then x is semisimple.

(2). If x /∈ (S2] and x2 /∈M∗, then x2 ∈ (S2]; hence x2 is semisimple.

Consequently,

Corollary 2.10. Let (S, ·,6) be an ordered semigroup. If (S2] = S, then S \M∗

is semisimple.

Theorem 2.11. Let (S, ·,6) be an ordered semigroup. If (S2] = S and M∗ ⊆ Q∗,

then M∗ = Q∗.
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Proof. We �rst prove that every maximal ideal of S is prime. Let M be a maximal
ideal of S. We set

P = S \M.

We have

S = (S2] = ((M ∪ P )2] = (M2 ∪MP ∪ PM ∪ P 2] ⊆ (M ∪ P 2].

This implies that P ⊆ (P 2]. Let A and B be ideals of S such that AB ⊆ M .
Suppose that A * M and B * M . By the maximality of M , S = M ∪ A and
S = M ∪B. Then P ⊆ A and P ⊆ B. It follows that

P ⊆ (P 2] ⊆ (AB] ⊆ (M ] = M .

This is a contradiction. Hence M is prime, and Q∗ ⊆M∗. Thus M∗ = Q∗.

Lemma 2.12. Let M∗ of an ordered semigroup (S, ·,6) be an archimedean sub-

semigroup of S. Then M∗ ⊆ P ∗.

Proof. Let P be a completely prime ideal of S. We prove that M∗ ∩ P = M∗.
Suppose that M∗ * M∗ ∩ P . Then there exists x ∈ M∗ and x /∈ P . Since P is
completely prime, xn /∈ P for all positive integer n. Let a ∈M∗ ∩ P . Since M∗ is
archimedean, xr ∈ (M∗aM∗] for some positive integer r. Consider

(M∗aM∗] ⊆ (SaS] ⊆ I(a) ⊆ P .

Then xr ∈ P . This is a contradiction. Thus M∗ ∩ P = M∗, and M∗ ⊆ P ∗.

Proposition 2.13. Let (S, ·,6) be an ordered semigroup. Then a maximal ideal

of S is either trivial or prime.

Proof. LetM be a nontrivial maximal ideal of S. For each a, b ∈ S\M , I(a)∪M =
S and I(b) ∪M = S. Then b ∈ I(a) and a ∈ I(b). This implies that I(a) = I(b).
Thus S \M is a J -class disjoint from M . If a, b /∈ M , then ab /∈ M . Therefore,
M is prime.

Theorem 2.14. Let (S, ·,6) be an ordered semigroup. Then Q∗ ⊆ M∗ if and

only if Q∗ ⊆ (S2].

Proof. Let x ∈ Q∗. If x /∈ (S2], then S \ (x] is a maximal ideal of S by [10]. This
implies that

x ∈M∗ ⊆ S \ (x].

This is a contradiction. Hence Q∗ ⊆ (S2]. Conversely, assume that Q∗ ⊆ (S2].
Let x ∈ Q∗. If x /∈ M∗, then there exists a maximal ideal M of S and x /∈ M .
Since x ∈ Q∗, we have M is not prime. Take M = S \ (y] for some y /∈ (S2] by
Proposition 2.13. Since x /∈M , y ∈ I(x) ∪M . This implies that y ∈ I(x). Hence

y ∈ I(x) ⊆ Q∗ ⊆ (S2].
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This is a contradiction.

Theorem 2.15. For an ordered semigroup (S, ·,6), if Q∗ ⊆M∗, then:

(1) M∗ is completely semiprime;

(2) S \M∗ is semisimple;

(3) S = (S2].

Proof. (1). Assume that M∗ is completely semiprime. Let x ∈ Q∗ \ M∗. If
x ∈ (S2], then x is semisimple by Theorem 2.9. Thus there exists a prime ideal Q
of S such that x /∈ Q by Lemma 2.3. This is a contradiction. Hence x ∈ M∗. If
x 6∈ (S2], then either x2 is semisimple or x2 ∈M∗. If x2 is semisimple by Theorem
2.9. Thus there exits a prime ideal Q such that x2 /∈ Q by Lemma2.3. This is a
contradiction. Hence x2 ∈M∗. Since M∗ is completely semiprime, x ∈M∗.

For proving (2) and (3), it can be considered similarly.

Theorem 2.16. If M∗ is an archimedean of an ordered semigroup (S, ·,6) and

prime ideals are completely prime, then M∗ ⊆ Q∗.

Proof. This follows by the hypothesis and Lemma 2.12.

Now we show that Q∗ is the maximal archimedean ideal of S if Q∗ is a com-
pletely semiprime ideal .

Theorem 2.17. Let Q∗ be a completely semiprime ideal of an ordered semigroup

(S, ·,6). Then an ideal A of S is an archimedean if and only if A ⊆ Q∗.

Proof. Assume that A is an archimedean. Since Q∗ is non-empty, there exists
y ∈ A ∩Q∗. Let x ∈ A; then there exists a positive integer n such that

xn ∈ (AyA] ⊆ (AQ∗A] ⊆ Q∗.

Since Q∗ is completely semiprime, x ∈ Q∗. The converse statement is obvious.

From above theorem is an open problem whether this result is hold in general.

Corollary 2.18. If Q∗ is a completely semiprime ideal of an ordered semigroup

(S, ·,6), then the only archimedean ideal A of S such that S \ A is semisimple is

Q∗ itself.

Proof. Let A be an archimedean ideal of S such that S \A is semisimple. We have
A ⊆ Q∗ by Theorem 2.17. Let x ∈ Q∗ \ A. Then x is semisimple. Thus there
exits a prime ideal Q containing A of S such that x /∈ Q by Lemma 2.3. This is a
contradiction. Hence Q∗ ⊆ A.

Theorem 2.19. Let Q∗ be a non-empty completely semiprime ideal of an ordered

semigroup (S, ·,6). Then the following hold:
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(1) M∗ = Q∗ if and only if M∗ is completely semiprime and M∗ is an archime-

dean subsemigroup of S.

(2) Let S = (S2]. Then M∗ = Q∗ if and only if M∗ is an archimedean subsemi-

group of S.

(3) S = (S2] with M∗ = Q∗ if and only if M∗ is an archimedean subsemigroup

of S such that S \M∗ is semisimple.

Proof. (1). This follows by the hypothesis, Theorem 2.6, Theorem 2.15 and The-
orem 2.16.

(2). By Theorem 2.6, M∗ is an archimedean subsemigroup of S. Conversely,
since S = (S2], it follows by Theorem 2.15 that Q∗ ⊆M∗. And by Theorem 2.17,
we have that M∗ ⊆ Q∗. Hence M∗ = Q∗.

(3). By Theorem 2.6 and Corollary 2.10, we have M∗ is an archimedean sub-
semigroup of S such that S \M∗ is semisimple. Conversely, assume that M∗ is an
archimedean subsemigroup of S such that S \M∗ is semisimple. Since M∗ is an
archimedean subsemigroup, M∗ ⊆ Q∗ by Theorem 2.17. Let x ∈ Q∗ \M∗. Thus
x is semisimple. By Lemma 2.3, we have x /∈ Q∗. This is a contradiction. Hence
M∗ = Q∗. Finally, we prove that S = (S2]. Let x ∈ S. There are two cases to
consider. If x /∈ M∗, then x is semisimple, and thus x ∈ (S2]. If x ∈ M∗ and
x /∈ (S2], then S \ (x] is a maximal ideal of S. Thus

x ∈M∗ ⊆ S \ (x].

This is a contradiction. Hence S = (S2].
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