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Some new approaches on prime and composite

order Cayley graphs

Ida Shojaee, Behnaz Tolue and Ahmad Erfanian

Abstract. Some of the main graph theoretical properties of prime and composite order Cayley

graphs of Zpn1 ×· · ·×Zpnt are studied. For instance, the structure of these two classes of graphs

are clari�ed completely and some of the topological indices of them are obtained.

1. Introduction

The Cayley graph was �rst introduced for �nite groups by Arthur Cayley in 1878.
Max Dehn reintroduced Cayley graphs under the name Gruppenbild (group di-
agram) in his unpublished lectures on group theory, which led to the geometric
group theory of today. Let G be a group, and let S ⊆ G be a set of group el-
ements such that the identity element does not belong in S. The Cayley graph

associated with (G,S) is de�ned as the directed graph with a vertex associated
to each group element and directed edges (g, h) whenever gh−1 ∈ S. The Cayley
graph may depend on the choice of a generating set, and it is connected if and
only if S generates G. If S = S−1, then the Cayley graph is undirected which is
our favorite graph in this research.

B. Tolue de�ned the prime and composite order Cayley graphs in [10, 11]
and she discussed about some of their properties. For instance, the structure of
them for some certain groups were achieved. The planarity of prime order Cayley
graph of abelian groups and composite order Cayley graph were presented. More-
over, some graph parameters such as diameter, girth, clique number, independence
number, vertex chromatic number and domination number are calculated for the
composite order Cayley graph of some certain groups. In this research we present
some more new results about them which are complementary to the older ones, so
let us recall the following de�nitions.

De�nition 1.1. Let G be a group and S be the set of non-identity prime order
elements of G. Consider the Cayley graph Cayp(G,S) associated to the group G
relative to S. We call it a prime order Cayley graph.

Now, if we change the subset S to the composite order elements of the group
G, then we have the complement of the prime order Cayley graph, which is de�ne
as follows.
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De�nition 1.2. The composite order Cayley graph which is assigned to the group
G is a graph with vertex set whole elements of the group G and two distinct
vertices x and y are adjacent whenever xy−1 ∈ S, where S is a subset of G which
contains all elements of composite order. We denote the composite order Cayley
graph by Cayc(G,S).

In the next section, we discussed about the planarity, adjacency matrix, energy,
dominating polynomial and independent dominating polynomial of prime order
Cayley graph of Zpn1×· · ·×Zpnt . We observe Cayp(Zpn1 , S1)×· · ·×Cayp(Zpnt , St)
is induced subgraph of Cayp(Zpn1 × · · · ×Zpnt , S). Also in the third section prop-
erties of the composite order Cayley graph are studied.

Let Γ be a �nite, undirected graph with vertex and edge sets V (Γ) and E(Γ).
For u, v ∈ V (Γ), the minimal path-length distance between u and v is denoted by
d(u, v). For the edge e = {u, v} of Γ, de�ne

Nu(e) = {x ∈ V (Γ) : d(u, x) < d(v, x)}
Nv(e) = {x ∈ V (Γ) : d(v, x) < d(u, x)},

The size of each sets is denoted by nu(e) and nv(e), respectively. If for every edge
e = {u, v} of the graph Γ, nu(e) = nv(e), then Γ is called a vertex distance-balanced
graph. Moreover, the number of edges which are closer to u than v is denoted by
mu(e). The graph Γ is called edge distance-balanced graph, if for every edges of the
graph like e = {u, v}, we have mu(e) = mv(e) (see [7] for more details). We have
observed that the prime order Cayley graph associated to an elementary abelian
p-group and the composite order Cayley graph of Zpn1 × · · · × Zpnt is vertex and
edge distance-balanced graph.

For an ordered subset W = {w1, w2, . . . , wk} of vertices and a vertex v in a
connected graph Γ, the representation of v with respect to W is the ordered k-
tuple r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)). The set W is a resolving set (or
locating set) for Γ if every two vertices of Γ have distinct representations. The
metric dimension of Γ is the minimum cardinality of a resolving set for Γ. In
the sequel, we have obtained the metric dimension for the prime order Cayley
graph of elementary abelian p-group and the composite order Cayley graph of
Zpn1 × · · · × Zpnt .

In chemical graph theory, the Wiener index is a topological index of a molecule,
de�ned as the sum of the lengths of the shortest paths between all pairs of vertices
in the molecule. More precisely, for the connected graph Γ, the Wiener index
W (Γ) = 1/2

∑
(u,v)∈V (Γ)×V (Γ) d(u, v). The Wiener index is named after Harry

Wiener, who introduced it in 1947. Based on its success, many other topological
indices were introduced. The �rst and second Zagreb index are important topolog-
ical indices which are de�ned by Gutman and Trinajestic [6]. The graph invariants
M1(Γ) and M2(Γ), known as �rst and second Zagrebs equal to

∑
v∈V (Γ)(deg(v))2

and
∑
{u,v}∈E(Γ) deg(u)deg(v), respectively. In the following, we compute the �rst

and second Zagreb indices for the prime and composite order Cayley graph of
Zpn1 × · · · × Zpnt .
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Another topological index is eccentric connectivity which is de�ned by ξc(Γ) =∑
u∈V (Γ) deg(u)εΓ(u), where εΓ(u) is the eccentric of the vertex u in the graph Γ.

The eccentric connectivity of the prime and composite order graph of elementary
abelian p-group and Zpn1 × · · · × Zpnt is achieved, respectively.

The vertex and edge Padmakar-Ivan indices was de�ned by Padmakar V.
Khadikar, which has the usage in chemical sciences. The vertex Padmakar-Ivan
and edge Padmakar-Ivan indices of the graph Γ are PIv(Γ) = Σe={u,v}∈E(Γ)(nu(e)+
nv(e)) and PIe(Γ) = Σe={u,v}∈E(Γ)(mu(e) +mv(e)), respectively [8]. We compute
the vertex and edge Padmakar-Ivan indices for some certain prime and composite
order graphs.

Throughout the paper, all the notations and terminologies about the graphs
are found in [2, 4].

2. The prime order Cayley graph

Let p be a prime number. It is clear that, if G is an elementary abelian p-group
of order pt, then the prime order Cayley graph, Cayp(G,S) is a complete graph.
Therefore, it is (pt − 1) regular and ω(Cayp(G,S)) = χ(Cayp(G,S)) = pt. It is
vertex and edge distance balanced, also vertex and edge transitive. Moreover, its
metric dimension is pt − 1. The prime order Cayley graph of elementary abelian
p-groups is planar if and only if G ∼= Z2, Z3, Z2 × Z2.

The Wiener index, �rst and second Zagreb index, the eccentric connectivity,
vertex and edge Padmakar-Ivan index were obtained for the complete graphs so
the proof of the following result is straightforward and we omit it.

Proposition 2.1. Let G be an elementary abelian group of order pt. Then

(i) The Wiener index is W (Cayp(G,S)) = pt(pt − 1)/2

(ii) The �rst Zagreb index is M1(Cayp(G,S)) = pt(pt − 1)2.

(iii) The second Zagreb index is M2(Cayp(G,S)) = pt(pt − 1)3/2.

(iv) The eccentric connectivity is ξc(Cayp(G,S)) = pt(pt − 1).

(v) The vertex and edge Padmakar-Ivan indices are PIv(Cayp(G,S))=pt(pt−1)2

and PIe(Cayp(G,S)) = pt(pt − 1)(pt − 2), respectively.

Assume G = Zpn × Zpm . Then the set of all prime order elements is S =
{(x, y) ∈ G : x = kpn−1, y = k′pm−1, 0 6 k, k′ 6 p − 1}. Therefore Cayp(G,S)
is (p2 − 1) regular. If (x1, y1) and (x2, y2) are two adjacent vertices, then x2 =
x1 − kpn−1 and y2 = y1 − k′pm−1, where 0 6 k, k′ 6 p − 1. It is obvious
that all vertices which join (x2, y2) has the form (x2 − lpn−1, y2 − qpm−1), where
0 6 l, q 6 p − 1. Hence Cayp(G,S) is disjoint union of (n + m − 2) complete
components of size p2.
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The subset of vertices T is called a dominating set for the graph Γ, if every
vertices outside of T join to at least one vertex of T . The size of the smallest
dominating set is called the domination number and is denoted by γ(Γ). A set of
vertices is an independent set if no two vertices in it are adjacent. The maximum
size of the independent set is called an independence number of the graph. If T is
an independent set, then it is called an independent dominating set and the size
of the smallest is denoted by γi(Γ).

Saeid Alikhani and Peng, Y.H. [1], have introduced the domination polynomial

of a graph. Then domination polynomial of Γ is D(Γ, x) = Σ
|V (Γ)|
i=γ(Γ)d(Γ, i)xi, where

d(Γ, i) is the number of the dominating sets of size i. After that P.M. Shivaswamy

et al. de�ned independent polynomial by Di(Γ, x) = Σ
|V (Γ)|
j=γi(Γ)di(Γ, j)x

j , where

di(Γ, j) is the number of the independent dominating sets of size j [9]. There
are other graph polynomials too which are powerful and well-developed tools to
express graph parameters.

Proposition 2.2. Let G = Zpn1 × · · · × Zpnt , where ni are positive integers and

p is prime number.

(i) Cayp(G,S) is (pt − 1) regular.

(ii) Cayp(G,S) is disjoint union of p(Σt
i=1ni)−t complete components of size pt.

(iii) Cayp(G,S) is planar if and only if G ∼= Z2n1 , Z2n1 × Z2n2 , Z3, where

1 6 n1, n2 6 2.

(iv) ω(Cayp(G,S)) = χ(Cayp(G,S)) = pt and α(Cayp(G,S)) = p(Σt
i=1ni)−t.

(v) The adjacency matrix of Cayp(G,S) is l × l matrix where l =
∏t
i=1 p

ni , it

contains pt × pt sub-matrix on the main diagonal such that all their compo-

nents are one except the diagonal which is zero, and the components out of

this sub-matrices are zero.

(vi) The energy of the graph with respect to the adjacency matrix is equal to

2p(Σt
i=1ni)−t(pt − 1).

(vii) γ(Cayp(G,S)) = γi(Cayp(G,S)) = p(Σt
i=1ni)−t.

(viii) The dominating polynomial of the graph Cayp(G,S) is,

D(Cayp(G,S), x) =

|V (Cayp(G,S))|∑
s=γ(Cayp(G,S))

(P t
k1

)(P t
k2

)
· · ·
( P t

k
p
(Σt

i=1
ni)−t

)
xs,

where
∑

16j6p(Σt
i=1

ni)−t kj = s and kj > 0.
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Proof. (i). It is enough to compute the number of all prime order elements of
the group G. Similar to the above argument an element of order p has the form
(k1p

n1−1, · · · , ktpnt−1), where 0 6 ki 6 p − 1, 1 6 i 6 t. Note that we omit the
identity element and so the assertion is clear.

(ii)− (v). It is clear by the discussion before the proposition and the structure
of the graph.

(vi). If the graph is not connected, then the energy of the graph is the sum
of the energy of connected components [5] . Since every component in this graph
is Kpt , the eigenvalues of each components are pt − 1 and −1 with multiplicity 1
and pt − 1, respectively.

(vii). It is clear by the structure of the graph.
(viii). The smallest dominating sets have γ(Cayp(G,S)) = γ elements. The

number of dominating sets of size s is obtained by choosing enough vertices from
each components in such a way the summation of them is equal to s. Thus the
number of dominating set of size s is(P t

k1

)(P t
k2

)
· · ·
( P t

k
p
(Σt

i=1
ni)−t

)
,

where
∑

16j6p(Σt
i=1

ni)−t kj = s and kj > 1.

By the above theorem the prime order Cayley graph of the group Z23 × Z2 is
union of 4 complete components isomorphic toK4, where S = {(0, 1), (4, 0), (4, 1)}.

Theorem 2.3. (cf. [9]) Let Γ be a graph with components Γi, 1 6 i 6 n. Then

the independent dominating polynomial of the graph Γ is
∏n
i=1Di(Γi, x), where

Di(Γi, x) is independent dominating polynomial of the graph Γi.

It is clear that for a complete graph Kn independent dominating polynomial
of the graph Kn is nx. By the above argument we have the following result.

Proposition 2.4. The independent dominating polynomial of the graph Cayp(G,S)

is Di(Cayp(G,S), x) = ptp
(Σt

i=1ni)−t

xp
(Σt

i=1ni)−t

, where G = Zpn1 × · · · × Zpnt .

Since the �rst and second Zagreb of a complete graph is clear, by considering
the structure of Cayp(G,S) of the group G = Zpn1 × · · · × Zpnt we conclude the
following result.

Proposition 2.5. With the same notations in Proposition 2.2 we have,

(i) The �rst Zagreb is M1(Cayp(G,S)) = p(Σt
i=1ni)−tpt(pt − 1)2.

(ii) The second Zagreb is M2(Cayp(G,S)) = p(Σt
i=1ni)−tpt(pt − 1)3/2.

Theorem 2.6. (cf. [12]) The graph mKn and its complement Tm,mn are circulant

and edge transitive, where Tm,mn is a complete m-partite graph with n vertices in

each part.
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Let G = Zpn1 × · · · ×Zpnt . By Theorem 2.6, Cayp(G,S) is edge transitive and
circulant. Since every circulant graph is vertex transitive so Cayp(G,S) is edge
transitive too.

The Cartesian product Γ×∆ of graphs Γ and ∆ is a graph such that the vertex
set of Γ × ∆ is the Cartesian product V (Γ) × V (∆) and any two vertices (u, u′)
and (v, v′) are adjacent in Γ×∆ if and only if either u = v and u′ is adjacent with
v′ in ∆, or u′ = v′ and u is adjacent with v in Γ.

We claim that Cayp(Zpn , S1)×Cayp(Zpm , S2) is induced subgraph of Cayp(Zpn×
Zpm , S). Obviously, S = {(k1p

n−1, k2p
m−1) : 0 6 k1, k2 6 p−1}−{(0, 0)}. By the

argument after Proposition 2.1, {(x1, y1), (x2, y2)} is an edge of Cayp(Zpn×Zpm , S)
whenever x2 = x1 − kpn−1 and y2 = y1 − k′pn−1. If {(x1, y1), (x2, y2)} is an
edge of Cayp(Zpn , S1)×Cayp(Zpm , S2) with out loss of generality we can suppose
x1 = x2 and {y1, y2} is an edge of Cayp(Zpm , S2), so y1 − y2 ∈ S2 and clearly
{(x1, y1), (x2, y2)} is an edge of Cayp(Zpn × Zpm , S). It is not hard to deduce
that Cayp(Zpn ×Zpm , S) have more edges than Cay(Zpn , S1)×Cayp(Zpm , S2). By
induction we can prove the following result.

Proposition 2.7. Cayp(Zpn1 , S1)× · · · × Cayp(Zpnt , St) is induced subgraph of

Cayp(Zpn1 × · · · × Zpnt , S).

3. The composite order Cayley graph

It is clear that Cayc(G,S) is an empty graph for elementary abelian p-group G.
In this section we discuss about the composite order Cayley graph of the group
G = Zpn1 × · · · × Zpnt . By Theorem 2.6, it is vertex and edge transitive. In the
following proposition some more results about its structure is presented.

Proposition 3.1. Let G = Zpn1 ×· · ·×Zpnt , where ni are positive integers. Then

(i) Cayc(G,S) is (p(
∑t

i=1 ni) − pt) regular.

(ii) Cayc(G,S) is p(
∑t

i=1 ni)−t-partite graph.

(iii) Cayc(G,S) is not a planar graph, for t > 2.

(iv) ω(Cayc(G,S)) = χ(Cayc(G,S)) = p(
∑t

i=1 ni)−t and α(Cayc(G,S)) = pt.

(v) The adjacency matrix of Cayc(G,S) is l × l matrix where l =
∏t
i=1 p

ni , it

contains pt × pt sub-matrix on the main diagonal such that all their compo-

nents are zero as the diagonal which is zero, and the components out of this

sub-matrices are one.

(vi) γ(Cayc(G,S)) = γi(Cayc(G,S)) = pt.
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(vii) γ(Cayp(G,S)) = 2 and the dominating polynomial of the graph Cayc(G,S)
is

D(Cayc(G,S), x) =

|V (Cayp(G,S))|∑
k=2

( l1
i1

)( l2
i2

)
· · ·
( ls
i
s

)
xk,

where s = pΣt
i=1ni−t, 2 6 i1 + i2 + · · · + is = k and at least two of ij's are

not equal to zero, 1 6 j 6 s.

(viii) γi(Cayp(G,S)) = pt and the independent dominating polynomial of the graph

Cayc(G,S) is,

Di(Cayc(G,S), x) = p(
∑t

i=1 ni)−txp
t

(ix) It is vertex and edge distance balanced.

Proof. The proof is clear by the fact that Cayc(G,S) is complement of Cayp(G,S)
and Proposition 2.2.

A strongly regular graph with parameters (v, k, λ, µ) is a graph on v vertices,
regular of valency k, such that any two adjacent (nonadjacent) vertices have pre-
cisely λ (resp. µ) common neighbors. The complete a-partite graph Ka×m, has
parameters (v, k, λ, µ) = (am, (a−1)m, (a−2)m, (a−1)m) and spectrum k, 0, −m
with multiplicity 1, a(m− 1), a− 1, respectively ([3, Remark 11.8]).

Proposition 3.2. Let G = Zpn1 ×· · ·×Zpnt . The eigenvalues of adjacency matrix

of Cayc(G,S) are p
∑t

i=1 ni − pt, 0, and −pt with multiplicity 1, p
∑t

i=1 ni − pt and
p(

∑t
i=1 ni)−t−1, respectively. Moreover, the energy of the graph is 2(p(

∑t
i=1 ni−pt).

Proof. Cayc(G,S) is strongly regular graph with parameters (p
∑t

i=1 ni , p
∑t

i=1 ni−
pt, p

∑t
i=1 ni − 2pt, p

∑t
i=1 ni − pt) so by the argument before the theorem the

assertion is clear.

Proposition 3.3. The metric dimension of Cayc(G,S) is p(
∑t

i=1 ni)−t(pt − 1).

Proof. In order to construct the smallest resolving set, it is enough to choose pt−1
vertices from each parts. By the structure of the graph the assertion is clear.

Proposition 3.4. With the same notations in Proposition 3.1 we have,

(i) The Wiener index is W (Cayc(G,S)) = p
∑t

i=1 ni + 1
4 (p

∑t
i=1 ni(p

∑t
i=1 ni−pt)).

(ii) The �rst Zagreb is M1(Cayc(G,S)) = pΣt
i=1ni(pΣt

i=1ni − pt)2.

(iii) The second Zagreb is M2(Cayc(G,S)) = pΣt
i=1ni(pΣt

i=1ni − pt)3/2.

(iv) The eccentric connectivity ξc(Cayc(G,S)) = 2pΣt
i=1ni(pΣt

i=1ni − pt).
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Proof. (i). According to the de�nition of the Wiener index, it is enough to break
the summation to two cases. In the �rst case, we add the distances for the vertices
in the same part, while the rest is the summation of the distances of the vertices
in the two distinct parts.

It is clear that deg(v) = (pΣt
i=1ni − pt), the number of edges of the graph is

pΣt
i=1ni(pΣt

i=1ni − pt)/2 and by the de�nitions of these indices the assertion of (ii)
and (iii) follows. The forth part is clear by the fact that the greatest distance for
any vertex is 2.

Theorem 3.5. If G ∼= D2n, v is a vertex of the graph Cayc(G,S) and p is a prime

number, then

(i) Cayc(G,S) is an empty graph, for prime n.

(ii) deg(v) = pα − p, diam(Cayc(G,S)) = 2 and γ(Cayc(G,S)) = 2p for n = pα,
where α > 1. Moreover, if pα 6= 4, then we have girth(Cayc(G,S)) = 3 and

girth(Cayc(D8,S)) = 4.

(iii) deg(v) = ϕ(n), for n = p1p2, where ϕ is Eulerian function, p1 and p2 are

distinct prime numbers. Also girth(Cayc(G,S)) = 6, 4 or 3, for n = 6, 2p
and the rest cases, respectively.

(iv) For n =
∏l
i=1 pi,

deg(v) = ϕ(n) +

l−1∑
j=2

(M
j

)
,

where M is the set of all prime numbers which divides n and the nota-

tion
(
M
j

)
stands for the sum of the Eulerian function of multiplication of

j prime numbers belongs to M which are chosen randomly. Furthermore,

diam(Cayc(G,S)) = 3 and girth(Cayc(G,S)) = 3.

(v) If n =
∏l
i=1 p

αi
i , where pi, pj are distinct prime numbers for i 6= j, 1 < αi

for some i and l > 2, then

deg(v) =

l∑
j=2

(
M
j

)
,

where M is the set of all power of prime numbers which divides n and

the notation
(M
j

)
stands for the sum of the Eulerian function of multi-

plication of j power of prime numbers belongs to M which are chosen ran-

domly. It is obvious that diam(Cayc(G,S)) = 2, girth(Cayc(G,S)) = 3 and

γ(Cayc(G,S)) = 2pi, where pi is the smallest prime number dividing n.

(vi) The Cayc(G,S) the union of two isomorphic components with n vertices

{aib; 0 6 i 6 n− 1} and {ai; 0 6 i 6 n− 1}.
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(vii) Cayc(G,S) is planar if and only if G ∼= D8, D12 and D2p, where p > 4 is

prime number.

Proof. (vi). Suppose Cayc(G,S) is planar. By considering the degree of vertices
in the di�erent cases, we conclude that n is divisible just by two distinct prime
numbers. As the degree of vertices are less or equal than 4, only two pairs of
primes 2, 3 and 2, 5 are acceptable. The rest of the proof is clear by computation
and [10, Theorem 2.2] left for the readers.

Finally, we deduce the following result similar to the Proposition 2.7.

Proposition 3.6. Cayc(Zpn1 , S1)× · · · × Cayc(Zpnt , St) is induced subgraph of

Cayc(Zpn1 × · · · × Zpnt , S).
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