Quasigroups and Related Systems 27 (2019), 53 — 62

On Bruck’s prolongation and contraction maps

Tuval Foguel and Josh Hiller

Abstract. Bruck constructed the first prolongation and contraction of quasigroups in order to
study Steiner triple systems. In this paper we define a new family of quasigroups: The Steiner-
Bruck quasigroups (SB-quasigroups), where aa? = a2a and a? = b2 for all possible a and b,
which arise from Bruck’s prolongation. We use Bruck’s prolongation and contraction maps to
explore properties of this family of quasigroups. Among other results, we show that there is a
one-to-one correspondence between SB-quasigroups and uniquely 2-divisible quasigroups. As a
corollary to this result we find a correspondence between idempotent quasigroups and loops of
exponent 2. We then use this correspondence to study some interesting loops of exponent two

and some interesting idempotent quasigroups.

1. Introduction

In [4] Bruck constructed the first prolongation and contraction of quasigroups in
order to study Steiner triple systems. In this paper we use Bruck’s construction
to define a new family of quasigroups, the Steiner-Bruck quasigroups. The paper
starts with a review of necessary notions from loop and quasigroup theory, and a
review of prolongations and contractions.

Preliminaries. We review a few necessary notions from loop and quasigrop
theory, and we establish some notation conventions.

A magma (L,-) consists of a set £ together with a binary operation - on L.
For z € L, define the left (resp., right) translation by x by L(x)y = xy (resp.,
R(z)y = yx) for all y € L. A magma with all left and right translations bijective
is called a quasigroup. This is equivalent to saying that for each a and b in £, there
exist unique elements z and y in £ such that both

(1) ax =0

(2) ya=0
hold. A quasigroup L is an idempotent quasigrop if for any x € L, xx = z.
A quasigroup £ with a two-sided identity element 1 such that for any z € L,
xl = 1z = z is called a loop. A loop L is power-associative, if for any x € L, the

subloop generated by x is a group. The exponent of a power-associative loop is
defined as the least common multiple of the orders of all elements of the loop. If

2010 Mathematics Subject Classification: 20N05.
Keywords: Finite groups of exponent 2; finite loops of exponent 2; finite idempotent quasi-
groups; polongation of Latin square; contraction of Latin square



54 T. Foguel and J. Hiller

there is no least common multiple, the exponent is taken to be infinity. For basic
facts about loops and quasigroups, we refer the reader to [3], [5], [13].

2. Prolongation and contraction

A prolongation of a quasigroup is a process by which a quasigroup is extended
to a quasigroup with one additional element. A contraction of a quasigroup is a
process by which a quasigroup is shrunk to a quasigroup with one fewer element.
The first construction of a prolongation and of a contraction was introduced by
Bruck in [4] for his study of Steiner triple systems. For additional examples and
facts about prolongation and contraction of quasigroups, we refer the reader to

(11, 121, 31 [6], [7]-

Classic transversal prolongation of a Latin square. In the finite case,
Bruck’s prolongation is a special case of the classic transversal prolongation below.

Belousov in 1967 [2] introduced the classic transversal prolongation (CT-pro-
longation). The CT-prolongation uses a transversal and adding a new idempotent
element to the Latin square. A transversal of a Latin square of order n is a set of
n cells, one in each row, one in each column such that no two of the cells contain
the same symbol. The CT-prolongation works as follows:

1. Locate a transversal in the Latin square.

2. Introduce a new first row and first column to the table corresponding to the
new idempotent element 3.

3. Copy the transversal element in the (k, )" position to (i,1) and (k,i) posi-
tions and then replace the transversal element by 1.

Example 2.1. CT Prolongation of exponent two loop of order 5:

U W N =

U W N |
=W O = NN
N U= R W W
W = N U |
— N W oLt
U W N e = =
B e — N Ol
N Ul = e QO N[O
e = N U R WO
e SN JUING B ] S

GUR W N = =[O
W N U s = | .

Bruck prolongation and contraction. In this subsection we define three fam-
ilies of quasigroups which will be needed in order to study Bruck’s prolongation
and contraction in their most generalized form.

Definition 2.2. A quasigroup @ is a unipotent quasigroup if for all x,y € Q we

have that z2 = 2.
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Definition 2.3. In a quasigroup @ an element = € @ has =" well defined if the
value of z - - -z is independent of how the n factors are parenthesized.

Definition 2.4. A quasigroup @ is a Steiner-Bruck quasigroup (SB-quasigroup)
if it is a unipotent quasigroup and 2 is well defined for all = € Q.

Remark 2.5. Note that in any commutative quasigroup x> is well defined, so a
commutative unipotent quasigroup is an SB-quasigroups. In this paper we will see
examples of non-comutative SB-quasigroups.

The next example shows that not all unipotent quasigroups are SB-quasigroups.

Example 2.6. (Z4,—) (see multiplication table below) is a unipotent quasigroup
that is not an SB-quasigroup.

w N = of |
W N = oo
N = O W
— O W NN
O W N W

Remark 2.7. Note that starting with any loop (L,-) we can create a unipotent
quasigroup with a one sided identity via the operation a ® b = a - b—'. However,
these new quasigroups will only be SB-quasigroups if L is of exponent 2, in which
case a-b~ ' =a-b.

Remark 2.8. The Theorem below shows that given any n one can find a loop
that has an element x such that z™ is well defined, but (z) is not associative.

Theorem 2.9 (Theorem 5.5 [11]). If n > 5 and n is neither a power of two or a
prime, then there is a Jordan loop Q containing a generating element x € Q such
that x* is well defined for 0 < k < n but x™ is not well-defined.

Remark 2.10. Note that by [14] in any Jordan loop Q and for any x € Q, 3,
z*, and z° are well-defined.

Proposition 2.11. Assume that Q is a quasigroup with x € Q. Then if ™ is not
well defined then "t is not well defined.

Proof. Assume that =™ is not well defined, then there exist two distinct products

(™)1 # (2™)2. Now assume that z"*! is well defined then z(2"); = x(a2"),
but the left multiplication map is bijective thus (z"); = (z™)2 contradicting the
assumption that the two products are distinct. O

Remark 2.12. A loop is of exponent 2 if and only if it is unipotent, so a natural
question that one may ask is: given unipotency, what is required in order for a
quasigroup to be a loop? The following theorem will provide an answer.

Theorem 2.13. Let Q be a unipotent quasigroup. Q is a loop if and only if x* is
well defined for all x € Q.
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Proof. If @ is a unipotent loop (i.e. exponent 2 loop), then by definition @ is
power associative so z* is well defined.

If on the other hand z# is well defined for all = € @, then by Proposition 2.11
23 is also well defined for all z € Q. Let b = zi (where i is the unique square of
Q), then we have that 2b = z(2i) = x(x(2?)) = (2?)(2?) =i then b = z so * = wi,
similarly = = iz so 7 is the identity, and @ is a loop. O

Remark 2.14. In light of Theorem 2.13, it is evident that one reason SB-quasigro-
ups are of interest is that they are as close to power associative as a unipotent
quasigroup can be without becoming a loop. However, one could still ask if every
SB-quasigroup is actually a loop. Put another way: can Theorem 2.13 be improved
to say that a unipotent quasigroup is power associative if and only if 23 is well
defined for every x?7 The fundamental tool in answering this question, in the
negative, is the prolongation of the following family of quasigroups.

Definition 2.15. We say that a quasigroup Q is a uniquely 2-divisible quasigroup
(U2D-quasigroup) if the map x — z? is bijective.

We now define Bruck’s prolongation, a special case of CT-prolongation. The
key to this construction in the finite case is that the diagonal of the Latin square
is a transversal, so to define Bruck’s prolongation we need U2D-quasigroup.

Definition 2.16 (Bruck’s prolongation). Given (@, ®) a U2D-quasigroup we will
denote by Qp = Q U {i} as a set with binary operation for z,y € Qp — {i},

_Jxzoy ifx#y
moy—{ i otherwise

Forz e Qp —{i}, iexz=zei=zOzrand iei=1.

Example 2.17. Bruck prolongation of the integers mod 3:

e|i 0 1 2
ili 0 2 1
= 0|0 i 1 2
112 1 ¢ 0
201 2 0

Definition 2.18 (Bruck’s contraction). Given (Q,e) an SB-quasigroup we will
denote by Qc = @ — {a®} as a set with binary operation for z,y € Qc¢,

2

_Jozey ifz#y
ny_{ z ex? otherwise

Example 2.19. Bruck contraction of an order 4 nongroup SB-quasigroup:
\ b

QLo e
[SREES NS U Sl <
Q QU ST O

S0 Q
QL O S0
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Remark 2.20. An idempotent quasigroup is a special case of a U2D-quasigroups.
A loop of exponent 2 is a special case of an SB-quasigroup. When @ is an idem-
potent quasigroup then @Qp is a loop of exponent 2 and, conversely, when @ is a
loop of exponent 2 then Q¢ is an idempotent quasigroup.

3. SB-quasigrous and U2D-quasigroups

In this section we will see that Bruck’s prolongation and contraction gives us a
one-to-one correspondence between SB-quasigrous and U2D-quasigroups. Most of
these results have immediate corollaries for idempotent quasigroups and loops of
exponent 2.

Theorem 3.1. If Q is SB-quasigroup with unique square i, then Q = Qc,..
Proof. By definition they have the identical multiplication tables. O

Theorem 3.2. If Q) is a U2D-quasigroup, then Q = Qp..
Proof. By definition they have the identical multiplication tables. O

Corollary 3.3. There is a one-to-one correspondence between SB-quasigrous and
U2D-quasigroups.

Proof. The facts from Theorems 3.1 and 3.2 that Q = Q¢, and Q = Qp, give us
a one-to-one correspondence between SB-quasigrous and U2D-quasigroups. O

Corollary 3.4. There is a one-to-one correspondence between idempotent quasi-
group and loops of exponent 2.

Lemma 3.5. If Q is an SB-quasigroup, then there is a one-to-one homomorphism

7 Aut(Q) = Aut(Qe).

Proof. Let i be the unique square in @ note that for any f € Aut(Q) we have
fli) = f(iei) = f(i)e f(i) =i. ) )

Define 7 : Aut(Q) — Aut(Qc) by 7(f) = f = flo.. We first show that f is a
quasigroup homomorphism. Given z,y € Q¢

CASE 1: x # y, note that the preimage of the product z e y under the contrac-
tion map is not the square element 7, so we get that

flxoy) = fxey) = fx)e fy) = f(x) © f(y).
CASE 2: when z =y, then

fxoy) = f(eoz) = f(zea®) = f(z)ef(x)’ = f(x)ei = f(z)0f(x) = f(&)Of(y).
Proving the claim that f is a homomorphism.
To see that 7 is injective, it suffices to observe that if 7(f) = 7(g) then for

every non-square element = € Q we have f(r) = g(x) and f(i) = g(i) = 4, thus
f=g O
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Lemma 3.6. If Q is a U2D-quasigroup, then there is a one-to-one homomorphism

p:Aut(Q) — Aut(Qp).
Proof. Define for p : Aut(Q) — Aut(Qp)

A R x) ifx#i
p(g) = g where §(z) = { 19( ) othefwise.

To see that g is a homomorphism we will consider several cases.
CASE 1: z # y and z,y € @, then

g(xey)=g(zoOy) =g(x)©gly) = 4(z) e 4(y).
CASE 2: x =y and =,y € Q, then z ey =1 so
gxey)=g(xex)=g(i) =i=g(z)ej(z)=g(z) e 4(y).
CASE 3: z=y=1
gwey)=gliei)=g(i)=i=iei=g(i)ej(i)=g(z)ej(y).
CASE 4: z € Q and y = ¢ (and similarly if x = ¢ and y € Q)

g(xei)=g(ror)=g(ror)=g(r)ogr)=gx) o g(z)
() oi=g(x) e g(i) = g(x) e g(y)-

g(z ey)

Il
Na )Y

Observe then that p(f) = p(g) implies that for every element z € @ we have that
f(z) = g(x) thus f = g. So p is an injective homomorphism. O

Theorem 3.7. If Q is an SB-quasigroup, then Aut(Q) = Aut(Qc¢).

Proof. Note that the maps constructed in Lemma 3.5 and Lemma 3.6 are inverses
of each other. O

The proofs for the following two Lemmas are obvious.
Lemma 3.8. If {i} # K is a subquasigroup of an SB-quasigroup Q, then Ko <Qc¢.

Lemma 3.9. If K is a subquasigroup of a U2D-quasigroup Q, then Kp < Qp.

4. Action of the automorphism group

Lemma 4.1. If L is a finite power associative loop and Aut(L) acts transitively
on L — {1}, then L is an exponent p loop for some prime p.

Proof. If a,b € L — {1}, then |a| = |b| since there is an f € Aut(L) with f(a) =
b. O
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Lemma 4.2. If L is a finite power associative loop and Aut(L) acts double tran-
sitively on L — {1}, then L is an exponent 2 loop or L = Zs.

Proof. By Lemma 4.1 £ is an exponent p loop for some prime p. If L is cyclic,
then £ = Z, for some prime. Thus an automorphism of £ that fixes a non-zero
element fixes all elements, so by double transitivity we see that there are at most
two non-zero elements and p = 2 or p = 3.

Assume that £ is noncyclic. If p > 2 then let a,b € £ — {1} with b ¢ (a), then
there exist an f € Aut(£) with f(a) = a and f(b) = a? contradicting that f is
one-to-one. Thus £ is an exponent 2 loop. O

Lemma 4.3. G is a finite group and Aut(G) acts double transitively on G — {0},
if and only if G is an elementary abelian 2 group or G = Zs.

Proof. By Lemma 4.2 if Aut(G) acts double transitively on G — {0}, then G is an
elementary abelian 2 group or G = Zs. The cyclic case is obvious.

Assume that G is a noncyclic elementary abelian 2 group, we can view G as
a vector space over Zs, so given two sets of two distinct non zero elements a,b €
G — {0} and ¢,d € G — {0} each set is composed of linearly independent vectors
and there exist an A € Aut(G) = GL,,(Z3) with A(a) = ¢ and A(b) = d. O

Lemma 4.4. G is a finite group and Aut(G) acts sharply double transitively on
G — {0}, if and only if G 2 Zo X Lo, G = Zs or G = Zs.

Proof. The cyclic case and G = Zy x Zo are obvious. Assume that G = Zf§
where n > 2, let a,b,and ¢ € G be linearly independent vectors, we can find
matrices A, B € Aut(G) = GL,(Zs) with A(a) = b, A(b) = a,and A(c) = ¢ while
B(a) = b,B(b) = a,and B(c) = a + ¢ showing that the action is not sharp. O

Definition 4.5. (cf. [15]) A quasigroup is homogeneous if its automorphism
group is transitive. A quasigroup is doubly homogeneous if its automorphism
group acts double transitively. A two-quasigroup is a nontrivial two generated
doubly homogeneous quasigroup.

Remark 4.6. If Q) is a two-quasigroup, then it is idempotent and is generated as
a quasigroup by any two distinct elements and Qp is a loop of exponent 2.

Lemma 4.7 (Lemma 5.3 of [8]). If p is a prime and n a positive integer, then
there is a two-quasigroup |Q| = p" > 2.

Lemma 4.8. If Q is a two-quasigroup, then Aut(Qp) acts sharply double transi-
tively on Qp — {0} (where 0 is the identity in Qp) and Qp is two generated.

Proof. Since by definition Aut(Q), acts sharply double-transitively on Q. O

Lemma 4.9. If £ is a finite power associative loop and Aut(L) acts sharply double
transitively on £ — {1} (where 1 is the identity in L) and L is two generated, then
L is a two-quasigroup,

Proof. By Theorem 3.7 Aut(L¢), acts sharply double transitively on L¢. O
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5. Finite Tarski Property Loops

Definition 5.1. A noncyclic simple power associative loop is a Tarski Property
Loop if every nontrivial proper subloop is cyclic of order a fixed prime p.

The Tarski monster [12] and the Bruck-Tarski monster [9] are examples of
infinite Tarski Property Loops.

Lemma 5.2. If Q is a two-quasigroup of order greater than 3, then Qp is a Tarski
Property Loop of exponent 2.

Proof. Corollary 5.6 and Theorem 5.13 of [8]. O

By Theorem 2.7 [10] for n > 2 there exists an idempotent quasigroup Q[n] of
order n that is generated by any two distinct elements.

Theorem 5.3. If Q[n] is generated by any two distinct elements and n > 3, then
Q[n]p is a Tarski Property Loop of order n+ 1 > 4 and exponent 2.

Proof. By Theorem 3.2 of [10] the nontrivial proper subloops of Q[n]p are A; =
{0,i} (where i € Q[n] and 0 is the identity) which are cyclic of order 2. Let {0} # N
be a normal subgroup of Q[n]p and A; C N, if A; = N is a normal subloop, then
for j # i, A;A; is a subloop. But |4;A;| = 4 < |Q[n]p|, a contradiction. Therefore
the only normal subloops of Q[n]p are trivial, and so Q[n]p is a simple loop and
a Tarski Property Loop. O

Remark 5.4. Since Q[n]p is generated by any two nontrivial distinct elements,
every f € Aut(Q[n]p) is uniquely determined by its action on any two nontrivial
distinct elements.

Corollary 5.5. For any n > 4 there is a Tarski Property Loop of order n and
exponent 2.

6. Conclusion and future directions

As mentioned in Section 2 of this paper, SB-quasigroups are as close to being
power associative as a non loop unipotent quasigroup can be. However, this idea
and the proof of Theorem 2.13 hint at a possible generalization which we make
explicit through the following two definitions.

Definition 6.1. Let @ be a quasigroup with the property that for all z,y € @, =™
and y" are well defined and z™ = y™, then we say that @ is an n-power unipotent
quasigroup or NPu-quasigroup

2n—1

Definition 6.2. An nSB-quasigroup is an npu-quasigroup where z is well

defined.
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By mimicking the proof of Theorem 2.13 we can easily prove the following gener-
alization.

Theorem 6.3. Let Q be an npu-quasigroup with the property that x>" is well
defined for every x € Q. Then Q is a power associative loop with identity x"™.

Remark 6.4. A power associative loop of exponent n is a nSB-quasigroups.
In light of this last remark, we close with two related conjectures.

Conjecture 1. For every n > 1 there is a quasigroup Q@ where ™ is well defined
for all x € Q and there is at least one y € Q such that y" ' is not well defined.

Conjecture 2. For every n > 1 there is a a nonloop nSB-quasigroups .

Acknowledgments. The authors are indebted to an anonymous referee of this
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this paper.
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