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On the Cayley graphs of upper triangular

matrix rings
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Abstract. Let R be a commutative ring with nonzero identity. In this paper, we de�ne and

study the Cayley graph ~Γ′
Tn(R) of upper triangular matrix rings, where n is a natural number.

We obtain some graph theoretical properties of ~Γ′
Tn(R) including its diameter, planarity and

girth. Then, we study the Cayley graph ~Γ′
T2(F), where F is a �eld.Let R be a commutative

ring with nonzero identity. In this paper, we de�ne and study the Cayley graph ~Γ′
Tn(R) of

upper triangular matrix rings, where n is a natural number. We obtain some graph theoretical

properties of ~Γ′
Tn(R) including its diameter, planarity and girth. Then, we study the Cayley

graph ~Γ′
T2(F), where F is a �eld.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large
and growing area of research. Many fundamental papers devoted to graphs as-
signed to a ring have appeared recently, see for example [1], [2], [5], [6] and [8].
Among all types of graphs related to various algebraic structures, Cayley graphs
have attracted serious attention in the literature, since they have many useful
applications, see [13], [14], [15] and [16].

Let R be a commutative ring with 1 6= 0 and S be a subset of R. The Cayley
graph Cay(R,S) of R relative to S is de�ned as a digraph with vertex set R and
edge set E(R,S) consisting of those pairs (x, y) such that y = sx, for some s ∈ S.
By the ordered pair (x, y), we mean that x→ y. Also, let Tn(R) denote the n×n
upper triangular matrix ring over R and Z(R) denote the set of zero divisors of
R. When there is no confusion, we write T instead of Tn(R).

In this paper, we associate a digraph to the upper triangular matrix rings. Let
J = {A ∈ T | det(A) ∈ Z(R)} and J∗ = J \ {0}. The digraph on the upper

triangular matrix ring R, denoted by ~Γ′T , is a digraph whose vertex set is the
set J∗ and, for every two distinct vertices A and B, there is an arc from A to B
whenever there exists C ∈ T ∗ such that A = BC. In fact the digraph ~Γ′T is the
Cayley graph Cay(J∗, T ∗), where T ∗ = T \ {0}.
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We de�ne and study the graph ~Γ′T . In Sections 2 and 3, we investigate some
basic properties of the graph ~Γ′T such as connectivity, diameter, girth and pla-
narity. Also, in Section 4, we study the graph ~Γ′T2(F), where F is a �nite �eld with
F∗ = F \ {0}.

We will use the standard terminology in graph theory from [10].
A simple graph is a pair G = (V,E), where V = V (G) and E = E(G) are the

sets of vertices and edges ofG, respectively. In a graphG, the distance between two
distinct vertices a and b, denoted by dG(a, b), is the length of the shortest path con-
necting a and b, if such a path exists, otherwise, we set dG(a, b) :=∞. The diam-

eter of a graph G is diam(G) = sup{dG(a, b) | a and b are distinct vertices of G}.
For two distinct vertices a and b in G, a − b means that a and b are adjacent. A
graph G is said to be connected if there exists a path between any two distinct
vertices, and it is complete if each pair of distinct vertices is joined by an edge. For
a positive integer n, we use Kn to denote the complete graph with n vertices. The
girth of G, denoted by gr(G), is the length of the shortest cycle in G, if G contains
a cycle; otherwise, gr(G) :=∞. A graph is called planar if it can be drawn in the
plane without any edge crossing. The Kuratowski Theorem says that a graph is
planar if and only if it contains no subdivision of K5 or K3,3 (cf. [10, p. 153]). A
simple graph is an outer planar if it can be drawn in the plane without crossings
in such a way that all of the vertices to the unbounded face of the drawing. Also,
the union of the graphs G1 and G2, which is denoted by G1 ∪G2, where G1 and
G2 are two vertex-disjoint graphs, is a graph with V (G1 ∪G2) = V (G1) ∪ V (G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2). We say that a digraph X is connected if the
undirected underlying simple graph obtained by replacing all directed edges of X
with undirected edges is a connected graph. Also, for distinct vertices x and y in
X, we use the notation x→ y to show that there is an arc from x to y.

2. Girth and diameter

We begin this section with the following result.

Theorem 2.1. (cf. [17, Theorem 2.1]) Suppose that R is a commutative ring

with identity 1 6= 0, and suppose that Q(R) is the total quotient ring of R. Then
~Γ(Tn(R)) ∼= ~Γ(Tn(Q(R))).

By Theorem 2.1, we may assume that throughout this paper every element of
R is either a unit or a zero-divisor.

Lemma 2.2. (cf. [18, Lemma 2.2]) Let A = [aij ] ∈ T . Then det(A) is a zero-

divisor in R if and only if ajj is a zero-divisor in R for some j ∈ {1, 2, . . . , n}.

Lemma 2.3. (cf. [18, Lemma 2.4]) Let A ∈ T . Then

A ∈ ZL(T )⇐⇒ det(A) ∈ Z(R)⇐⇒ A ∈ ZR(T ).
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Lemma 2.4. Let Y =


y11 y12 · · · y1n
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ∈ V ( ~Γ′T ). Suppose that A is a

vertex such that a11 is unit. Then Y −→ A.

Proof. Suppose that A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 is an arbitrary upper trian-

gular matrix such that a11 is unit. Now consider C =


x11 x12 · · · x1n

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

,
where x1i = a−111 y1i, for i = 1, 2, · · · , n. Hence clearly AC = Y . Therefore the
result holds.

Suppose that Eij denote the matrix with 1 in the (i, j)-position and zero else-
where.

Lemma 2.5. Let A be a vertex in ~Γ′T such that aii is a unit element for some

1 6 i 6 n. Then Eii −→ A.

Proof. Let A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 ∈ V ( ~Γ′T ) be such that aii is unit, for

some 1 6 i 6 n. Consider the matrix

C =



0 0 · · · 0 0

0
. . . · · · 0 0

...
... a−1ii

... 0

0 0 · · ·
. . . 0

0 0 · · · 0 0


.

Then we have AC = Eii, which means that Eii → A.

Lemma 2.6. (cf. [18, Proposition 3.1]) Let R be a �nite ring with |R| = k and

|Z(R)| = d. Then

|V ( ~Γ′T )| = k
n(n−1)

2 [kn − (k − d)n]− 1.

In the following example, we see that ~Γ′T is not connected in general.
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Example 2.7. Suppose that T2(Z2) is the set of upper triangular matrices 2× 2

on Z2. Then, by Lemma 2.6, |V (~Γ′T2(Z2))| = 5 and this �ve vertices are,

A=

[
1 0
0 0

]
, B=

[
0 0
0 1

]
, C=

[
1 1
0 0

]
, D=

[
0 1
0 1

]
, E=

[
0 1
0 0

]
.

Hence we have,

Figure 1:

Now, in the following two propositions, we study the connectness of some

induced subgraphs of ~Γ′T .

Proposition 2.8. The induced subgraph X of ~Γ′T consists of all vertices that have

at least a unit element on the principal diagonal, is connected with diameter less

than or equal to two.

Proof. Let A and B be two arbitrary vertices in X. Without less of generality, we
may assume that a11 and b11 are unit elements of A and B, respectively. Then, by

Lemma 2.4, Y → A and Y → B, where Y =


y11 y12 · · · y1n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 is a vertex

in ~Γ′T and y11 is unit. So we have the path A ← Y → B in X. Hence the result
holds.

Proposition 2.9. Let F be a �nite �eld. Then the induced subgraph X ′ of ~Γ′T (F)
consists of all vertices that all elements on the principal diagonal are zero-divisor,

is connected with diameter less than or equal to two.

Proof. Let A and B be two arbitrary vertices in X ′. Suppose that

Y ′ =


0 y′12 · · · y′1n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
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is a vertex in X ′. Then clearly, A→ Y ′ and B → Y ′. Hence we have A→ Y ′ ← B
in X ′. So the result holds.

Now, in the following theorem, we determine a complete subgraph of ~Γ′T .

Theorem 2.10. Let F be a �nite �eld and

Γ = {A ∈ Tn(F ) | aii ∈ F ∗, for 1 6 i 6 n− 1 and ann = 0}.

Then the induced subgraph of ~Γ′T with vertex set Γ is complete.

Proof. We prove this result for n = 3. Suppose that A =

 a11 a12 a13
0 a22 a23
0 0 0

 and

B =

 b11 b12 b13
0 b22 b23
0 0 0

 are two arbitrary vertices in Γ. So we have

 a11 a12 a13
0 a22 a23
0 0 0

 =

 b11 b12 b13
0 b22 b23
0 0 0

 x11 x12 x13

0 x22 x23

0 0 x33

 ,

where

x11 = b−111 a11, x12 = b−111 (a12 − b12(b−122 a22)), x13 = b−111 (a13 − b12(b−122 a23)),

x22 = b−122 a22, x23 = b−122 a23 and x33 = 0.

Hence A = BC, where C =

 x11 x12 x13

0 x22 x23

0 0 x33

. Now, for n > 4, one can

easily check that the result also holds.

In the next theorem, we show that gr( ~Γ′T ) = 3.

Theorem 2.11. In the graph ~Γ′T , we have gr( ~Γ′T ) = 3.

Proof. If n = 2, then consider the vertices

A =

[
−1 0
0 0

]
, B =

[
1 0
0 0

]
and C =

[
1 −1
0 0

]
.

We have the cycle A −→ B −→ D −→ A in ~Γ′T . Now, if n > 3, then by considering
the vertices

A = E11 + E12, B = E11, D =
∑3

j=1 E1j ,

we obtain the cycle A −→ B −→ D −→ A, and so the result holds.
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3. Planarity of ~Γ′T
In this section, we study the planarity and outer planarity properties of the graph
~Γ′T .

Lemma 3.12. Let Eij and Eik be two vertices in graph ~Γ′T such that j > k. Then

Eij −→ Eik.

Proof. Suppose that Eij and Eik are two vertices in the graph ~Γ′T and j > k.
Then we have

0 0 · · · 0 0

0
. . . · · · 0 0

...
... aij

... 0

0 0 · · ·
. . . 0

0 0 · · · 0 0


=



0 0 · · · 0 0

0
. . . · · · 0 0

...
... aik

... 0

0 0 · · ·
. . . 0

0 0 · · · 0 0





0 0 · · · 0 0

0
. . . · · · 0 0

...
... akj

... 0

0 0 · · ·
. . . 0

0 0 · · · 0 0


such that aik = akj = aij = 1, which means that Eij −→ Eik.

Theorem 3.13. The graph ~Γ′Tn(R) is planar if and only if n = 2 and R = Z2.

Proof. First assume that ~Γ′Tn(R) is planar. If n = 3, then the set of vertices

{A = Σ3
j=1E1j , B = E11 + E12, C = E11, D = A + E23, E = D + E22},

forms a complete graph K5, which means that ~Γ′Tn(R) is not planar and this is
impossible. If n = 4, then the vertex set

{A = Σ4
j=1E1j , B = Σ3

j=1E1j , C = E11 + E22, D = E11, E = A + E24},

forms a complete graph K5, which is again impossible. If n > 5, then, by Lemma
2.10, we have Eij −→ Eik and j > k. So, we obtain a subgraph isomorphic to K5

in ~Γ′Tn(R) as it is pictured in Figure 2. Hence ~Γ′Tn(R) is not planar and this is a
contradiction.

Figure 2:

Now, assume that n = 2. If |U(R)| > 2, then the vertices of the set
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{
A=

[
1 1
0 0

]
, B=

[
1 0
0 0

]
, C=

[
a a
0 0

]
, D=

[
1 a
0 0

]
, E=

[
a 1
0 0

]}
forms the graph K5, which is impossible. If |U(R)| = 1 and R = Z2 × Z2, then
the vertices

A =

[
(1, 1) (0, 0)
(0, 0) (0, 0)

]
, B =

[
(0, 0) (0, 0)
(0, 0) (1, 1)

]
, C =

[
(1, 1) (1, 0)
(0, 0) (0, 0)

]
,

D =

[
(1, 1) (1, 1)
(0, 0) (0, 0)

]
, E =

[
(1, 1) (1, 0)
(0, 0) (0, 1)

]
,

forms a complete graph K5, which is impossible. If R = Z2, then ~Γ′T2(Z2) is

pictured in Figure 1, which is planar. Therefor if ~Γ′Tn(R) is planar, then we have
n = 2 and R = Z2.

The converse statement is obvious.

Corollary 3.14. The graph ~Γ′Tn(R) is outer planar if and only if it is planar.

4. The graph of ~Γ′T2(F)

In this section, we suppose that T2(F) is the set of 2×2 matrices over an arbitrary

�nite �eld. We study the graph ~Γ′T2(F). We begin by drawing the graph ~Γ′T2(Z3).
This simple example provides us with a template for the structure of this graph.

Let F be a �nite �eld and U = U(F). We �rst divide T2(F) into the following
disjoint subsets:

T (0) =

[
0 U
0 0

]
, T (1) =

[
U 0
0 0

]
, T (2) =

[
0 0
0 U

]
,

T (3) =

[
U U
0 0

]
, T (4) =

[
0 U
0 U

]
.

That is, V (~Γ′T2(F)) = T (0) ∪T (1) ∪T (2) ∪T (3) ∪T (4) is the disjoint union of the

sets T (i) and ~Γ′T (i) is the induced subgraph of ~Γ′T2(F) with vertex set T (i).

Proposition 4.15. Let F be a �nite �eld with |F| = m. Then:

(i) The graph ~Γ′T (i) is isomorphic to Km−1, for i = 0, 1, 2.

(ii) The graph ~Γ′T (i) is isomorphic to K(m−1)2 , for i = 3, 4.

Proof. (i). Suppose that A and B are two arbitrary vertices in ~Γ′T (0) . Then for
vertices

A =

[
0 x
0 0

]
, B =

[
0 y
0 0

]
,
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where x, y ∈ U , we have,[
0 x
0 0

]
=

[
0 y
0 0

] [
0 0
0 y−1x

]
,

which implies that A → B. Since |U | = m − 1, we have ~Γ′T (0) is isomorphic to
Km−1. For i = 1, 2, the result follows similarly.

(ii) Suppose that A and B are two arbitrary vertices in ~Γ′T (3) . Then for

A =

[
x y
0 0

]
, B =

[
z w
0 0

]
,

where x, y, z, w ∈ U , we have[
x y
0 0

]
=

[
z w
0 0

] [
z−1x z−1y

0 0

]
.

So A→ B, which implies that ~Γ′T (3) is isomorphic to K(m−1)2 . One can easily

see that ~Γ′T (4) is also isomorphic to K(m−1)2 . Hence the result holds.

Remark 4.16. For i, j = 0, 1, 2, 3, 4, we denote by E(i, j) the set of all the directed

edges from vertices in ~Γ′T (i) to vertices in ~Γ′T (j) .

Note that, every directed edge from V1 to V2 can be represented by the ordered
pair (V1, V2). With this representation, E(i, j) ⊆ T (i) × T (j), and the equality
occurs when there is an edge from every vertex in T (i) to every vertex in T (j).

Proposition 4.17. The following statements hold:

(i) E(i, 2) = E(j, 4) = E(2, 3) = ∅, for i = 0, 1 and j = 0, 1, 2, 3.

(ii) E(0, 1) = T (0) × T (1), E(0, 3) = T (0) × T (3), E(1, 3) = T (1) × T (3).

Proof. (i). Suppose that A and B are two arbitrary vertices in ~Γ′T (0) and ~Γ′T (2) ,
respectively. Then we consider the vertices

A =

[
0 x
0 0

]
, B =

[
0 0
0 y

]
,

where x, y ∈ U . One can easily check that A 9 b and B 9 A. So E(0, 2) = ∅.
For other situations the result follows easily.

(ii). Suppose that A and B are two arbitrary vertices in ~Γ′T (0) and ~Γ′T (1) ,
respectively. Then for vertices

A =

[
0 x
0 0

]
, B =

[
y 0
0 0

]
,

where x, y ∈ U , we have A→ B So E(0, 1) = T (0) × T (1). For E(0, 3) and E(1, 3)
the result follows similarly.
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In the following example, we study the Cayley graph ~Γ′T2(Z3).

Example 4.18. The vertex set of T2(Z3) are

M0 =

[
0 1
0 0

]
, M1 =

[
0 2
0 0

]
, M2 =

[
1 0
0 0

]
, M3 =

[
2 0
0 0

]

M4 =

[
0 0
0 1

]
, M5 =

[
0 0
0 2

]
, M6 =

[
1 1
0 0

]
, M7 =

[
2 2
0 0

]

M8 =

[
1 2
0 0

]
, M9 =

[
2 1
0 0

]
, M10 =

[
0 1
0 1

]
, M11 =

[
0 2
0 2

]

M12 =

[
0 1
0 2

]
, M13 =

[
0 2
0 1

]
Now, we have T (0) = {M0,M1}, T (1) = {M2,M3}, T (3) = {M6,M7,M8,M9},

T (2) = {M4,M5} and T (4) = {M10,M11,M12,M13}. The graph ~Γ′T2(Z3) is pic-
tured in Figure 3.

Figure 3: ~Γ′T2(Z3)
∼= K8 ∪K4 ∪K2

Proposition 4.19. If p is a prime number, then the graph ~Γ′T2(Zp) is isomorphic

to the graph Kp2−1 ∪K(p−1)2 ∪Kp−1.

Proof. We know that V (~Γ′T2(Zp)) = T (0) ∪T (1) ∪T (2) ∪T (3) ∪T (4). Since |T (0)| =
|T (1)| = p − 1 and |T (3)| = (p − 1)2, by Proposition 4.17 (ii), the vertex set

{T (0), T (1), T (3)} forms a complete subgraph Kp2−1 in ~Γ′T2(Zp). Also, we have

|T (4)| = (p− 1)2 and |T (2)| = p− 1. So, by Proposition 4.15, ~Γ′T (4)
∼= K(p−1)2 and

~Γ′T (2)
∼= Kp−1. Now, by Proposition 4.17 (i), the result holds.
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