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On Bruck's prolongation and contraction maps

Tuval Foguel and Josh Hiller

Abstract. Bruck constructed the �rst prolongation and contraction of quasigroups in order to

study Steiner triple systems. In this paper we de�ne a new family of quasigroups: The Steiner-

Bruck quasigroups (SB-quasigroups), where aa2 = a2a and a2 = b2 for all possible a and b,

which arise from Bruck's prolongation. We use Bruck's prolongation and contraction maps to

explore properties of this family of quasigroups. Among other results, we show that there is a

one-to-one correspondence between SB-quasigroups and uniquely 2-divisible quasigroups. As a

corollary to this result we �nd a correspondence between idempotent quasigroups and loops of

exponent 2. We then use this correspondence to study some interesting loops of exponent two

and some interesting idempotent quasigroups.

1. Introduction

In [4] Bruck constructed the �rst prolongation and contraction of quasigroups in
order to study Steiner triple systems. In this paper we use Bruck's construction
to de�ne a new family of quasigroups, the Steiner-Bruck quasigroups. The paper
starts with a review of necessary notions from loop and quasigroup theory, and a
review of prolongations and contractions.

Preliminaries. We review a few necessary notions from loop and quasigrop
theory, and we establish some notation conventions.

A magma (L, ·) consists of a set L together with a binary operation · on L.
For x ∈ L, de�ne the left (resp., right) translation by x by L(x)y = xy (resp.,
R(x)y = yx) for all y ∈ L. A magma with all left and right translations bijective
is called a quasigroup. This is equivalent to saying that for each a and b in L, there
exist unique elements x and y in L such that both

(1) ax = b

(2) ya = b

hold. A quasigroup L is an idempotent quasigrop if for any x ∈ L, xx = x.
A quasigroup L with a two-sided identity element 1 such that for any x ∈ L,
x1 = 1x = x is called a loop. A loop L is power-associative, if for any x ∈ L, the
subloop generated by x is a group. The exponent of a power-associative loop is
de�ned as the least common multiple of the orders of all elements of the loop. If
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there is no least common multiple, the exponent is taken to be in�nity. For basic
facts about loops and quasigroups, we refer the reader to [3], [5], [13].

2. Prolongation and contraction

A prolongation of a quasigroup is a process by which a quasigroup is extended
to a quasigroup with one additional element. A contraction of a quasigroup is a
process by which a quasigroup is shrunk to a quasigroup with one fewer element.
The �rst construction of a prolongation and of a contraction was introduced by
Bruck in [4] for his study of Steiner triple systems. For additional examples and
facts about prolongation and contraction of quasigroups, we refer the reader to
[1], [2], [3], [6], [7].

Classic transversal prolongation of a Latin square. In the �nite case,
Bruck's prolongation is a special case of the classic transversal prolongation below.

Belousov in 1967 [2] introduced the classic transversal prolongation (CT-pro-
longation). The CT-prolongation uses a transversal and adding a new idempotent
element to the Latin square. A transversal of a Latin square of order n is a set of
n cells, one in each row, one in each column such that no two of the cells contain
the same symbol. The CT-prolongation works as follows:

1. Locate a transversal in the Latin square.

2. Introduce a new �rst row and �rst column to the table corresponding to the
new idempotent element i.

3. Copy the transversal element in the (k, l)th position to (i, l) and (k, i) posi-
tions and then replace the transversal element by i.

Example 2.1. CT Prolongation of exponent two loop of order 5:

· 1 2 3 4 5

1 1 2 3 4 5
2 2 1 4 5 3
3 3 5 1 2 4
4 4 3 5 1 2
5 5 4 2 3 1

=⇒

� i 1 2 3 4 5

i i 1 5 4 3 2
1 1 i 2 3 4 5
2 4 2 1 i 5 3
3 5 3 i 1 2 4
4 2 4 3 5 1 i
5 3 5 4 2 i 1

Bruck prolongation and contraction. In this subsection we de�ne three fam-
ilies of quasigroups which will be needed in order to study Bruck's prolongation
and contraction in their most generalized form.

De�nition 2.2. A quasigroup Q is a unipotent quasigroup if for all x, y ∈ Q we
have that x2 = y2.
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De�nition 2.3. In a quasigroup Q an element x ∈ Q has xn well de�ned if the
value of x · · ·x is independent of how the n factors are parenthesized.

De�nition 2.4. A quasigroup Q is a Steiner-Bruck quasigroup (SB-quasigroup)
if it is a unipotent quasigroup and x3 is well de�ned for all x ∈ Q.

Remark 2.5. Note that in any commutative quasigroup x3 is well de�ned, so a
commutative unipotent quasigroup is an SB-quasigroups. In this paper we will see
examples of non-comutative SB-quasigroups.

The next example shows that not all unipotent quasigroups are SB-quasigroups.

Example 2.6. (Z4,−) (see multiplication table below) is a unipotent quasigroup
that is not an SB-quasigroup.

− 0 1 2 3

0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Remark 2.7. Note that starting with any loop (L, ·) we can create a unipotent
quasigroup with a one sided identity via the operation a � b = a · b−1. However,
these new quasigroups will only be SB-quasigroups if L is of exponent 2, in which
case a · b−1 = a · b.

Remark 2.8. The Theorem below shows that given any n one can �nd a loop
that has an element x such that xn is well de�ned, but 〈x〉 is not associative.

Theorem 2.9 (Theorem 5.5 [11]). If n > 5 and n is neither a power of two or a

prime, then there is a Jordan loop Q containing a generating element x ∈ Q such

that xk is well de�ned for 0 6 k < n but xn is not well-de�ned.

Remark 2.10. Note that by [14] in any Jordan loop Q and for any x ∈ Q, x3,
x4, and x5 are well-de�ned.

Proposition 2.11. Assume that Q is a quasigroup with x ∈ Q. Then if xn is not

well de�ned then xn+1 is not well de�ned.

Proof. Assume that xn is not well de�ned, then there exist two distinct products
(xn)1 6= (xn)2. Now assume that xn+1 is well de�ned then x(xn)1 = x(xn)2
but the left multiplication map is bijective thus (xn)1 = (xn)2 contradicting the
assumption that the two products are distinct.

Remark 2.12. A loop is of exponent 2 if and only if it is unipotent, so a natural
question that one may ask is: given unipotency, what is required in order for a
quasigroup to be a loop? The following theorem will provide an answer.

Theorem 2.13. Let Q be a unipotent quasigroup. Q is a loop if and only if x4 is

well de�ned for all x ∈ Q.
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Proof. If Q is a unipotent loop (i.e. exponent 2 loop), then by de�nition Q is
power associative so x4 is well de�ned.

If on the other hand x4 is well de�ned for all x ∈ Q, then by Proposition 2.11
x3 is also well de�ned for all x ∈ Q. Let b = xi (where i is the unique square of
Q), then we have that xb = x(xi) = x(x(x2)) = (x2)(x2) = i then b = x so x = xi,
similarly x = ix so i is the identity, and Q is a loop.

Remark 2.14. In light of Theorem 2.13, it is evident that one reason SB-quasigro-
ups are of interest is that they are as close to power associative as a unipotent
quasigroup can be without becoming a loop. However, one could still ask if every
SB-quasigroup is actually a loop. Put another way: can Theorem 2.13 be improved
to say that a unipotent quasigroup is power associative if and only if x3 is well
de�ned for every x? The fundamental tool in answering this question, in the
negative, is the prolongation of the following family of quasigroups.

De�nition 2.15. We say that a quasigroup Q is a uniquely 2-divisible quasigroup

(U2D-quasigroup) if the map x 7→ x2 is bijective.

We now de�ne Bruck's prolongation, a special case of CT-prolongation. The
key to this construction in the �nite case is that the diagonal of the Latin square
is a transversal, so to de�ne Bruck's prolongation we need U2D-quasigroup.

De�nition 2.16 (Bruck's prolongation). Given (Q,�) a U2D-quasigroup we will
denote by QP = Q ∪ {i} as a set with binary operation for x, y ∈ QP − {i},

x • y =

{
x� y if x 6= y
i otherwise

For x ∈ QP − {i}, i • x = x • i = x� x and i • i = i.

Example 2.17. Bruck prolongation of the integers mod 3:

� 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

=⇒

• i 0 1 2

i i 0 2 1
0 0 i 1 2
1 2 1 i 0
2 1 2 0 i

De�nition 2.18 (Bruck's contraction). Given (Q, •) an SB-quasigroup we will
denote by QC = Q− {a2} as a set with binary operation for x, y ∈ QC ,

x� y =

{
x • y if x 6= y
x • x2 otherwise

Example 2.19. Bruck contraction of an order 4 nongroup SB-quasigroup:

• a b c d

a a d b c
b d a c b
c b c a d
d c b d a

=⇒

� b c d

b d c b
c c b d
d b d c
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Remark 2.20. An idempotent quasigroup is a special case of a U2D-quasigroups.
A loop of exponent 2 is a special case of an SB-quasigroup. When Q is an idem-
potent quasigroup then QP is a loop of exponent 2 and, conversely, when Q is a
loop of exponent 2 then QC is an idempotent quasigroup.

3. SB-quasigrous and U2D-quasigroups

In this section we will see that Bruck's prolongation and contraction gives us a
one-to-one correspondence between SB-quasigrous and U2D-quasigroups. Most of
these results have immediate corollaries for idempotent quasigroups and loops of
exponent 2.

Theorem 3.1. If Q is SB-quasigroup with unique square i, then Q = QCP
.

Proof. By de�nition they have the identical multiplication tables.

Theorem 3.2. If Q is a U2D-quasigroup, then Q = QPC
.

Proof. By de�nition they have the identical multiplication tables.

Corollary 3.3. There is a one-to-one correspondence between SB-quasigrous and

U2D-quasigroups.

Proof. The facts from Theorems 3.1 and 3.2 that Q = QCP
and Q = QPC

give us
a one-to-one correspondence between SB-quasigrous and U2D-quasigroups.

Corollary 3.4. There is a one-to-one correspondence between idempotent quasi-

group and loops of exponent 2.

Lemma 3.5. If Q is an SB-quasigroup, then there is a one-to-one homomorphism

τ : Aut(Q)→ Aut(QC).

Proof. Let i be the unique square in Q note that for any f ∈ Aut(Q) we have
f(i) = f(i • i) = f(i) • f(i) = i.

De�ne τ : Aut(Q)→ Aut(QC) by τ(f) = f̂ = f |QC
. We �rst show that f̂ is a

quasigroup homomorphism. Given x, y ∈ QC

Case 1: x 6= y, note that the preimage of the product x • y under the contrac-
tion map is not the square element i, so we get that

f̂(x� y) = f(x • y) = f(x) • f(y) = f̂(x)� f̂(y).

Case 2: when x = y, then

f̂(x�y) = f̂(x�x) = f(x•x2) = f(x)•f(x)2 = f(x)•i = f̂(x)�f̂(x) = f̂(x)�f̂(y).

Proving the claim that f̂ is a homomorphism.
To see that τ is injective, it su�ces to observe that if τ(f) = τ(g) then for

every non-square element x ∈ Q we have f(x) = g(x) and f(i) = g(i) = i, thus
f = g.
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Lemma 3.6. If Q is a U2D-quasigroup, then there is a one-to-one homomorphism

ρ : Aut(Q)→ Aut(QP ).

Proof. De�ne for ρ : Aut(Q)→ Aut(QP )

ρ(g) = ĝ where ĝ(x) =

{
g(x) if x 6= i
i otherwise.

To see that ĝ is a homomorphism we will consider several cases.
Case 1: x 6= y and x, y ∈ Q, then

ĝ(x • y) = g(x� y) = g(x)� g(y) = ĝ(x) • ĝ(y).

Case 2: x = y and x, y ∈ Q, then x • y = i so

ĝ(x • y) = ĝ(x • x) = ĝ(i) = i = ĝ(x) • ĝ(x) = ĝ(x) • ĝ(y).

Case 3: x = y = i

ĝ(x • y) = ĝ(i • i) = ĝ(i) = i = i • i = ĝ(i) • ĝ(i) = ĝ(x) • ĝ(y).

Case 4: x ∈ Q and y = i (and similarly if x = i and y ∈ Q)

ĝ(x • y) = ĝ(x • i) = ĝ(x� x) = g(x� x) = g(x)� g(x) = ĝ(x)� ĝ(x)
= ĝ(x) • i = ĝ(x) • ĝ(i) = ĝ(x) • ĝ(y).

Observe then that ρ(f) = ρ(g) implies that for every element x ∈ Q we have that
f(x) = g(x) thus f = g. So ρ is an injective homomorphism.

Theorem 3.7. If Q is an SB-quasigroup, then Aut(Q) ∼= Aut(QC).

Proof. Note that the maps constructed in Lemma 3.5 and Lemma 3.6 are inverses
of each other.

The proofs for the following two Lemmas are obvious.

Lemma 3.8. If {i} 6=K is a subquasigroup of an SB-quasigroup Q, then KC≤QC .

Lemma 3.9. If K is a subquasigroup of a U2D-quasigroup Q, then KP ≤ QP .

4. Action of the automorphism group

Lemma 4.1. If L is a �nite power associative loop and Aut(L) acts transitively

on L − {1}, then L is an exponent p loop for some prime p.

Proof. If a, b ∈ L − {1}, then |a| = |b| since there is an f ∈ Aut(L) with f(a) =
b.
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Lemma 4.2. If L is a �nite power associative loop and Aut(L) acts double tran-

sitively on L − {1}, then L is an exponent 2 loop or L ∼= Z3.

Proof. By Lemma 4.1 L is an exponent p loop for some prime p. If L is cyclic,
then L ∼= Zp for some prime. Thus an automorphism of L that �xes a non-zero
element �xes all elements, so by double transitivity we see that there are at most
two non-zero elements and p = 2 or p = 3.

Assume that L is noncyclic. If p > 2 then let a, b ∈ L− {1} with b /∈ 〈a〉, then
there exist an f ∈ Aut(L) with f(a) = a and f(b) = a2 contradicting that f is
one-to-one. Thus L is an exponent 2 loop.

Lemma 4.3. G is a �nite group and Aut(G) acts double transitively on G−{0},
if and only if G is an elementary abelian 2 group or G ∼= Z3.

Proof. By Lemma 4.2 if Aut(G) acts double transitively on G−{0}, then G is an
elementary abelian 2 group or G ∼= Z3. The cyclic case is obvious.

Assume that G is a noncyclic elementary abelian 2 group, we can view G as
a vector space over Z2, so given two sets of two distinct non zero elements a, b ∈
G − {0} and c, d ∈ G − {0} each set is composed of linearly independent vectors
and there exist an A ∈ Aut(G) = GLn(Z2) with A(a) = c and A(b) = d.

Lemma 4.4. G is a �nite group and Aut(G) acts sharply double transitively on

G− {0}, if and only if G ∼= Z2 × Z2, G ∼= Z2 or G ∼= Z3.

Proof. The cyclic case and G ∼= Z2 × Z2 are obvious. Assume that G ∼= Zn
2

where n > 2, let a, b, and c ∈ G be linearly independent vectors, we can �nd
matrices A,B ∈ Aut(G) = GLn(Z2) with A(a) = b, A(b) = a, and A(c) = c while
B(a) = b, B(b) = a, and B(c) = a+ c showing that the action is not sharp.

De�nition 4.5. (cf. [15]) A quasigroup is homogeneous if its automorphism
group is transitive. A quasigroup is doubly homogeneous if its automorphism
group acts double transitively. A two-quasigroup is a nontrivial two generated
doubly homogeneous quasigroup.

Remark 4.6. If Q is a two-quasigroup, then it is idempotent and is generated as
a quasigroup by any two distinct elements and QP is a loop of exponent 2.

Lemma 4.7 (Lemma 5.3 of [8]). If p is a prime and n a positive integer, then

there is a two-quasigroup |Q| = pn > 2.

Lemma 4.8. If Q is a two-quasigroup, then Aut(QP ) acts sharply double transi-

tively on QP − {0} (where 0 is the identity in QP ) and QP is two generated.

Proof. Since by de�nition Aut(Q), acts sharply double-transitively on Q.

Lemma 4.9. If L is a �nite power associative loop and Aut(L) acts sharply double

transitively on L−{1} (where 1 is the identity in L) and L is two generated, then

LC is a two-quasigroup,

Proof. By Theorem 3.7 Aut(LC), acts sharply double transitively on LC .
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5. Finite Tarski Property Loops

De�nition 5.1. A noncyclic simple power associative loop is a Tarski Property

Loop if every nontrivial proper subloop is cyclic of order a �xed prime p.

The Tarski monster [12] and the Bruck-Tarski monster [9] are examples of
in�nite Tarski Property Loops.

Lemma 5.2. If Q is a two-quasigroup of order greater than 3, then QP is a Tarski

Property Loop of exponent 2.

Proof. Corollary 5.6 and Theorem 5.13 of [8].

By Theorem 2.7 [10] for n > 2 there exists an idempotent quasigroup Q[n] of
order n that is generated by any two distinct elements.

Theorem 5.3. If Q[n] is generated by any two distinct elements and n > 3, then
Q[n]P is a Tarski Property Loop of order n+ 1 > 4 and exponent 2.

Proof. By Theorem 3.2 of [10] the nontrivial proper subloops of Q[n]P are Ai =
{0, i} (where i ∈ Q[n] and 0 is the identity) which are cyclic of order 2. Let {0} 6= N
be a normal subgroup of Q[n]P and Ai ⊆ N , if Ai = N is a normal subloop, then
for j 6= i, AiAj is a subloop. But |AiAj | = 4 < |Q[n]P |, a contradiction. Therefore
the only normal subloops of Q[n]P are trivial, and so Q[n]P is a simple loop and
a Tarski Property Loop.

Remark 5.4. Since Q[n]P is generated by any two nontrivial distinct elements,
every f ∈ Aut(Q[n]P ) is uniquely determined by its action on any two nontrivial
distinct elements.

Corollary 5.5. For any n > 4 there is a Tarski Property Loop of order n and

exponent 2.

6. Conclusion and future directions

As mentioned in Section 2 of this paper, SB-quasigroups are as close to being
power associative as a non loop unipotent quasigroup can be. However, this idea
and the proof of Theorem 2.13 hint at a possible generalization which we make
explicit through the following two de�nitions.

De�nition 6.1. Let Q be a quasigroup with the property that for all x, y ∈ Q, xn
and yn are well de�ned and xn = yn, then we say that Q is an n-power unipotent

quasigroup or npu-quasigroup

De�nition 6.2. An nSB-quasigroup is an npu-quasigroup where x2n−1 is well
de�ned.
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By mimicking the proof of Theorem 2.13 we can easily prove the following gener-
alization.

Theorem 6.3. Let Q be an npu-quasigroup with the property that x2n is well

de�ned for every x ∈ Q. Then Q is a power associative loop with identity xn.

Remark 6.4. A power associative loop of exponent n is a nSB-quasigroups.

In light of this last remark, we close with two related conjectures.

Conjecture 1. For every n > 1 there is a quasigroup Q where xn is well de�ned

for all x ∈ Q and there is at least one y ∈ Q such that yn+1 is not well de�ned.

Conjecture 2. For every n > 1 there is a a nonloop nSB-quasigroups .

Acknowledgments. The authors are indebted to an anonymous referee of this
paper for providing insightful comments which has resulted in improvements to
this paper.
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