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Computing maximal and minimal subgroups

with respect to a given property

in certain �nite groups

Haider Baker Shelash and Ali Reza Ashra�

Abstract. Suppose G is a �nite group and max(G), nmax(G), snmax(G), maxn(G) and

minn(G) are denoted the number of maximal, normal maximal, self-normalizing maximal, max-

imal normal and minimal normal subgroups of G, respectively. The aim of this paper is to

compute these numbers for certain classes of �nite groups.

1. Introduction

The Asymptotic Group Theory is an active part of �nite groups. In group theory
it is usual to compute some numerical invariants related to a given group, but in
asymptotic group theory we study the asymptotic behaviors of these invariants,
see [10] for details. In this work, we will consider a set L(n) containing six groups
of orders 2n, 4n, 6n, 8n, 2n and 2n, respectively. Some numeric invariants of these
groups like the number of maximal and minimal subgroups will be computed. Such
type of problems is studied nowadays in a new branch of group theory named
subgroup growth. It is possible to use our calculations for solving some problems in
probabilistic group theory as computing the possibility of generating one of these
groups by two or more elements.

Let G be a �nite group. A subgroupH of G is called self-normalizing in G if the
normalizer of H in G, NG(H), is equal to H itself. It is clear that a maximal sub-
group of G is either normal subgroup or self-normalizing. The notations Max(G),
NMax(G), SNMax(G), MaxN(G), MinN(G), NMin(G) and Syl(G) stand for
the set of all maximal subgroups, normal maximal subgroups, self-normalizing
maximal subgroups, maximal normal subgroups, minimal normal subgroups, nor-
mal minimal subgroups and Sylow subgroups of G, respectively. We also de-
�ne max(G) = |Max(G)|, nmax(G) = |NMax(G)|, snmax(G) = |SNMax(G)|,
maxn(G) = |MaxN(G)|, minn(G) = |MinN(G)|, nmin(G) = |NMin(G)| and
syl(G) = |Syl(G)|. The intersection of all normal maximal subgroups and all
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self-normalizing maximal subgroups of G are denoted by R(G) and L(G), respec-
tively. Obviously, R(G), L(G) and the Frattini subgroup φ(G) are characteristic
subgroups of G and φ(G) can be written as the intersection of L(G) and R(G).

The set of all prime factors of a positive integer n is denoted by π(n). It is
convention to write π(G) as π(|G|). Caviour [5, Theorem], proved that the number
of subgroups in the dihedral group of order n is d(n) + σ(n), where d(n) and σ(n)
denote the number of divisors of n and its summation, respectively. Calhoun
[4] generalized this result to the class of groups which can be formed as cyclic
extensions of cyclic groups. Lauderdale [8], proved that if G is a �nite non-cyclic
group, then max(G) > |π(G)|+ p, where p is either the smallest prime in π(G) or
the smallest prime in π(G) such that G has a non-cyclic Sylow p−subgroup and
some examples showing that this bound is best possible was given.

Tărnăuceanu [12] computed the number of some types of subgroups of �nite
abelian groups. In [13], he continued his work and presented the concept of nor-
mality degree of a �nite group. This quantity measures the probability of a random
subgroup to be normal. He obtained explicit formulas for some particular classes
of �nite groups. For the sake of completeness, we mention here a result of [3] which
is crucial in this paper.

Lemma 1.1. Let G be a �nite group. Then,

• Ǵ 6 R(G), where Ǵ = [G,G] is the derived group of G,

• Z(G) 6 L(G),

• L(G) is nilpotent,

• L(G)
φ(G) = Z( G

φ(G) ).

We now give the presentation of the dihedral group D2n, dicyclic group T4n,
semi-dihedral group SD2n and three groups U6n, V8n and H(n) that will be used
later. The groups U6n and V8n were presented for �rst time in the famous book of
James and Liebeck [9]. In this book, the group V8n was studied in the case that n
is odd. We refer to [6], for the main properties of the group V8n, when n is an even
positive integer. Note that a dicyclic group is an extension of the cyclic group of
order 2 by a cyclic group of order 2n, but the extension is not split.

T4n = 〈a, b | a2n = e, an = b2, b−1ab = a−1〉,
U6n = 〈a, b | a2n = b3 = e, bab = a〉,
V8n = 〈a, b | a2n = b4 = e, aba = b−1, ab−1a = b〉,

SD2n = 〈a, b | a2
n−1

= b2 = e, b−1ab = a−1+2n−2

〉,
H(n) = 〈x, y, z | x2

n−2

= y2 = z2 = e, [x, y] = [y, z] = e, xz = xy〉.

The group H(n) was presented by Abbaspour and Behravesh in [2]. They com-
puted the character table of this group and proved that |H(n)| = 2n, Z(H(n)) =
〈x2〉〈y〉 ∼= Z2n−3 × Z2 and H(n)′ = 〈y〉 has order 2.
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Set L(n) = {D2n, T4n, U6n, V8n, SD2n , H(n)}. The aim of this paper is to
�nd exact expressions for the numbers max(G), min(G), nmax(G), nmin(G),
maxn(G) and minn(G). In each case the groups R(G), L(G) and φ(G) will be
computed, where G ∈ L(n). To do this, we assume that |G| = 2apα1

1 pα2
2 . . . pαrr is

the prime factorization of |G|, 2 < p1 < p2 < · · · < pr, and c0 = 1 < c1 < c2 <
· · · < ct are all odd divisors of |G|. De�ne:

aij =

{
2j−1 i = 1
2j−1ci−1 i 6= 1

.

The order table of G, OT (G), is a matrix of size (k+1)× τ(m), where k and m
are non-negative integers with n = |G| = 2km and OT (G) = [aij ]. The columns
and rows of this table are labeled by the powers of 2 and odd divisors of |G|,
respectively. The order table of an arbitrary group G is recorded in Table 1.

It is easy to see that this table has exactly d( n
2k

) rows and k + 1 columns
and so there are (k + 1)d( n

2k
) entries. Suppose x is a positive integer with prime

factorization x = pa11 p
a2
2 ...p

as
s . It is well-know that τ(x) = (a1+1)(a2+1)...(as+1)

and σ(x) =
p
a1+1
1 −1
p1−1 . . .

pas+1
s −1
ps−1 .

Throughout this paper our notations are standard and mainly taken from [9].
Our calculations are done with the aid of GAP [14].

Table 1. Orders of subgroups, when |G| = n = 2rpa11 p
a2
2 . . . pass .

j 1 2 3 . . . r+1
i 1 2 4 . . . 2r

1 1 1 2 4 . . . 2r

2 c1 c1 2c1 4c1 . . . 2rc1
...

...
...

...
...

...
...

i+ 1 ci ci 2ci 4ci . . . 2rci
...

...
...

...
...

...
...

t+ 1 ct ct 2ct 4ct . . . 2rct

In [1], the second author investigated the structure of �nite groups with exactly
m 6 4 maximal subgroups, and the structure of groups of odd order with exactly
n = |π(G)| minimal subgroups. The aim of this paper is to continue this work by
computing the number of maximal, normal maximal, self-normalizing maximal,
maximal normal and minimal normal subgroups of certain groups.

2. Main results

The aim of this section is to continue our earlier work [11] by computing some group
theoretic parameters introduced in Section 1 for groups in L(n). The calculations
of each group are given separately in a subsection.
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2.1. Dihedral Group D2n

The dihedral group D2n can be presented as D2n = 〈a, b|an = b2 = e, bab = a−1〉.
The method given for dihedral groups can be applied in other members of L(n)
and so it is useful to present with details our method for dihedral groups. By
the proof of [5, Theorem], all subgroups of dihedral group D2n have one of the
following forms:

1. A subgroup of 〈ai〉 ' Cn
i
where i|n,

2. A subgroup of 〈ai, ajb〉 ' D 2n
i
, where i|n and 1 6 j 6 i.

These subgroups are said of type (1) and (2), respectively.

Lemma 2.2. Suppose n, n > 3, is a natural number. Then,

1. For any prime factor p of n, 〈a〉 and 〈ap, ajb〉 are all maximal subgroups of

D2n, where 1 6 j 6 p.

2. For any prime factor p of n, 〈a
n
p 〉 and 〈ajb〉 are all minimal subgroups of

D2n, where p is prime.

Proof. The proof follows from the main theorem of [5].

Theorem 2.3. Suppose n = 2rm > 3, where r is a non-negative integer and m is

a positive integer. Then,

1. max(D2n) = 1+ν(n), snmax(D2n) = ν(m) andmaxn(D2n) = nmax(D2n) =
3 when n is even. In other case, maxn(D2n) = nmax(D2n) = 1.

2. min(D2n) = π(n) + n, nmin(D2n) = minn(D2n) = π(n) and syl(D2n) =
π(m) +m.

3. R(D2n) = 〈a2〉, L(D2n) = 〈ap1p2···ps〉 and φ(D2n) = R(D2n)
⋂
L(D2n) =

〈a2p1p2···ps〉.

Proof. By Lemma 2.2, Max(D2n) = 1 + ν(n) and Min(D2n) = π(n) + n. It is
easy to see that for odd n, all normal subgroups are given by the group itself
and all subgroups of 〈a〉. If n is even then there are two more normal subgroups
given by 〈a2, b〉 and 〈a2, ab〉. This proves that NMin(D2n) = MinN(D2n) = π(n)
and Min(D2n) = π(n) + n. For each �nite group G, Max(G) = NMax(G) +
SNMax(G). Hence SNMax(D2n) = ν(m) and MaxN(D2n) = NMax(D2n) = 3
when n is even. In other case, MaxN(D2n) = NMax(D2n) = 1. The last part is
a consequence of (1) and (2).
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Suppose n = 2rm where m is an odd positive integer with prime factorization
m = pα1

1 pα2
2 · · · pαss . In Table 2, the general form of the subgroup lattice of D2n is

given by which we can �nd all maximal subgroups of D2n.

Table 2. The subgroup structure of D2n.

Subgroups Max Min NMax SNMax MinN Sylp

Type 1 〈a〉 〈a
n
p 〉 〈a〉 − 〈a

n
p 〉 〈a

n

p
αi
i 〉

Type 2 〈api , ajb〉 〈ajb〉 〈a2, ajb〉 〈api , ajb〉 − 〈am, ajb〉

Here pi 6= 2 for all i.

j 1 2 · · · r r + 1 r + 2

ci 1 2 · · · 2r−1 2r 2r+1

1 〈a
n
2 〉, 〈ajb〉 Syl2(D2n)

pi 〈a
n
pi 〉

...∏
16k6s p

αk−1
k φ(D2n) L(D2n)

...

pαii Sylpi
...

m
pi

〈api , ajb〉
...

m R(D2n) 〈a〉〈a2, ajb〉

The summation of all primes p such that p|n is denoted by ν(n), i.e. ν(n) =∑
p∈π(n) p.

2.2. Dicyclic Groups T4n

We recall that the dicyclic group T4n can be presented as

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉.

In this subsection the maximal, normal maximal, self-normalizing maximal, maximal
normal, minimal normal and Sylow subgroups of dicyclic group T4n are computed. Sup-
pose n = 2rpa11 .pa22 . . . pass . Since each element of T4n has the form aibj , 1 6 i 6 n and
0 6 j 6 3, it can see that an arbitrary subgroup of the dicyclic group T4n has one of the
following forms (see [11, 2.2]):

1. A subgroup of 〈ai〉, i|2n;
2. A subgroup of 〈ai, ajb〉, where i|n and 1 6 j 6 i.
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Lemma 2.4. The following hold:

1. All maximal subgroups of form the dicyclic group T4n have the form 〈a〉 or 〈ap, ajb〉,
where 1 6 j 6 p and p ∈ π(n);

2. Every minimal subgroup of form the dicyclic group T4n has the form 〈a
n
p 〉, where

p ∈ π(2n).

Proof. It is clear that 〈ai〉, i|n, is maximal if and only if i = 1. We now consider the
subgroups of the form 〈ai, ajb〉, where i|n and 1 6 j 6 i. If p is a prime divisor of i
then obviously 〈ai, ajb〉 6 〈ap, ajb〉 and since 〈ai, ajb〉 is maximal, i has to be prime. The
second statement is a direct consequence of the presentation of dicyclic groups.

Table 3. The subgroup structure of T4n.

Type Max Min NMax SNMax MinN Sylp

〈ai〉 〈a〉 〈a
2n
p 〉 〈a〉 - 〈a

2n
pi 〉 〈a

2n

p
αi
i 〉

〈ai, ajb〉 〈ap, ajb〉 - 〈a2, ajb〉 〈api , ajb〉 - 〈am, ajb〉

Here, pi 6= 2 for all i.

j 1 2 · · · r + 1 r + 2 r + 3

ci 1 2 · · · 2r 2r+1 2r+2

1 〈a
2n
2 〉 Syl2

pi 〈a
2n
pi 〉

...∏
16k6s p

αk−1
k φ(T4n) L(T4n)

...

pαii Sylpi
...

m
pi

〈api , ajb〉
...

m R(T4n) 〈a〉, 〈a2, ajb〉

Theorem 2.5. Suppose n > 2 is a positive integer. Then,

1. max(T4n) = ν(n) + 1 and snmax(T4n) = ν(n). If n is even then maxn(T4n) =
nmax(T4n) = 3, and maxn(T4n) = nmax(T4n) = 1, otherwise.

2. minn(T4n) = nmin(T4n) = min(T4n) = π(2n) and syl(T4n) = π(n) + n.

3. R(T4n) =
⋂
NMax(T4n) = 〈a2〉 and L(T4n) =

⋂
SNMax(T4n) = 〈ap1p2...ps〉,

where n = 2rpa11 pa22 . . . pass is the prime factorization of n. Moreover, φ(T4n) =
〈a2p1p2...ps〉
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Proof. By Lemma 2.4, the group T4n has exactly one subgroup of index 2 and pi sub-
groups of the form 〈api , ajb〉, for each positive integer i with 1 6 i 6 s. Therefore,
max(T4n) = 1 + ν(n). Among all maximal subgroups of T4n, the only normal subgroup
is 〈a〉 and so snmax(T4n) = ν(n). If n is odd then 〈a〉 is the unique normal maximal
subgroup of T4n which is also maximal normal in T4n. Thus maxn(T4n) = nmax(T4n) =
1. If n is even then 〈a〉, 〈a2, ab〉 and 〈a2, a2b〉 are only maximal normal (normal maximal)
subgroups of T4n and so maxn(T4n) = nmax(T4n) = 3. This completes the proof of Part
(1).

Since 〈a〉 is a characteristic subgroup of T4n, all subgroups of 〈a〉 is normal in G.
Hence the number of minimal, minimal normal and normal minimal subgroups of T4n

are equal to pi(2n), as desired. If p is odd prime then all Sylow p−subgroups of G
are contained in 〈a〉 and there are n Sylow 2−subgroup in the form of 〈an, ajb〉, where
1 6 j 6 n. Therefore, syl(T4n) = π(n) + n, which completes the Part (2).

The proof of Part (3) follows from our discussion given in Part (1),

2.3. Group U6n

The aim of this subsection is to compute the same invariants as Subsection 2.1 for the
group U6n of order 6n, where n = 2r3kpα1

1 . . . pαss . The presentation of this group was
given in Section 1. Note that this group has four types of subgroups as follows (see [11,
2.3]):

(a) A subgroup of G1 = 〈ai〉, where i|2n;
(b) A subgroup of G2 = 〈ai, b〉, where i|2n;
(c) A subgroup of G3 = 〈aib〉, where i|2n and 2 · 3k - i.

(d) A subgroup of G4 = 〈aib2〉, where i|2n and 2 · 3k - i.

Note that 〈ai, b〉 = 〈ai, b2〉 and if n = 2r · 3k ·m, 6 - m and 2 · 3k|i then (a2·3
k

)2
rm

= a2
r+1·3k·mb2

rm = a2nb2
r·m = b2

r·m = b or b−1. Therefore, 〈aib〉 = 〈ai, b〉 = 〈ai, b2〉 =
〈aib2〉. This proves that in this special case, the subgroups of types (b), (c) and (d) are
the same. This is the reason that in cases (c) and (d) we force the condition that 2 ·3k - i.

Theorem 2.6. The following hold:

1. All maximal subgroups of U6n have one of the forms 〈ap, b〉 or 〈abj〉, where p is a

prime divisor of n and 1 6 j 6 3. In particular, max(U6n) = π(2n) + 3.

2. All minimal subgroups of U6n have one of the forms 〈anbj〉 or 〈a
2n
p 〉, where p is a

prime divisor of n and 1 6 j 6 3. In particular,

min(U6n) =


π(2n) + 5 if r = 0
π(2n) + 3 if r = k = 0 or r, k > 0
π(2n) + 1 if k = 0

.

3. maxn(U6n) = nmax(U6n) = π(2n) and snmax(U6n) = 3.

4. nmin(U6n) = minn(U6n) = π(2n) + 1.

Proof. Since U6n is metacyclic, it is supersolvable. Now by Huppert't theorem, all max-
imal subgroups of U6n have index p, for a prime number p. Therefore, we have to count
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all subgroups of index a prime in the group U6n. It is easy to see that there is a unique
maximal subgroup of type (a) which has index 3. There are also two other maximal
subgroups 〈abj〉, j = 1, 2 of index 3. Note that all subgroups of the form 〈ap, b〉, p is
prime, have index p and so they are maximal in U6n. Finally, if p is a prime divisor of
n then 〈ap, b〉 is a maximal subgroup di�erent from those maximal subgroups of index 3.
Therefore, max(U6n) = π(2n) + 3.

Suppose n = 2r3kpα1
1 . . . pαss . To count the number of minimal subgroup of U6n, we

consider three cases that (r = 0 and k > 0), (k = 0 and r > 0) or (r = k = 0 or r, k > 0).

1. (r = 0 and k > 0). In this case, U6n has a unique subgroup 〈a
2n
pt 〉 of order

pt, 1 6 t 6 s. On the other hand, all subgroups 〈an〉, 〈anb〉 and 〈anb2〉 are
di�erent subgroups of order 2 and there is no other subgroups of order two in U6n.

Finally, 〈b〉, 〈a
2n
3 b〉 and 〈a

2n
3 b2〉 are only minimal subgroups of order 3. Hence

Min(U6n) = π(2n) + 5.

2. (k = 0 and r > 0). In this case we have a unique minimal subgroup of order p, p
is a prime divisor of 6n. Thus, Min(U6n) = π(2n) + 1

3. (r = k = 0 or r, k > 0). If r = k = 0 then we have three minimal subgroups 〈an〉,
〈anb〉 and 〈anb2〉 of order two and for each prime divisor p of 3n, we have a unique
minimal subgroup of order p. So, Min(U6n) = π(2n) + 3.

Thus, our calculations in cases (1), (2) and (3) show that

Min(U6n) =


π(2n) + 5 if r = 0
π(2n) + 3 if r = k = 0 or r, k > 0
π(2n) + 1 if k = 0

,

which completes Part (2).
To prove (3), we note that all maximal subgroups of the form 〈ap, b〉, p is a prime

divisor of 2n, are normal and three maximal subgroups 〈a〉, 〈ab〉 and 〈ab2〉 are conjugate
and so maxn(U6n) = nmax(U6n) = π(2n). This also proves that snmax(U6n) = π(2n)+
3− π(2n) = 3.

Finally, by our discussion on the minimal subgroups of U6n, we can see that nmin(U6n)
= minn(U6n) = π(2n) + 1 which completes the proof.

Corollary 2.7. The following hold:

1. syl(U6n) = π( n
2r
) + 3,

2. R(U6n) =
⋂
NMax(U6n) = 〈a6p1p2···ps , b〉,

3. L(U6n) =
⋂
SNMax(U6n) = 〈a2〉 = Cn,

4. φ(U6n) = R(U6n)
⋂
L(U6n)= 〈a23p1p2···ps〉 = C

2r3k−1p
α1−1
1 p

α2−1
2 ···pαs−1

s
.

Proof. By our discussion in Theorem 2.6, one can easily see that 〈a
n
2r 〉, 〈a

n
2r b〉 and

〈a
n
2r b2〉 are three Sylow 2−subgroups of U6n and all Sylow p−subgroups of U6n, p is an

odd prime, are normal and so syl(U6n) = π( n
2r
) + 3 which proves Part (1). Other parts

are also straightforward consequences of Theorem 2.6.

All of given properties of the group U6n are recorded in Table 4.
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Table 4. The subgroup structure of U6n.

Subgroups Types Max Min NMax SNMax MinN Sylp

〈ai〉 〈a〉 〈a
2n
p 〉 − 〈a〉 〈a

2n
p 〉 〈a

2n

p
αi
i 〉

〈aib〉 〈ab〉 〈a
2n
3 b〉 − 〈ab〉 − 〈a3

kmb〉
〈aib2〉 〈ab2〉 〈a

2n
3 b2〉 − 〈ab2〉 − 〈a3

kmb2〉
〈ai, b〉 〈ap, b〉 〈a2n, b〉 〈ap, b〉 − 〈a2n, b〉 −

j 1 2 · · · r r + 1 r + 2
ci 1 2 · · · 2r−1 2r 2r+1

1 〈an〉 Syl2(U6n)

3 〈b〉, 〈a
2n
3 〉, 〈a

2n
3 b±〉

pi 〈a
2n
pi 〉

...

3k−1
∏

16k6s p
αk−1
k φ(U6n)

...

3k
∏

16k6s p
αk−1
k R(U6n)

...

3k+1 Syl3

...

p
αi
i Sylpi

...
3k+1m
pi

〈api , b〉
...

3km L(U6n) 〈a〉, 〈ab±〉, 〈a3, b〉

3k+1m 〈a2, b〉

2.4. Group V8n

We recall that the group V8n can be represented as 〈a, b | a2n = b4 = e, aba =
b−1, ab−1a = b〉. Suppose n = 2rpa11 pa22 . . . pass . Then clearly |V8n| = 2r+3pa11 pa22 . . . pass .
Based on calculations given [11], there are nine di�erent types for the subgroups of V8n.
In what follows, these types together with the number of each type are given in.

1. The cyclic subgroups G1(i) = 〈ai〉, where i | 2n. For each divisor i of 2n, there
exists exactly one subgroup of this type and so we obtain τ(2n) cyclic subgroups
contained in 〈a〉.

2. The cyclic subgroupsG2(i) = 〈aib2〉, i|n. All the subgroups in this case are di�erent
from those are given in part (1). On the other hand, for each divisor i of n we will
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have a unique cyclic subgroup of this form. Thus, we �nd exactly τ(n) subgroups
of the form G2.

3. The subgroups G3(i) = 〈ai, b2〉 , where i|2n. A similar argument as Part (1) shows
that there are τ(2n) subgroups in this form and all such subgroups are di�erent
from those are given in parts (1) and (2). Thus, the number of such subgroups are
2τ(2n) + τ(n).

4. The subgroups G4(i, j) = 〈ai, ajb〉, i|2n, 1 6 j 6 i, i is even and j is odd. In this
case, it is easy to see that 〈ai, ajb〉 = 〈au, avb〉 if and only if i = u and j = v.
Since i is even, all divisors of 2n are 2n, 2n

2
, . . . , 2 and since i is odd there are∑

d|n d = σ(n) subgroups in this form. .

5. The subgroups G5(i, j) = 〈ai, ajb3〉, i|2n, 1 6 j 6 i, i is even and j is odd. In this
case, it is easy to see that 〈ai, ajb3〉 = 〈au, avb3〉 if and only if i = u and j = v.
Since i is even, all divisors of 2n are 2n, 2n

2
, . . . , 2 and since i is odd there are∑

d|n d = σ(n) subgroups in this form.

6. The subgroups G6(i, j) = 〈aib2, ajb〉, i|n, 1 6 j 6 i and i is even. In this case, it is
easy to see that n+ n

2
+ · · ·+2 = 2[n

2
+ n

4
+ · · ·+1] = 2σ(n

2
). So, there are 2σ(n

2
)

subgroups in the form of G6.

7. The subgroups G7(i, j) = 〈ai, b2, ajb〉, i|2n, 1 6 j 6 i and i, j are even. The
number of these subgroups are the same as the number of subgroups in part (4).

8. The subgroups G8(i, j) = 〈ai, b2, ajb〉, i|2n, 1 6 j 6 i, i is even and j is odd. Then
there are the same number of subgroups as in the part (8), i.e. there are σ(n)
subgroups in the form of G8.

9. The subgroups G9(i, j) = 〈ai, b2, ajb〉, i|2n, 1 6 j 6 i and i is odd. In this case,
2n = 2r+1pα1

1 · · · pαss and so n
2r

is odd. So, there are
∑
d|( n

2r
) d = σ( n

2r
) subgroups

in this form.

Theorem 2.8. The following hold:

1. All maximal subgroup of V8n have the forms 〈a, b2〉 or 〈ap, ajb, b2〉, where p is a

prime divisor of n and 1 6 j 6 p. In particular, max(V8n) = ν(2n) + 1.

2. All minimal subgroup of V8n have the forms 〈anb2〉, 〈a2n, b2〉, 〈a
2n
p 〉, p ∈ π(2n),

and 〈a2n, ajbk〉, where 1 6 j 6 2n and 2 | j, k = 1, 3. In particular, min(V8n) =
π(2n) + 2(n+ 1).

3. maxn(V8n) = nmax(V8n) = 3.

4. nmin(V8n) = minn(V8n) = π(2n) + 2.

5. snmax(V8n) = ν(m), where n = 2rm.

Proof. It is clear that among subgroups of type (3) there is a unique maximal subgroup
of index two as 〈a, b2〉. Among all subgroups of type (9), the cases that i ∈ π(2n)
lead to maximal subgroups of V8n. Since such subgroups have the structure 〈ai, b2, ajb〉,
1 6 j 6 i, mix(V8n) = ν(2n) + 1. Moreover, we don't have more maximal subgroups
among the nine classes of subgroups of V8n. This completes the proof of Part (1). To
prove (2), it is enough to note that only the subgroups of the �rst and fourth types have

prime order. Among the subgroups of the �rst types, 〈a
2n
p 〉, p ∈ π(2n), 〈a2n, b2〉 and
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〈anb2〉 have prime order. On the other hand, the subgroups 〈a2n, ajbk〉, where 1 6 j 6 2n
and 2 | j, k = 1, 3 have prime orders and these are all minimal subgroups of V8n. Thus

min(V8n) = π(2n) + 2(n+ 1), as desired. Moreover, only the minimal subgroups 〈a
2n
p 〉,

p ∈ π(2n), 〈b2〉 and 〈anb2〉 are normal and so nmin(V8n) = minn(V8n) = π(2n) + 2.
Finally, snmax(V8n) = max(V8n)− nmax(V8n) = ν(m) + 3− 3 = ν(m).

The following corollary is an immediate consequence of de�nition and Theorem 2.8.

Corollary 2.9. The following hold:

1. Syl(V8n) =

{
π(m) +m if n = 2rm,m > 1, r > 0,
m if n = 2r, r > 0.

2. R(V8n) =
⋂
NMax(V8n) = 〈a2, b2〉.

3. L(V8n) =
⋂
S −NMax(V8n) = 〈ap1p2···ps , b2〉=〈ap1p2···ps , b2〉.

4. φ(V8n) = R(V8n)
⋂
L(V8n) = 〈a2p1p2···ps , b2〉.

Information regarding the group V8n given in Theorem 2.8 are recorded in Table 5.

Table 5. The subgroup structure of V6n.

Types Max Min NMax S −NMax MinN Sylp

〈ai〉 − 〈a
2n
p 〉 − − 〈a

2n
p 〉 〈a

2n

p
αi
i 〉

〈aib2〉 − 〈anb2〉 − − 〈anb2〉 −
〈ai, b2〉 〈a, b2〉 〈a2n, b2〉 〈a, b2〉 − 〈a2n, b2〉 −
〈ai, ajb〉 − 〈a2n, ajb〉 − − − −
〈ai, ajb3〉 − 〈a2n, ajb3〉 − − − −
〈ai, b2, ajb〉 〈a2, b2, b〉 − 〈a2, b2, b〉 − − −
〈ai, b2, ajb〉 〈a2, b2, ab〉 − 〈a2, b2, ab〉 − − −
〈ai, b2, ajb〉 〈ap

o

, b2, ajb〉 − − 〈ap
o

, b2, ajb〉 − 〈am, b2, ajb〉

j 1 2 · · · r + 2 r + 3 r + 4
ci 1 2 · · · 2r+1 2r+2 2r+3

1 〈an〉, 〈ajb±〉, 〈b2〉, 〈anb2〉 Syl2

pi 〈a
2n
pi 〉

...∏
16k6s p

αk−1
k φ(V8n) L(V8n)

...

p
αi
i Sylpi

...

m
pi

〈api, b2, ajb〉
...

m R(V8n) 〈a, b2〉, 〈a2, b2, ajb〉
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2.5. Semi-dihedral group SD2n and 2−group the Hn

In this subsection the subgroup structure of two 2−groups SD2n , n > 4, and the group
H(n) are investigated. The semi-dihedral group SD2n has two types of subgroups and the
group H(n) has eleven types of subgroups. The types of subgroups for the semi-dihedral
group are as follows:

1. The subgroups of G1(i) = 〈ai〉, i|2n−1. In this case, for each i there exists exactly
one subgroup of the given form and so we obtain τ(2n−1) = n subgroups.

2. The subgroups G2(i, j) = 〈ai, ajb〉, where i|2n−1 and 1 6 j 6 i. In this case, there
are σ(n) subgroups of the form G2.

Note that all maximal subgroups of a p−group is normal and have index p. On the
other hand, all maximal subgroups of the group SD2n are known and have the from 〈a〉
and 〈a2, ajb〉, 1 6 j 6 2. In particular, Max(SD2n) = 3. Moreover, a 2−group has the
same number of maximal normal and normal maximal subgroups. Thus, maxn(SD2n) =
nmax(SD2n) = 3.

Theorem 2.10. The following hold:

1. All minimal subgroups of the group SD2n have the from 〈a2
n−2

〉 and 〈a2
n−1

, ajb〉,
1 6 j 6 2n−1, where 2|j. In particular, min(SD2n) = 2n−2 + 1.

2. nmin(SD2n) = minn(SD2n) = 1.

3. R(SD2n) =
⋂
NMax(SD2n) = 〈a2〉 and φ(SD2n) = R(SD2n).

Table 6. The structure of SD2n .

type subgroups Max Min NMax MinN Sylp

〈ai〉 〈a〉 〈a2
n−2

〉 〈a〉 〈a2
n−2

〉
〈ai, ajb〉 〈a2, ajb〉 〈a2

n−1

, ajb〉 〈a2, ajb〉 − 〈a, b〉

j 1 2 · · · r − 1 r r + 1

ci 1 2 · · · 2r−2 2r−1 2r

1 Min(SD2n) R(SD2n) Max(SD2n) Syl2

We recall that the group H(n) can be presented as

H(n) = 〈a, b, c|a2
n−2

= b2 = c2 = e|[a, b] = [b, c] = e, ac = ab〉.

where n > 4. The types of subgroups of H(n) are as follows:

1. Subgroups G1(i) = 〈ai〉, i|2n−2.

2. Subgroups G2(i) = 〈ai, b〉, i|2n−2.

3. Subgroups G3(i) = 〈ai, c〉, i|2n−2.

4. Subgroups G4(i) = 〈ai, bc〉, i|2n−2.

5. Subgroups G5(i) = 〈aib〉, i|2n−3.

6. Subgroups G6(i) = 〈aic〉, i|2n−3.
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7. Subgroups G7(i) = 〈aibc〉, i|2n−3.

8. Subgroups G8(i) = 〈aib, aic〉, i|2n−3.

9. Subgroups G9(i) = 〈aib, aibc〉, i|2n−3.

10. Subgroups G10(i) = 〈aic, aibc〉, i|2n−3.

11. Subgroups G11(i) = 〈ai, b, c〉, i|2n−2.

A similar calculations as other groups shows that the number of subgroups of a given
order in H(n) satis�es all information given in Table 7.

Theorem 2.11. The following hold

1. All maximal subgroups of H(n) have the from 〈a, b〉, 〈a, c〉 or 〈a2, b, c〉. In particu-

lar, Max(Hn) = 3.

2. All minimal subgroup of H(n) have the from 〈b〉, 〈c〉, 〈bc〉, 〈a2
n−3

b〉, 〈a2
n−3

c〉,
〈a2

n−3

bc〉 or 〈a2
n−3

〉. In particular, Min(Hn) = 7.

3. MaxN(Hn) = NMax(Hn) = 3.

4. NMin(Hn) =MinN(Hn) = 3.

5. Sylp(Hn) = 1.

6. R(Hn) =
⋂
NMax(Hn) = 〈a2, bc〉 and φ(Hn) = R(Hn).

Table 7. The subgroup structure of Hn.

type subgroups Max Min NMax MinN Sylp

〈ai〉 − 〈a2
n−3

〉 − 〈a2
n−3

〉 −
〈ai, b〉 〈a, b〉 〈a2

n−2

, b〉 〈a, b〉 〈a2
n−2

, b〉 −
〈ai, c〉 〈a, c〉 〈a2

n−2

, c〉 〈a, c〉 − −
〈ai, bc〉 − 〈a2

n−2

, bc〉 − − −
〈aib〉 − 〈a2

n−3

b〉 − 〈a2
n−3

b〉 −
〈aic〉 − 〈a2

n−3

c〉 − − −
〈aibc〉 − 〈a2

n−3

bc〉 − − −
〈ai, b, c〉 〈a2, b, c〉 − 〈a2, b, c〉 − 〈a, b, c〉

j 1 2 · · · r − 1 r r + 1

ci 1 2 · · · 2r−2 2r−1 2r

1 Min(Hn) R(Hn) Max(Hn) Syl2(Hn)
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