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The iterated line graphs of Cayley graphs

associated to a commutative ring

Mojgan Afkhami and Zahra Barati

Abstract. We study the planar and outerplanar indices of Cayley graphs associated to a com-

mutative ring, and we give a full characterization of these graphs with respect to their planar

and outerplanar indices when R is a �nite ring.

1. Introduction

The investigation of graphs related to algebraic structures is a very large and
growing area of research. One of the most important classes of graphs considered
in this framework is that of Cayley graphs. These graphs have been considered,
for example in [8], [11], [12] and [5]. Let us refer the readers to the survey article
[13] for extensive bibliography devoted to various applications of Cayley graphs.
In particular, the Cayley graphs of semigroups are related to automata theory, as
explained in [10] and the monograph [9].

Given a graph G, we denote the kth iterated line graph of G by Lk(G). In
particular L0(G) = G and L1(G) = L(G) is the line graph of G. The planar index
of G is the smallest k such that Lk(G) is non-planar. We denote the planar index
of G by ξ(G). If Lk(G) is planar for all k > 0, we de�ne ξ(G) = ∞. If H is
a subgraph of G, in [7, Lemma 4], it was shown that ξ(G) 6 ξ(H), and hence
the planar index of a graph is the minimum of the planar indices of its connected
components. In [7], the authors gave a full characterization of graphs with respect
to their planar index.

Theorem 1.1. (cf. [7, Theorem 10]) Let G be a connected graph. Then:

(a) ξ(G) = 0 if and only if G is non-planar.

(b) ξ(G) =∞ if and only if G is either a path, a cycle, or K1,3.

(c) ξ(G) = 1 if and only if G is planar and either ∆(G) > 5 or G has a vertex

of degree 4 which is not a cut-vertex.

(d) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi

in Figure 1 as a subgraph.
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(e) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for some

k > 2.

(f) ξ(G) = 3 otherwise.
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Recall that an undirected graph is an outerplanar graph if it can be drawn in
the plane without crossings in such a way that all of the vertices belong to the
unbounded face of the drawing. There is a characterization of outerplanar graphs
that says a graph is outerplanar if and only if it does not contain a subdivision
of the complete graph K4 or the complete bipartite graph K2,3. Clearly, every
outerplanar graph is planar. Also, the outerplanar index of a graph G, which is
denoted by ζ(G), is de�ned by the smallest integer k such that the kth iterated
line graph of G is non-outerplanar. In [15], the authors gave a full characterization
of all graphs with respect to their outerplanarity index.

Theorem 1.2. (cf. [15, Theorem 3.4]) Let G be a connected graph. Then:

(a) ζ(G) = 0 if and only if G is non-outerplanar.

(b) ζ(G) =∞ if and only if G is a path, a cycle, or K1,3.

(c) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to

K1,4 or K1 + P3 in Figure 2.

(d) ζ(G) = 2 if and only if L(G) is outerplanar and G has a subgraph isomorphic

to one of the graphs G2 and G3 in Figure 2.

(e) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di > 2 for i = 2, . . . , t−1,
and d1 > 1 (Figure 2).
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If H is a subgraph of G, in [15, Lemma 3.1], it was shown that ζ(G) 6 ζ(H),
and hence the outerplanar index of a graph is the minimum of the outerplanar
indices of its connected components.

Throughout the paper, R is a �nite commutative ring with non-zero identity
unless otherwise stated. Also, we denote the set of all zero-divisor elements of R

by Z(R). For simplicity of notation, in the quotient ring K[x]
I , we denote the coset

x+ I by X.

2. Iterated line graphs of Cay(R,U ∗)

Let R be a commutative ring with unity and R+ be the additive group of R. A
non-empty proper subset U of R said to be a multiplicative prime subset of R if
the following two conditions hold:

(a) ab ∈ U for every a ∈ H and b ∈ R;

(b) if ab ∈ U for some a, b ∈ R, then either a ∈ U or b ∈ U .

For multiplicative prime subset U ofR, let U∗ = U\{0}. In [4], the authors de�nied
Cay(R,U∗) as follows. The graph Cay(R,U∗) is an undirected graph with vertex
set R, and two distinct vertices x and y are adjacent if and only if xy ∈ U∗. In this
section, we investigate when the graph Cay(R,U∗) and its iterated line graphs are
planar or outerplanar. The aim of this section is to give a full characterization of
all graphs Cay(R,U∗) with respect to their planar and outerplanar indices.

Theorem 2.1. Let R be a �nite commutative ring. Then

(a) ξ(Cay(R,U∗)) =∞ if and only if
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Ring multiplicative prime subset U
Z4 {0, 2}

Z2[x]/(x
2) {(x2), x + (x2)}

Z9 {0, 3, 6}

Z3[x]/(x
2) {(x2), x + (x2), 2x + (x2)}

F× Z2 {0} × Z2

F× Z3 {0} × Z3

Z2 × Z2 ({0} × Z2) ∪ ({0} × Z2)

Table 1: When ξ(Cay(R,U∗)) =∞

(b) ξ(Cay(R,U∗)) = 2 if and only if

Ring Unit set U
Z2[x, y]/(x, y)

2 {1, 3}

Z2[x]/(x
3) {1 + (x2), 1 + x + (x2)}

Z4[x]/(2x, x
2) {1, 2, 4, 5, 7, 8}

Z4[x]/(2x, x
22) {1 + (x2), 2 + (x2), 1 + x + (x2), 2 + x + (x2), 1 + 2x + (x2), 2 + 2x + (x2)}

Z8 U = {0} × Z2

F4[x]/(x
2) {0} × Z3

Z4[x]/(x
2, x2 + x + 1) ({0} × Z2) ∪ ({0} × Z2)

F× Z4 U = {0} × Z4

F× Z2[x]/(x
2) {0} × Z2[x]/(x

2)

Z4 × Z2 {0, 2} × Z2

Z2[x]/(x
2)× Z2 U = {0, x} × Z2

F× Z2 × Z2 {0} × Z2 × Z2

Table 2: When ξ(Cay(R,U∗)) = 1

(c) ξ(Cay(R,U∗)) = 0 otherwise.

Proof. We know ξ(Cay(R,U∗)) = 0 if Cay(R,U∗) is non-planar. Thus we may
assume that Cay(R,U∗) is planar. Now, by [4, Corollary 4.5], we have the following
cases:

• Case 1. R is a local ring. Since U is equal to the union of some prime ideals
of R, we can deduce U is a prime ideal of R. Now, by [4, Corollary 4.2], we have
that Cay(R,U∗) is planar if and only if R is one of the following rings:

(1) R ∼= Z4 or R ∼= Z2[x]/(x2) and |U | = 2.

(2) R ∼= Z9 or R ∼= Z3[x]/(x2) and |U | = 3.

(3) R ∼= Z2[x, y]/(x, y)2, R ∼= Z2[x]/(x3), R ∼= Z4[x]/(2x, x2),

R ∼= Z4[x]/(2x, x2 − 2), R ∼= Z8, R ∼= F4[x]/(x2) or

R ∼= Z4[x]/(2x, x2 + x+ 1) and |U | = 4.
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In all above cases, since U is a prime ideal of R, by Theorems 2.1 and 2.2 of
[4], we can conclude that Cay(R,U∗) is the union of |R/U | disjoint K|U |. So, for
rings of (1) and (2) we have that ξ(Cay(R,U∗)) =∞. Also, for rings of (3), since
the line of the graph K4 is planar and it has a subgraph isomorphic to H2, the
planar index of each connected component of the graph Cay(R,U∗) is 2. So, we
can conclude that ξ(Cay(R,U∗)) = 2.

•Case 2. R is not a local ring. SinceR is �nite, we have thatR ∼= R1×R2×. . .×Rn

where Ri is a local ring for all 1 6 i 6 n. Now, consider the following cases:
• Case 2.1. n = 2. By Theorem 4.4 of [4], R and U are as follows:

(1) R ∼= F× Z2 and U = {0} × Z2,

(2) R ∼= F× Z3 and U = {0} × Z3,

(3) R ∼= F× Z4 and U = {0} × Z4,

(4) R ∼= F× Z2[x]/(x2) and U = {0} × Z2[x]/(x2)

(5) R ∼= Z4 × Z2 and U = {0, 2} × Z2,

(6) R ∼= Z2[x]/(x2)× Z2 and U = {0, x} × Z2,

(7) R ∼= Z2 × Z2 and U = ({0} × Z2) ∪ (Z2 × {0}),

(8) R ∼= Z2 × Z3 and U = ({0} × Z3) ∪ (Z2 × {0}).

For rings (1) − (6), since U is a prime ideal of R, by Theorems 2.1 and 2.2 of
[4], we can conclude that Cay(R,U∗) is the union of |R/U | disjoint K|U |. Now,
for rings (1) and (2) we have that ξ(Cay(R,U∗)) = ∞. For rings (3) − (6),
since each connected component of the graph Cay(R,U∗) is K4, we have that
ξ(Cay(R,U∗)) = 2. For ring (7), it is easy to see that Cay(R,U∗) is C4 and so
ξ(Cay(R,U∗)) =∞. Also, for ring (8), since |U∗| = 3, the graph Cay(R,U∗) is a
3-regular graph. So, L(Cay(R,U∗)) is planar. Futhermore, by Figure 1, one can
easily see that Cay(R,U∗) has a subgraph isomorphic to H2. So, by part (d) of
Theorem 1.1, we have that, ξ(Cay(R,U∗)) = 2.

01 11

1202

00 10

Figure 1: Cay(Z2 × Z3, (({0} × Z3) ∪ (Z2 × {0}))∗)

• Case 2.2. n = 3. In this case R ∼= F×Z2×Z2 and U = {0}×Z2×Z2. Since
U is a prime ideal of R, the graph Cay(R,U∗) is the union of four disjoint K4. As
we mentioned above, L(K4) is planar and it has a subgraph isomorphic to H2. So
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the planar index of each connected component of the graph Cay(F×Z2×Z2, {0}×
Z2 × Z2) is 2. So, we can conclude that ξ(Cay(F× Z2 × Z2, {0} × Z2 × Z2)) = 2.
• Case 2.3. n > 4. It is easy to see that every prime ideal of R has at least 6

elements. Now, by [4, Lemma 4.1], we have that Cay(R,U∗) is not planar which
implies that ξ(Cay(R,U∗)) = 0.

In [4], the outerplanarity of Cay(R,U∗) is investigated. In the following theo-
rem, we determine the outerplanar index of Cay(R,U∗).

Theorem 2.2. Let R be a �nite commutative ring. Then

(a) ζ(Cay(R,U∗)) = ∞ if and only if R ∼= Z4, R ∼= Z2[x]/(x2), R ∼= Z9,

R ∼= Z3[x]/(x2), R ∼= F × Z2 and U = {0} × Z2 or R ∼= F × Z3 and

U = {0} × Z3 or R ∼= Z2 × Z2 and U = ({0} × Z2) ∪ ({0} × Z2).

(b) ζ(Cay(R,U∗)) = 0 otherwise.

Proof. We know ζ(Cay(R,U∗)) = 0 if Cay(R,U∗) is not outerplanar. Thus we
may assume that Cay(R,U∗) is outerplanar. Also, it is well-known that every
outerplanar graph is planar. So, we must check the following cases:

• Case 1. R is a local ring. By [4, Corollary 4.2], Cay(R,U∗) is planar if and only
if R is one of the following rings:

(1) R ∼= Z4 or R ∼= Z2[x]/(x2) and |U | = 2.

(2) R ∼= Z9 or R ∼= Z3[x]/(x2) and |U | = 3.

(3) R ∼= Z2[x, y]/(x, y)2, R ∼= Z2[x]/(x3), R ∼= Z4[x]/(2x, x2),

R ∼= Z4[x]/(2x, x22), R ∼= Z8, R ∼= F4[x]/(x2) or

R ∼= Z4[x]/(2x, x2 + x+ 1) and |U | = 4.

For all above rings, U is a prime ideal of R, so the graph Cay(R,U∗) is the
union of |R/U | disjoint K|U |. Therefore, for rings of (1) and (2), Cay(R,U∗) is the
union of K2 and K3, respectively. Hence, ζ(Cay(R,U∗)) = ∞. Also, for rings of
(3), note that each connected component of the graph Cay(R,U∗) is K4. So, for
these rings, Cay(R,U∗) is not outerplanar which implies that ζ(Cay(R,U∗)) = 0.

• Case 2. R is not a local ring. Let R ∼= R1 × R2 × . . .× Rn where Ri is a local
ring for all 1 6 i 6 n. Since Cay(R,U∗) is planar, we may consider the following
cases:
• Case 2.1. n = 2. So, by Theorem 4.4 of [4], R and U are as follows:

(1) R ∼= F × Z2 and U = {0} × Z2 or R ∼= F × Z3 and U = {0} × Z3. Since
U is a maxiaml ideal of R, the Cayley graph Cay(R,U∗) is the union of |F|
disjoint K2 and K3, respectively. Thus, ζ(Cay(R,U∗)) =∞.
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(2) R ∼= F×Z4 and U = {0}×Z4, R ∼= F×Z2[x]/(x2) and U = {0}×Z2[x]/(x2),
R ∼= Z4×Z2 and U = {0, 2}×Z2, or R ∼= Z2[x]/(x2)×Z2 and U = {0, x}×Z2.
It is easy to see that in all cases, U is a prime ideal and |U | = 4. So
Cay(R,U∗) is the union of disjoint K4. Thus Cay(R,U∗) is not outerplanar
and we have that ζ(Cay(R,U∗)) = 0.

(4) R ∼= Z2 × Z2 and U = ({0} × Z2) ∪ ({0} × Z2). Since Cay(R,U∗) is a cycle
on 4 vertices, we have that ζ(Cay(R,U∗)) =∞.

(5) R ∼= Z2×Z3 and U = ({0}×Z3)∪ (Z2×{0}). By Figure 1, it is easy to see
that Cay(R,U∗) has a subdivision of K2,3. Hence it is not outerplanar and
we have that ζ(Cay(R,U∗)) = 0.

• Case 2.2. n = 3. In this case R ∼= F × Z2 × Z2 and U = {0} × Z2 × Z2.
The graph Cay(R,U∗) is the union of K4. So, Cay(R,U∗) is not outerplanar and
ζ(TCay(R,U∗)) = 0.

3. Iterated line graphs of Cay(I(R), I∗)

In this section, we investigate the planar and outerplanar index of the graph
Cay(I(R), I∗). This graph is de�ned and studied in [3]. Let R be a commuta-
tive ring and I(R) be the set of all ideals of R and I∗ = I(R) \ {0}. The Cayley
sum graph Cay(I(R); I∗) is an undirected graph whose vertex set is the set I(R)
and two distinct vertices I and J are adjacent whenever I +K = J or J +K = I,
for some ideal K in I∗. In the next theorem we classify all rings with respect to
planar index of their Cayley sum graphs.

Theorem 3.1. Let R be a �nite commutative ring. Then

(a) ξ(Cay(I(R), I∗)) =∞ if and only if dim R
m

( m
m2 ) = 1, m2 = 0 and

I(R) = {0, (x), R}, where x ∈ m.

(b) ξ(Cay(I(R), I∗)) = 1 if and only if dim R
m

( m
m2 ) = 2 and

I(R) = {0, (x), (y), (x, y), R}, where x, y ∈ m.

(c) ξ(Cay(I(R), I∗)) = 2 if and only if dim R
m

( m
m2 ) = 1, m2 6= 0 and

I(R) = {0, (x2), (x), R}, where x ∈ m. R ∼= F1 × F2, where the F1,F2 are

�elds,

(d) ξ(Cay(I(R), I∗)) = 0 otherwise.

Proof. Since ξ(Cay(I(R), I∗)) = 0 for every non-planar graphs, we only consider
the rings whose the Cayley sum graph Cay(I(R), I∗) is planar. By Theorem 3.5
of [3], we have the following cases:
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• Case 1. R ∼= F1 × F2, where the F1 and F2 are �elds. The Cayley sum
Cay(I(R), I∗) is pictured in Figure 2. Since ∆(Cay(I(R), I∗)) = 3, we have that
L(Cay(I(R), I∗)) is planar. Also, Cay(I(R), I∗) has a subgraph homomorphic to
H2. So, ξ(Cay(I(R), I∗)) = 2.

0× 0

F1 × 0 0× F2

F1 × F2

Figure 2: Cay(I(F1 × F2), I∗)

• Case 2. (R,m) is a local ring and it satis�es in one of the following conditions:
• Case 2.1. dim R

m
( m
m2 ) = 2 and I(R) = {0, (x), (y), (x, y), R}, where x, y ∈ m.

In this situation, the graph Cay(I(R), I∗) is K5 \ {e}. So it has a vertex of degree
4 which is not a cut vertex. Then L(Cay(I(R), I∗)) is not planar which implies
that ξ(Cay(I(R), I∗)) = 1.
•Case 2.2. dim R

m
( m
m2 ) = 1,m2 6= 0 and I(R) = {0, (x2), (x), R}, where x ∈ m.

It is easy to see that the graph Cay(I(R), I∗) is K4. Thus ξ(Cay(I(R), I∗)) = 2.
• Case 2.3. dim R

m
( m
m2 ) = 1, m2 = 0 and I(R) = {0, (x), R}, where x ∈ m. In

this case the graph Cay(I(R), I∗) is K3 and so ξ(Cay(I(R), I∗)) =∞.

In the sequel, we give a characterization of graphs Cay(I(R), I∗) with respect to
the outerplanar index. In order to achieve this goal, we will use the characterization
of outerplanar Cay(I(R), I∗) which was presented in [3].

Theorem 3.2. Let R be a �nite commutative ring. Then

(a) ζ(Cay(I(R), I∗)) = ∞ if and only if dim R
m

( m
m2 ) = 1, m2 = 0 and I(R) =

{0, (x), R}, where x ∈ m.

(b) ζ(Cay(I(R), I∗)) = 1 if and only if R ∼= F1 × F2, where F1,F2 are �elds.

(c) ζ(Cay(I(R), I∗)) = 0 otherwise.

Proof. Since for every non-outerplanar graph, we have that ξ(Cay(I(R), I∗)) = 0,
we may assume that the graph Cay(I(R), I∗) is outerplanar. By Proposition 3.6
of [3], we have the following cases:

• Case 1. R ∼= F1 × F2, where the F1 and F2 are �elds. By Figure 2, Since
Cay(I(R), I∗) ∼= K1 + P3, we have that L(Cay(I(R), I∗)) is not outerplanar. So,
ζ(Cay(I(R), I∗)) = 1.

• Case 2. (R,m) is a local ring and dim R
m

( m
m2 ) = 1, m2 = 0 and I(R) =

{0, (x), R}, where x ∈ m. In this case the graph Cay(I(R), I∗) is K3 and so
ζ(Cay(I(R), I∗)) =∞.
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4. Iterated line graphs of Γ(R, S)

Let R be a commutative ring with nonzero identity and G be a multiplicative
subgroup of U(R), where U(R) is the multiplicative group of unit elements of R.
Also suppose that S is a nonempty subset of G such that S−1 = {s−1 | s ∈ S} ⊆ S.
A generalization of the unit and unitary Cayley graphs of R, which is denoted by
Γ(R,G, S), is de�ned ans studied in [14]. Γ(R,G, S) is a graph with vertex set R
and two distinct elements x, y ∈ R are adjacent if and only if there exists s ∈ S
such that x+ sy ∈ G.

In this section, we investigate the planar and outerplanar index of the graph
Γ(R,G, S) in the case that G = U(R). For simplicity of notation, we denote
Γ(R,U(R), S) by Γ(R,S). Also, if we have no restriction on S, we denote Γ(R,S)
by Γ(R).

Theorem 4.1. (cf. [14, Theorem 3.7]) Let R be an Artinian ring. Then Γ(R,S)
is planar if and only if one of the following conditions hold.

(a) R ∼= Zl
2 × T , where l > 0 and T is isomorphic to one of the following rings:

Z2,Z3,Z4 or Z2[x]/(x2).

(b) R ∼= F4

(c) R ∼= Zl
2 × F4, where l > 0 with S = {1}.

(d) R ∼= Z5 with S = {1}.

(e) R ∼= Z3 × Z3 with S = {(1, 1)}, S = {(1,−1)} or S = {(−1, 1)}.

In the next theorem we classify all Artinian rings with respect to planar index
of their Γ(R,S).

Theorem 4.2. Let R be an Artinian ring. Then

(a) ξ(Γ(R,S)) = ∞ if and only if R ∼= (Z2)l × T, l > 0, T ∼= Z2,Z4,Z2[x]/(x2),
or R ∼= Z3, (Z2)l × Z3 with l > 0, |S| = 1.

(b) ξ(Γ(R,S)) = 1 if and only if R ∼= Z5 with S = {1}, or R ∼= Z3 × Z3 with

S = {(1, 1)}, S = {(1,−1)} or S = {(−1, 1)}.

(c) ξ(Γ(R,S)) = 2 if and only if R ∼= (Z2)l ×Z3 with l > 0, |S| > 1, or R ∼= F4,

or R ∼= (Z2)l × F4 with l > 0, |S| = 1.

(d) ξ(Γ(R,S)) = 0 otherwise.

Proof. Since ξ(Cay(I(R), I∗)) = 0 for every non-planar graphs, we only consider
the rings whose Γ(R,S) is planar, according to Theorem 4.1. If R ∼= Z2, then
Γ(R) is isomorphic to K2. If R ∼= Z3, then it is easy to check that Γ(R,S) is
isomorphic to K3, or it is a path with three vertices. If R is isomorphic to Z4 or
Z2[x]/(x2), then Γ(R) is isomorphic to C4, a cycle with four vertices. Therefore,
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by Theorem 1.1, in the above situationes we have ξ(Γ(R,S)) = ∞. If R ∼= F4,
then S = {1} or |S| ≥ 2. By [14, Theorem 2.7], Γ(R,S) is isomorphic to K4, and
so ξ(Γ(R,S)) = 2. If R ∼= Zl

2 × T , where l > 0 and T is isomorphic to one of the
ring Z2,Z3,Z4,Z2[x]/(x2) or F4, then as it is mentioned in the proof of Theorem
3.7 of [14], we have Γ(R) ∼= 2l−1Γ(Z2 × T ). So it is su�cient to check the planar
index of Γ(Z2 × T ). Γ(Z2 × Z2) is isomorphic to 2K2 and so ξ(Γ(Z2 × Z2)) =∞.
Let R ∼= Z2×Z3. If |S| = 1, then Γ(Z2×Z3, S) is isomorphic to the cycle C6, ans
so ξ(Γ(Z2 × Z3, S)) = ∞. If S = U(Z2 × Z3), then Γ(Z2 × Z3, S) is pictured in
Figure 3, and so ξ(Γ(Z2 × Z3, S)) = 1.

10
12 11

00

01

02

Figure 3: Γ(Z2 × Z3, U(Z2 × Z3))

It is routine to check that Γ(Z2×Z4, S) ∼= Γ(Z2×Z2[x]/(x2), S) ∼= 2C4, and so
in this situation the planar index is ∞. Γ(Z2 × F4, S = {1}) is pictured in Figure
4, where a, a2 ∈ F4 \ {0, 1}, and hence its planar index is 2.

11
00 0a

1a2

0a2

01

101a

Figure 4: Γ(Z2 × F4, S = {1})

If R ∼= Z5 with S = {1}, then Γ(Z5, {1}) is picthured in Figure 5, and so
ξ(Γ(Z5, {1})) = 1.

3

4 1

2

0

Figure 5: Γ(Z5, {1})
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Let R ∼= Z3×Z3. Then Γ(Z3×Z3, {(−1, 1)}) ∼= Γ(Z3×Z3, {(1,−1)}) which is
pictured in Figure 6. Also Γ(Z3×Z3, {(1, 1)}) is pictured in Figure 7. By Theorem
1.1, we see that in each of the situations, the planar index is equal to 1.

21

22 11

12

10

0220

01

00

Figure 6: Γ(Z3 × Z3, {(1,−1)})
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21 12
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2002

10

00

Figure 7: Γ(Z3 × Z3, {(1, 1)})

Now, by the above discusion the results hold.

Since every outerplanar graph is planar, by using the proof of Theorem 4.2,
and also in view of Theorem 1.2, we have the following corollary.

Corollary 4.3. Let R be an Artinian ring. Then

(i) Γ(R,S) is outerplanar if and only if R∼=(Z2)l×T, l > 0, T ∼=Z2,Z4,Z2[x]/(x2),
or R ∼= Z3, (Z2)l × Z3 with l > 0, |S| = 1.

(ii) ζ(Γ(R,S))=∞ if and only if Γ(R,S) is outerplanar. Otherwise ζ(Γ(R,S))=
0.

5. Iterated line graphs of Cay(R)

Let R be a commutative ring with nonzero identity and R+ and Z∗(R) be the
additive group and the set of nonzero zero-divisors of R, respectively. We denote
by Cay(R), the Cayley graph Cay(R+, Z∗(R)). For simplicity of notation, we
denote Cay(R+, Z∗(R)) by Cay(R), a graph whose vertices are elements of R and
two distinct vertices x and y are adjacent if and only if x − y ∈ Z(R). Clearly if
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R is an integral domain, then Cay(R) has no edge. In [2], several properties of
Cay(R) are investigated and studied.

In the next theorem, we investigate the planar index of Cay(R).

Theorem 5.1. Let R be a ring which is not an integral domain. Then

(a) ξ(Cay(R) =∞ if and only if R ∼= Z2 × Z2, Z4, Z2[x]/(x2), Z9, Z3[x]/(x2).

(b) ξ(Cay(R)) = 2 if and only if R is isomorphic to one of the following rings:

Z2 × Z3, Z2[x, y]/(x, y)2, Z2[x]/(x3), Z4[x]/(2x, x2), Z4[x]/(2x, x2 − 2), Z8,

F4[x]/(x2), Z4[x]/(x2 + x+ 1).

(c) ξ(Cay(R) = 0 otherwise.

Proof. Since ξ(Cay(R) = 0 for every non-planar graphs, we only consider the rings
whose Cay(R) is planar. By Theorem 13 of [2], we have that Cay(R) is planar if
and only if R is one of the following rings:

Z2 × Z2, Z2 × Z3, Z4, Z2[x]/(x2), Z9, Z3[x]/(x2), Z2[x, y]/(x, y)2, Z2[x]/(x3)

Z4[x]/(2x, x2), Z4[x]/(2x, x2 − 2), Z8, F4[x]/(x2) and Z4[x]/(x2 + x+ 1).

Now, we follow the below cases:

• Case 1. Let R be one of the rings Z2 × Z2 or Z2 × Z3. If R ∼= Z2 × Z2, then
Cay(R) is isomorphic to C4, a cycle with four vertices, and so, by Theorem 1.1,
ξ(Cay(R)) =∞. If R ∼= Z2×Z3, then, by Figure 8, we have that ξ(Cay(Z2×Z3)) =
2.

02 12

1000

01 11

Figure 8: Cay(Z2 × Z3)

• Case 2. Let R be one of the rings

Z4, Z2[x]/(x2), Z9, Z3[x]/(x2), Z2[x, y]/(x, y)2, Z2[x]/(x3),

Z4[x]/(2x, x2), Z4[x]/(2x, x2 − 2), Z8, F4[x]/(x2), Z4[x]/(x2 + x+ 1).

By [1, Lemma 1(ii)], it is shown that if (R,m) is an Artinian local ring, then
Cay(R) is a disjoint union of |Rm | copies of the complete graph K|m|. Now, since
the rings Z4 and Z2[x]/(x2) are local rings with |m| = 2, the graph Cay(R) is
isomorphic to 2K2, and so

ξ(Cay(Z4)) = ξ(Cay(Z2[x]/(x2))) =∞.
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The rings Z9 and Z3[x]/(x2) are local rings with |m| = 3, and so their Cay(R)
is isomorphic to 3K3. Thus

ξ(Cay(Z9)) = ξ(Cay(Z3[x]/(x2))) =∞.

Also, by [2, Lemma 9], the rings Z2[x, y]/(x, y)2, Z2[x]/(x3), Z4[x]/(2x, x2),
Z4[x]/(2x, x2 − 2), Z8, F4[x]/(x2), Z4[x]/(x2 + x+ 1) are local rings with |m| = 4.
So, for these rings, the graph Cay(R) is a disjoint union of |Rm | copies of the
complete graph K4. Therefore

ξ(Cay(Z2[x, y]/(x, y)2)) = ξ(Cay(Z2[x]/(x3)))

= ξ(Cay(Z4[x]/(2x, x2)))

= ξ(Cay(Z4[x]/(2x, x2 − 2)))

= ξ(Cay(Z8))

= ξ(Cay(F4[x]/(x2)))

= ξ(Cay(Z4[x]/(x2 + x+ 1)))

= 2. �

Since every outerplanar graph is planar, by using the proof of Theorem 5.1,
and also in view of Theorem 1.2, we have the following corollary.

Corollary 5.2. Let R be a ring which is not an integral domain.

(i) Cay(R) is outerplanar if and only if R ∼= Z2 × Z2, Z4, Z2[x]/(x2), Z9,

Z3[x]/(x2).

(ii) ζ(Cay(R)) =∞ if and only if Cay(R) is outerplanar. Otherwise, ζ(Cay(R)) =
0.

Acknowledgments. The authors are deeply grateful to the referee for careful
reading of the manuscript and helpful suggestions.
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