On the Cayley graphs of upper triangular matrix rings

Nazila Vaez Moosavi, Kazem Khashyarmanesh, Sadegh Mohammadikhah and Mojgan Afkhami

Abstract. Let R be a commutative ring with nonzero identity. In this paper, we define and study the Cayley graph $\vec{\Gamma'}_{T_n(R)}$ of upper triangular matrix rings, where n is a natural number. We obtain some graph theoretical properties of $\vec{\Gamma'}_{T_n(R)}$ including its diameter, planarity and girth. Then, we study the Cayley graph $\vec{\Gamma'}_{T_2(\mathbb{F})}$, where \mathbb{F} is a field.Let R be a commutative ring with nonzero identity. In this paper, we define and study the Cayley graph $\vec{\Gamma'}_{T_n(R)}$ of upper triangular matrix rings, where n is a natural number. We obtain some graph theoretical properties of $\vec{\Gamma'}_{T_n(R)}$ including its diameter, planarity and girth. Then, we study the Cayley graph $\vec{\Gamma'}_{T_2(\mathbb{F})}$, where \mathbb{F} is a field.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large and growing area of research. Many fundamental papers devoted to graphs assigned to a ring have appeared recently, see for example [1], [2], [5], [6] and [8]. Among all types of graphs related to various algebraic structures, Cayley graphs have attracted serious attention in the literature, since they have many useful applications, see [13], [14], [15] and [16].

Let R be a commutative ring with $1 \neq 0$ and S be a subset of R. The Cayley graph $\operatorname{Cay}(R, S)$ of R relative to S is defined as a digraph with vertex set R and edge set E(R, S) consisting of those pairs (x, y) such that y = sx, for some $s \in S$. By the ordered pair (x, y), we mean that $x \to y$. Also, let $T_n(R)$ denote the $n \times n$ upper triangular matrix ring over R and Z(R) denote the set of zero divisors of R. When there is no confusion, we write T instead of $T_n(R)$.

In this paper, we associate a digraph to the upper triangular matrix rings. Let $J = \{A \in T \mid \det(A) \in Z(R)\}$ and $J^* = J \setminus \{0\}$. The digraph on the upper triangular matrix ring R, denoted by $\vec{\Gamma'}_T$, is a digraph whose vertex set is the set J^* and, for every two distinct vertices A and B, there is an arc from A to B whenever there exists $C \in T^*$ such that A = BC. In fact the digraph $\vec{\Gamma'}_T$ is the Cayley graph Cay (J^*, T^*) , where $T^* = T \setminus \{0\}$.

²⁰¹⁰ Mathematics Subject Classification: 05C99, 13A99

Keywords: Cayley graph, upper triangular matrix rings, planar graph, diameter.

We define and study the graph $\vec{\Gamma'}_T$. In Sections 2 and 3, we investigate some basic properties of the graph $\vec{\Gamma'}_T$ such as connectivity, diameter, girth and planarity. Also, in Section 4, we study the graph $\vec{\Gamma'}_{T_2(\mathbb{F})}$, where \mathbb{F} is a finite field with $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$.

We will use the standard terminology in graph theory from [10].

A simple graph is a pair G = (V, E), where V = V(G) and E = E(G) are the sets of vertices and edges of G, respectively. In a graph G, the distance between two distinct vertices a and b, denoted by $d_G(a, b)$, is the length of the shortest path connecting a and b, if such a path exists, otherwise, we set $d_G(a,b) := \infty$. The diameter of a graph G is diam $(G) = \sup\{d_G(a, b) \mid a \text{ and } b \text{ are distinct vertices of } G\}.$ For two distinct vertices a and b in G, a - b means that a and b are adjacent. A graph G is said to be *connected* if there exists a path between any two distinct vertices, and it is *complete* if each pair of distinct vertices is joined by an edge. For a positive integer n, we use K_n to denote the complete graph with n vertices. The girth of G, denoted by gr(G), is the length of the shortest cycle in G, if G contains a cycle; otherwise, $gr(G) := \infty$. A graph is called *planar* if it can be drawn in the plane without any edge crossing. The Kuratowski Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [10, p. 153]). A simple graph is an *outer planar* if it can be drawn in the plane without crossings in such a way that all of the vertices to the unbounded face of the drawing. Also, the union of the graphs G_1 and G_2 , which is denoted by $G_1 \cup G_2$, where G_1 and G_2 are two vertex-disjoint graphs, is a graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. We say that a digraph X is connected if the undirected underlying simple graph obtained by replacing all directed edges of Xwith undirected edges is a connected graph. Also, for distinct vertices x and y in X, we use the notation $x \to y$ to show that there is an arc from x to y.

2. Girth and diameter

We begin this section with the following result.

Theorem 2.1. (cf. [17, Theorem 2.1]) Suppose that R is a commutative ring with identity $1 \neq 0$, and suppose that Q(R) is the total quotient ring of R. Then $\vec{\Gamma}(T_n(R)) \cong \vec{\Gamma}(T_n(Q(R)))$.

By Theorem 2.1, we may assume that throughout this paper every element of R is either a unit or a zero-divisor.

Lemma 2.2. (cf. [18, Lemma 2.2]) Let $A = [a_{ij}] \in T$. Then det(A) is a zerodivisor in R if and only if a_{jj} is a zero-divisor in R for some $j \in \{1, 2, ..., n\}$.

Lemma 2.3. (cf. [18, Lemma 2.4]) Let $A \in T$. Then

$$A \in Z_L(T) \iff \det(A) \in Z(R) \iff A \in Z_R(T).$$

Lemma 2.4. Let $Y = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \in V(\Gamma_T^{\vec{r}})$. Suppose that A is a vertex such that a_{11} is unit. Then $Y \longrightarrow A$.

Proof. Suppose that
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$
 is an arbitrary upper trian-

gular matrix such that a_{11} is unit. Now consider $C = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$,

where $x_{1i} = a_{11}^{-1} y_{1i}$, for $i = 1, 2, \dots, n$. Hence clearly AC = Y. Therefore the result holds.

Suppose that E_{ij} denote the matrix with 1 in the (i, j)-position and zero elsewhere.

Lemma 2.5. Let A be a vertex in $\vec{\Gamma}_T$ such that a_{ii} is a unit element for some $1 \leq i \leq n$. Then $E_{ii} \longrightarrow A$.

Proof. Let $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \in V(\vec{\Gamma_T})$ be such that a_{ii} is unit, for

some $1 \leq i \leq n$. Consider the matrix

$$C = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & \ddots & \cdots & 0 & 0 \\ \vdots & \vdots & a_{ii}^{-1} & \vdots & 0 \\ 0 & 0 & \cdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Then we have $AC = E_{ii}$, which means that $E_{ii} \to A$.

Lemma 2.6. (cf. [18, Proposition 3.1]) Let R be a finite ring with |R| = k and |Z(R)| = d. Then

$$|V(\vec{\Gamma_T})| = k^{\frac{n(n-1)}{2}} [k^n - (k-d)^n] - 1.$$

In the following example, we see that Γ'_T is not connected in general.

Example 2.7. Suppose that $T_2(\mathbb{Z}_2)$ is the set of upper triangular matrices 2×2 on \mathbb{Z}_2 . Then, by Lemma 2.6, $|V(\vec{\Gamma'}_{T_2(\mathbb{Z}_2)})| = 5$ and this five vertices are,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Hence we have,
• B

Figure 1:

Now, in the following two propositions, we study the connectness of some induced subgraphs of $\vec{\Gamma_T}$.

Proposition 2.8. The induced subgraph X of Γ_T' consists of all vertices that have at least a unit element on the principal diagonal, is connected with diameter less than or equal to two.

Proof. Let A and B be two arbitrary vertices in X. Without less of generality, we may assume that a_{11} and b_{11} are unit elements of A and B, respectively. Then, by

Lemma 2.4, $Y \to A$ and $Y \to B$, where $Y = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$ is a vertex

in $\Gamma_T^{\vec{\prime}}$ and y_{11} is unit. So we have the path $A \leftarrow Y \rightarrow B$ in X. Hence the result holds.

Proposition 2.9. Let \mathbb{F} be a finite field. Then the induced subgraph X' of $\Gamma'_T(\mathbb{F})$ consists of all vertices that all elements on the principal diagonal are zero-divisor, is connected with diameter less than or equal to two.

Proof. Let A and B be two arbitrary vertices in X'. Suppose that

$$Y' = \begin{bmatrix} 0 & y'_{12} & \cdots & y'_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

is a vertex in X'. Then clearly, $A \to Y'$ and $B \to Y'$. Hence we have $A \to Y' \leftarrow B$ in X'. So the result holds.

Now, in the following theorem, we determine a complete subgraph of $\vec{\Gamma'_T}$.

Theorem 2.10. Let \mathbb{F} be a finite field and

$$\Gamma = \{ A \in T_n(F) \mid a_{ii} \in F^*, \text{ for } 1 \leq i \leq n-1 \text{ and } a_{nn} = 0 \}.$$

Then the induced subgraph of $\Gamma_T^{\vec{\prime}}$ with vertex set Γ is complete.

$$\begin{array}{l} \textit{Proof. We prove this result for } n = 3. \textit{ Suppose that } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & 0 \end{bmatrix} \textit{ and } \\ B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & 0 \end{bmatrix} \textit{ are two arbitrary vertices in } \Gamma. \textit{ So we have} \\ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix}, \end{array}$$

where

$$x_{11} = b_{11}^{-1}a_{11}, \quad x_{12} = b_{11}^{-1}(a_{12} - b_{12}(b_{22}^{-1}a_{22})), \quad x_{13} = b_{11}^{-1}(a_{13} - b_{12}(b_{22}^{-1}a_{23})),$$
$$x_{22} = b_{22}^{-1}a_{22}, \quad x_{23} = b_{22}^{-1}a_{23} \text{ and } x_{33} = 0.$$
Hence $A = BC$, where $C = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ 0 & x_{22} & x_{23} \\ 0 & 0 & x_{33} \end{bmatrix}$. Now, for $n \ge 4$, one can

easily check that the result also holds.

In the next theorem, we show that $\operatorname{gr}(\vec{\Gamma_T}) = 3$.

Theorem 2.11. In the graph Γ_T' , we have $\operatorname{gr}(\Gamma_T') = 3$.

Proof. If n = 2, then consider the vertices

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}.$$

We have the cycle $A \longrightarrow B \longrightarrow D \longrightarrow A$ in $\vec{\Gamma_T}$. Now, if $n \ge 3$, then by considering the vertices

$$A = E_{11} + E_{12}, \quad B = E_{11}, \quad D = \sum_{j=1}^{3} E_{1j},$$

we obtain the cycle $A \longrightarrow B \longrightarrow D \longrightarrow A$, and so the result holds.

3. Planarity of $\Gamma_T^{\vec{i}}$

In this section, we study the planarity and outer planarity properties of the graph $\Gamma_T^{\vec{r}}$.

Lemma 3.12. Let E_{ij} and E_{ik} be two vertices in graph $\vec{\Gamma}_T$ such that j > k. Then $E_{ij} \longrightarrow E_{ik}$.

Proof. Suppose that E_{ij} and E_{ik} are two vertices in the graph Γ_T^{\prime} and j > k. Then we have

0	0		0	0		0	0		0	0	0	0		0	0	
0	•••		0	0		0	· · .		0	0	0	•••		0	0	
1 :	÷	a_{ij}	÷	0	=		:	a_{ik}	÷	0	÷	÷	a_{kj}	÷	0	
$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	0 0	 	0	0 0		$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	 	0	0 0	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	 	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	

such that $a_{ik} = a_{kj} = a_{ij} = 1$, which means that $E_{ij} \longrightarrow E_{ik}$.

Theorem 3.13. The graph $\vec{\Gamma'}_{T_n(R)}$ is planar if and only if n = 2 and $R = \mathbb{Z}_2$.

Proof. First assume that $\vec{\Gamma'}_{T_n(R)}$ is planar. If n = 3, then the set of vertices

 $\{A = \Sigma_{j=1}^{3} E_{1j}, \ B = E_{11} + E_{12}, \ C = E_{11}, \ D = A + E_{23}, \ E = D + E_{22}\},\label{eq:alpha}$

forms a complete graph K_5 , which means that $\vec{\Gamma'}_{T_n(R)}$ is not planar and this is impossible. If n = 4, then the vertex set

$$\{A = \sum_{j=1}^{4} E_{1j}, B = \sum_{j=1}^{3} E_{1j}, C = E_{11} + E_{22}, D = E_{11}, E = A + E_{24}\},\$$

forms a complete graph K_5 , which is again impossible. If $n \ge 5$, then, by Lemma 2.10, we have $E_{ij} \longrightarrow E_{ik}$ and j > k. So, we obtain a subgraph isomorphic to K_5 in $\vec{\Gamma'}_{T_n(R)}$ as it is pictured in Figure 2. Hence $\vec{\Gamma'}_{T_n(R)}$ is not planar and this is a contradiction.

Figure 2:

Now, assume that n = 2. If $|U(R)| \ge 2$, then the vertices of the set

$$\left\{ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} a & a \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}, E = \begin{bmatrix} a & 1 \\ 0 & 0 \end{bmatrix} \right\}$$
forms the graph K_5 , which is impossible. If $|U(R)| = 1$ and $R = \mathbb{Z}_2 \times \mathbb{Z}_2$, the

forms the graph K_5 , which is impossible. If |U(R)| = 1 and $R = \mathbb{Z}_2 \times \mathbb{Z}_2$, then the vertices

$$A = \begin{bmatrix} (1,1) & (0,0) \\ (0,0) & (0,0) \end{bmatrix}, \quad B = \begin{bmatrix} (0,0) & (0,0) \\ (0,0) & (1,1) \end{bmatrix}, \quad C = \begin{bmatrix} (1,1) & (1,0) \\ (0,0) & (0,0) \end{bmatrix},$$
$$D = \begin{bmatrix} (1,1) & (1,1) \\ (0,0) & (0,0) \end{bmatrix}, \quad E = \begin{bmatrix} (1,1) & (1,0) \\ (0,0) & (0,1) \end{bmatrix},$$

forms a complete graph K_5 , which is impossible. If $R = \mathbb{Z}_2$, then $\vec{\Gamma'}_{T_2(\mathbb{Z}_2)}$ is pictured in Figure 1, which is planar. Therefor if $\vec{\Gamma'}_{T_n(R)}$ is planar, then we have n = 2 and $R = \mathbb{Z}_2$.

The converse statement is obvious.

Corollary 3.14. The graph $\vec{\Gamma'}_{T_n(R)}$ is outer planar if and only if it is planar.

4. The graph of $\vec{\Gamma'}_{T_2(\mathbb{F})}$

In this section, we suppose that $T_2(\mathbb{F})$ is the set of 2×2 matrices over an arbitrary finite field. We study the graph $\vec{\Gamma'}_{T_2(\mathbb{F})}$. We begin by drawing the graph $\vec{\Gamma'}_{T_2(\mathbb{Z}_3)}$. This simple example provides us with a template for the structure of this graph.

Let \mathbb{F} be a finite field and $U = U(\mathbb{F})$. We first divide $T_2(\mathbb{F})$ into the following disjoint subsets:

$$\begin{aligned} T^{(0)} &= \left[\begin{array}{cc} 0 & U \\ 0 & 0 \end{array} \right], \ T^{(1)} &= \left[\begin{array}{cc} U & 0 \\ 0 & 0 \end{array} \right], \ T^{(2)} &= \left[\begin{array}{cc} 0 & 0 \\ 0 & U \end{array} \right], \\ T^{(3)} &= \left[\begin{array}{cc} U & U \\ 0 & 0 \end{array} \right], \ T^{(4)} &= \left[\begin{array}{cc} 0 & U \\ 0 & U \end{array} \right]. \end{aligned}$$

That is, $V(\vec{\Gamma'}_{T_2(\mathbb{F})}) = T^{(0)} \cup T^{(1)} \cup T^{(2)} \cup T^{(3)} \cup T^{(4)}$ is the disjoint union of the sets $T^{(i)}$ and $\vec{\Gamma'}_{T^{(i)}}$ is the induced subgraph of $\vec{\Gamma'}_{T_2(\mathbb{F})}$ with vertex set $T^{(i)}$.

Proposition 4.15. Let \mathbb{F} be a finite field with $|\mathbb{F}| = m$. Then:

- (i) The graph $\vec{\Gamma'}_{T^{(i)}}$ is isomorphic to K_{m-1} , for i = 0, 1, 2.
- (ii) The graph $\vec{\Gamma'}_{T^{(i)}}$ is isomorphic to $K_{(m-1)^2}$, for i = 3, 4.

Proof. (i). Suppose that A and B are two arbitrary vertices in $\vec{\Gamma'}_{T^{(0)}}$. Then for vertices

$$A = \left[\begin{array}{cc} 0 & x \\ 0 & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} 0 & y \\ 0 & 0 \end{array} \right],$$

where $x, y \in U$, we have,

$$\left[\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & y \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 0 & 0 \\ 0 & y^{-1}x \end{array}\right],$$

which implies that $A \to B$. Since |U| = m - 1, we have $\vec{\Gamma'}_{T^{(0)}}$ is isomorphic to K_{m-1} . For i = 1, 2, the result follows similarly.

(*ii*) Suppose that A and B are two arbitrary vertices in $\vec{\Gamma'}_{T^{(3)}}$. Then for

$$A = \left[\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} z & w \\ 0 & 0 \end{array} \right],$$

where $x, y, z, w \in U$, we have

$$\left[\begin{array}{cc} x & y \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} z & w \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} z^{-1}x & z^{-1}y \\ 0 & 0 \end{array}\right].$$

So $A \to B$, which implies that $\vec{\Gamma'}_{T^{(3)}}$ is isomorphic to $K_{(m-1)^2}$. One can easily see that $\vec{\Gamma'}_{T^{(4)}}$ is also isomorphic to $K_{(m-1)^2}$. Hence the result holds.

Remark 4.16. For i, j = 0, 1, 2, 3, 4, we denote by E(i, j) the set of all the directed edges from vertices in $\vec{\Gamma'}_{T^{(i)}}$ to vertices in $\vec{\Gamma'}_{T^{(j)}}$.

Note that, every directed edge from V_1 to V_2 can be represented by the ordered pair (V_1, V_2) . With this representation, $E(i, j) \subseteq T^{(i)} \times T^{(j)}$, and the equality occurs when there is an edge from every vertex in $T^{(i)}$ to every vertex in $T^{(j)}$.

Proposition 4.17. The following statements hold:

- (i) $E(i,2) = E(j,4) = E(2,3) = \emptyset$, for i = 0, 1 and j = 0, 1, 2, 3.
- (ii) $E(0,1) = T^{(0)} \times T^{(1)}, \ E(0,3) = T^{(0)} \times T^{(3)}, \ E(1,3) = T^{(1)} \times T^{(3)}.$

Proof. (i). Suppose that A and B are two arbitrary vertices in $\vec{\Gamma'}_{T^{(0)}}$ and $\vec{\Gamma'}_{T^{(2)}}$, respectively. Then we consider the vertices

$$A = \left[\begin{array}{cc} 0 & x \\ 0 & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} 0 & 0 \\ 0 & y \end{array} \right],$$

where $x, y \in U$. One can easily check that $A \not\rightarrow b$ and $B \not\rightarrow A$. So $E(0,2) = \emptyset$. For other situations the result follows easily.

(*ii*). Suppose that A and B are two arbitrary vertices in $\vec{\Gamma'}_{T^{(0)}}$ and $\vec{\Gamma'}_{T^{(1)}}$, respectively. Then for vertices

$$A = \left[\begin{array}{cc} 0 & x \\ 0 & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} y & 0 \\ 0 & 0 \end{array} \right],$$

where $x, y \in U$, we have $A \to B$ So $E(0,1) = T^{(0)} \times T^{(1)}$. For E(0,3) and E(1,3) the result follows similarly.

In the following example, we study the Cayley graph $\vec{\Gamma'}_{T_2(\mathbb{Z}_3)}$. Example 4.18. The vertex set of $T_2(\mathbb{Z}_3)$ are

$$M_{0} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, M_{1} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, M_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, M_{3} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$
$$M_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, M_{5} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, M_{6} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, M_{7} = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$$
$$M_{8} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, M_{9} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}, M_{10} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, M_{11} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$$
$$M_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, M_{13} = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$$

Now, we have $T^{(0)} = \{M_0, M_1\}, T^{(1)} = \{M_2, M_3\}, T^{(3)} = \{M_6, M_7, M_8, M_9\}, T^{(2)} = \{M_4, M_5\}$ and $T^{(4)} = \{M_{10}, M_{11}, M_{12}, M_{13}\}$. The graph $\vec{\Gamma'}_{T_2(\mathbb{Z}_3)}$ is pictured in Figure 3.

Proposition 4.19. If p is a prime number, then the graph $\vec{\Gamma'}_{T_2(\mathbb{Z}_p)}$ is isomorphic to the graph $K_{p^2-1} \cup K_{(p-1)^2} \cup K_{p-1}$.

Proof. We know that $V(\vec{\Gamma'}_{T_2(\mathbb{Z}_p)}) = T^{(0)} \cup T^{(1)} \cup T^{(2)} \cup T^{(3)} \cup T^{(4)}$. Since $|T^{(0)}| = |T^{(1)}| = p - 1$ and $|T^{(3)}| = (p - 1)^2$, by Proposition 4.17 (*ii*), the vertex set $\{T^{(0)}, T^{(1)}, T^{(3)}\}$ forms a complete subgraph K_{p^2-1} in $\vec{\Gamma'}_{T_2(\mathbb{Z}_p)}$. Also, we have $|T^{(4)}| = (p - 1)^2$ and $|T^{(2)}| = p - 1$. So, by Proposition 4.15, $\vec{\Gamma'}_{T^{(4)}} \cong K_{(p-1)^2}$ and $\vec{\Gamma'}_{T^{(2)}} \cong K_{p-1}$. Now, by Proposition 4.17 (*i*), the result holds. □

References

[1] M. Afkhami and K. Khashyarmanesh, The cozero divisor graph of a commutative ring, Southeast Asian Bull. Math., 35 (2011), 753-762.

- [2] M. Afkhami and K. Khashyarmanesh, On the cozero divisor graph of a commutative rings and their complements, Bull. Malays. Math. Sci. Soc., 35 (2011), 753-762.
- [3] M. Afkhami, K. Khashyarmanesh and Kh. Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl. 437 (2012), 1040 1049.
- [4] S. Akbari, H.R. Maimani and S. Yassemi, When a zero divisor graph is planar or a complete r-partite graph, J. Algebra, 270 (2003), 169 – 180.
- [5] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero divisor graphs in commutative rings, Commutative Algebra, Noetherian and Non-Noetherian Perspectives, Springer-Verlag, New York, 23 – 45, (2011).
- [6] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434 – 447.
- [7] R.B. Bapat, Graphs and Matrices, Indian Statistical Institute, (2010).
- [8] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998), 208-226.
- [9] R. Belshoff and J. Chapman Planar zero-divisor graphs, J. Algebra, 316 (2007), 471-480.
- [10] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, (1976).
- [11] I. Bozić and Z. Petrović, Zero divisor graphs of matrices over commutative rings, Commun. Algebra. 37 (2009), 1186 - 1192.
- [12] R. Demeyer and L. Demeyer, Zero divisor graphs of semigroups, J. Algebra, 283 (2005), 190 - 198.
- [13] A.V. Kelarev, Labled Cayley graphs and minimal automata, Australas. J. Combin., 30 (2004), 95-101.
- [14] A. V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 411-418 (2006)
- [15] A.V. Kelarev, Graph algebras and automata, Marcel Dekker, New York, (2003).
- [16] A.V. Kelarev, J. Ryan and J. Yearwood, Cayley graphs a classifiers for data mining the influence of asymmetries, Discrete Math., 309 (2009), 5360 - 5369.
- [17] B. Li, Zero divisor graphs of triangular matrix rings over commutative rings, Internat.J. Algebra 6 (2011), 255 - 260.
- [18] A. Li and R.P. Tucci, Zero divisor graphs of upper triangular matrix rings, Commun. Algebra, 41 (2013), 4622 – 4636.

M. Afkhami

Received May 15, 2018

Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran E-mail: mojgan.afkhami@yahoo.com

N. Vaez Moosavi, K. Khashyarmanesh, S. Mohammadikhah

Department of Pure Mathematics International Campus of Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran

 $E\text{-mail: } nazilamoosavi@gmail.com, \ khashyar@ipm.ir, \ s.mohamadi783@gmail.com \\$