A study on covered lateral ideals of ordered ternary semigroups

Sabahat Ali Khan, Mohammad Yahya Abbasi and Akbar Ali

Abstract. We define covered lateral ideals of ordered ternary semigroups and study their properties.

1. Introduction and preliminaries

Kasner's [4] gave the idea of *n*-ary algebras i.e., the sets with one *n*-ary operation. Algebras with one 3-ary associative operation are known as ternary semigroups. Ideals in ternary semigroup was studied by Sioson [5]. Fabrici [3] showed some properties and the relation between covered ideals and bases of semigroups. Changphas and Summaprab [1] studied ordered semigroup containing covered ideals. Iampan [3] gave the definition of ordered ternary semigroup and characterized the minimality and maximality concept in ordered ternary semigroups.

For simplicity, a ternary operation [] will be identified with a multiplication of three elements, i.e., [x, y, z] will be identified with xyz.

Definition 1.1. A ternary semigroup T is called a *partially ordered ternary semi*group if there exists a partially ordered relation \leq such that for any $a, b, x, y \in T$, $a \leq b \Rightarrow axy \leq bxy, xay \leq xby$, and $xya \leq xyb$.

For $H \subseteq T$, we put $(H] = \{s \in T \mid s \leq h, \text{ for some } h \in H\}$.

Theorem 1.2. (cf. [3]) In an ordered ternary semigroup T the following hold:

- 1. $A \subseteq (A]$ and ((A]] = (A], for all $A \subseteq T$.
- 2. If $A \subseteq B \subseteq T$, then $(A] \subseteq (B]$.
- 3. $(A](B](C] \subseteq (ABC]$, for all A, B, $C \subseteq T$.

Definition 1.3. A lateral ideal M of an ordered ternary semigroup T, i.e., a nonempty subset M of T such that $TMT \subseteq M$, is called an *ordered lateral ideal* of T if for any $b \in T$ and $a \in M$, $b \leq a$ implies $b \in M$. If T has no proper lateral ideals, then it is *lateral simple*.

²⁰¹⁰ Mathematics Subject Classification: 20M12, 20N99.

Keywords: Ordered ternary semigroup, lateral base, covered lateral ideal.

Lemma 1.4. (cf. [3]) For any non-empty subset A of an ordered ternary semigroup T, $(TTATT \cup TAT \cup A]$ is the smallest lateral ideal of T containing A. Furthermore, for any $a \in T$, $M(a) = (TTaTT \cup TaT \cup a]$.

2. Covered lateral deals

Definition 2.1. A proper lateral ideal L of an ordered ternary semigroup T is called a *covered lateral ideal* (CLt-ideal) if $L \subset (T(T-L)T \cup TT(T-L)TT]$.

Lemma 2.2. If an ordered ternary semigroup T contains two different lateral ideals L_1 and L_2 such that $L_1 \cup L_2 = T$, then L_1 , L_2 are not CLt-ideals.

Proof. We have $L_1 \cup L_2 = T$, it implies $T - L_1 \subset L_2$ and $T - L_2 \subset L_1$. Suppose that L_2 is a covered lateral ideal of T, then $L_2 \subset (T(T - L_2)T \cup TT(T - L_2)TT]$ which implies $L_2 \subset (T(T - L_2)T \cup TT(T - L_2)TT] \subset (TL_1T \cup TTL_1TT] \subset (TL_1T \cup TL_1T] \subseteq L_1$. Similarly $L_1 \subset L_2$. Therefore $L_1 = L_2$. But L_1 and L_2 are different. Thus our assumption is wrong. Hence neither L_1 nor L_2 is a CLt-ideal.

Corollary 2.3. If an ordered ternary semigroup T contains more than one maximal lateral ideal, then maximal lateral ideals are not CLt-ideals.

Proof. Suppose that T contains two maximal lateral ideals M_1 and M_2 . We know that union of lateral ideals is a lateral ideal. Then $M_1 \cup M_2$ is a lateral ideal of T and $M_1 \subset M_1 \cup M_2$. As M_1 is a maximal lateral ideal of T. It implies $M_1 \cup M_2 = T$. Hence by Lemma 2.2, neither M_1 nor M_2 is a CLt-ideal of T.

Lemma 2.4. If L is a lateral ideal of T such that $L \subset (TtT \cup TTtTT]$ and $L \neq (TtT \cup TTtTT]$ for some $t \in T$. Then L will be a CLt-ideal of T.

Proof. Suppose that L is a lateral ideal of T such that $L \subset (TtT \cup TTtTT]$ and $L \neq (TtT \cup TTtTT]$ for some $t \in T$. Here $t \notin L$, otherwise $(TtT \cup TTtTT] \subseteq (TLT \cup TTLTT] \subseteq L$ and we assume that $L \neq (TtT \cup TTtTT]$. Hence $L \subset (TtT \cup TTtTT] \subset (T(T-L)T \cup TT(T-L)TT]$. Therefore, L is a CLt-ideal of T. \Box

Corollary 2.5. An ordered ternary semigroup T in which t does not belongs to $(TtT \cup TTtTT]$ contains CLt-ideal.

Proof. Let $L = (TtT \cup TTtTT]$. Then L is a lateral ideal of T. If $t \notin L$, we have $L = (TtT \cup TTtTT] \subset (T(T-L)T \cup TT(T-L)TT]$. This implies L is a CLt-ideal of T.

Lemma 2.6. If L_1 and L_2 are two covered lateral ideals of an ordered ternary semigroup T. Then $L_1 \cup L_2$ is a CLt-ideal of T.

Proof. To prove $L_1 \cup L_2$ is a CLt-ideal of T. We have to show that $L_1 \cup L_2 \subset (T[T - (L_1 \cup L_2)]T \cup TT[T - (L_1 \cup L_2)]TT]$. As L_1 is a CLt-ideal i.e. $L_1 \subset (T(T - L_1)T \cup TT(T - L_1)TT]$, which implies for any $m \in L_1$, there exists $m_1, m_2 \in T - L_1$ such that $m \in (Tm_1T \cup TTm_2TT]$. Now we have following four cases:

1. If $m_1, m_2 \in (T-L_1)-L_2$. Then $m \in (T((T-L_1)-L_2)T \cup TT((T-L_1)-L_2)TT]$ $\subseteq (T[T-(L_1 \cup L_2)]T \cup TT[T-(L_1 \cup L_2)]TT].$

2. If $m_1, m_2 \in (T-L_1) \cap L_2$, then $m_1, m_2 \in L_2 \subset (T(T-L_2)T \cup TT(T-L_2)TT]$. Then there exists $m_3, m_4, m_5, m_6 \in T-L_2$ s.t. $m_1 \in (Tm_3T \cup TTm_4TT]$ and $m_2 \in (Tm_5T \cup TTm_6TT]$. Here $m_3, m_4 \notin L_1$, otherwise $m_1 \in (Tm_3T \cup TTm_4TT]$ $\subseteq (TL_1T \cup TTL_1TT] \subseteq L_1$. Hence $m_1 \in L_1$, which is contradiction as $m_1 \in T-L_1$. Thus we have $m_3, m_4 \in T-L_1$. Therefore $m_3, m_4 \in T-L_1 \cap T-L_2 = T - (L_1 \cup L_2)$. Similarly $m_5, m_6 \in T - (L_1 \cup L_2)$. Now

 $m \in (Tm_1T \cup TTm_2TT]$

 $\subset (T(Tm_3T \cup TTm_4TT]T \cup TT(Tm_5T \cup TTm_6TT]TT]$ $\subseteq ((T](Tm_3T \cup TTm_4TT](T] \cup (T](T](Tm_5T \cup TTm_6TT](T](T])]$ $\subseteq ((T(Tm_3T \cup TTm_4TT)T \cup TT(Tm_5T \cup TTm_6TT)TT]]$ $= (T(Tm_3T \cup TTm_4TT)T \cup TT(Tm_5T \cup TTm_6TT)TT]$ $\subseteq (TTm_3TT \cup Tm_4T \cup Tm_5T \cup TTm_6TT]$ $\subset (T[T - (L_1 \cup L_2)]T \cup TT[T - (L_1 \cup L_2)]TT].$

3. If $m_1 \in (T - L_1) - L_2$ and $m_2 \in (T - L_1) \cap L_2$. As $m_1 \in (T - L_1) - L_2$, it implies $m_1 \in T - (L_1 \cup L_2)$. From case 2, $m_2 \in T - (L_1 \cup L_2)$. Therefore we have $m \in (Tm_1T \cup TTm_2TT] \subset (T[T - (L_1 \cup L_2)]T \cup TT[T - (L_1 \cup L_2)]TT]$.

4. If $m_2 \in T - L_1 - L_2$ and $m_1 \in (T - L_1) \cap L_2$. Then this is similar to case 3.

Therefore in all these cases $m \in (T[T - (L_1 \cup L_2)]T \cup TT[T - (L_1 \cup L_2)]TT]$. Similarly we can prove this for $m \in L_2$. Thus $L_1 \cup L_2 \subset (T[T - (L_1 \cup L_2)]T \cup TT[T - (L_1 \cup L_2)]TT]$ and hence $L_1 \cup L_2$ is a CLt-ideal of T.

Lemma 2.7. If L_1 is a covered and L_2 is lateral ideal of an ordered ternary semigroup T. Then $L_1 \cap L_2$ is a CLt-ideal of T, provided $L_1 \cap L_2 \neq \emptyset$.

Proof. Assume that L_1 is a covered lateral ideal and L_2 is a lateral ideal of T such that $L_1 \cap L_2 \neq \emptyset$. Then $L_1 \subset (T(T-L_1)T \cup TT(T-L_1)TT]$. It implies $L_1 \cap L_2 \subset (T(T-L_1)T \cup TT(T-L_1)TT] \subset (T[T-(L_1 \cap L_2)]T \cup TT[T-(L_1 \cap L_2)]TT]$. Therefore $L_1 \cap L_2$ is a CLt-ideal of T.

Theorem 2.8. If T is not a simple ordered ternary semigroup such that there is no any two proper lateral ideals in which there intersection is empty. Then T contains at least one CLt-ideal.

Proof. Let M be a proper lateral ideal of T. Then $M_1 = (T(T-M)T \cup TT(T-M)TT]$ is also a lateral ideal of T. By assumption $M \cap M_1 \neq \emptyset$. Thus $M_c = M \cap M_1$ is a lateral ideal of T and $M_c \subset M$, it implies $T - M_c \supset T - M$. Now we have, $M_c \subset M_1 = (T(T-M)T \cup TT(T-M)TT] \subset (T(T-M_c)T \cup TT(T-M_c)TT]$. This shows that M_c is a CLt-ideal of T.

References

- T. Changphas and P. Summaprab, On ordered semigroups containing covered ideals, Commun. Algebra 44 (2016), 4104 - 4113.
- [2] I. Fabrici, Semigroups containing covered one-sided ideals, Math. Slovaca 31 (1981), 225 - 231.
- [3] A. Iampan, Characterizing the minimality and maximality of ordered lateral ideals in ordered ternary semigroups, J. Korean Math. Soc. 46 (2009), 775 – 784.
- [4] E. Kasner, An extension of the group concept, Bull. Amer. Math. Soc. 10 (1904), 290-291.
- [5] F.M. Sioson, Ideal theory in ternary semigroups, Math. Japon. 10 (1965), 63-84.

Received October 11, 2018

Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India E-mail: khansabahat361@gmail.com, mabbasi@jmi.ac.in, akbarali.math@gmail.com