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On (semi)topological hoops

Mona Aaly Kologani, Rajab Ali Borzooei and Nader Kouhestani

Abstract. Hoops are naturally ordered commutative residuated integral monoids, introduced

by Bosbach in [6, 7], that BL-algebras are particular cases of hoops. Now, in this paper, we

introduce the concept of (semi)topological hoop and we get some related results. Then we derive

here conditions that imply a hoop to be a semitopological or a topological hoop and we study

some properties of them. Specially, we show that in a hoop A, if (A,→, T ) is a semitopological

hoop and {1} is an open set or A is bounded and satis�es the double negation property, then

(A, T ) is a topological hoop. Finally, we construct a discrete topology on quotient hoops, under

suitable conditions.

1. Introduction

Algebra and topology, the two fundamental domains of mathematics, play com-
plementary roles. Topology studies continuity and convergence and provides a
general framework to study the concept of a limit. Algebra studies all kinds of
operations and provides a basis for algorithms and calculations. In applications,
in higher level domains of mathematics, such as functional analysis, dynamical
systems, representation theory, and others, topology and algebra come in contact
most naturally. Many of the most important objects of mathematics represent
a blend of algebraic and of topological structures. Topological function spaces
and linear topological spaces in general, topological groups and topological �elds,
transformation groups, topological lattices are objects of this kind. Very often an
algebraic structure and a topology come naturally together; this is the case when
they are both determined by the nature of the elements of the set considered. The
rules that describe the relationship between a topology and algebraic operation
are almost always transparent and natural the operation has to be continuous,
jointly continuous, jointly or separately. In the 20th century many topologists and
algebraists have contributed to the topological algebra. Some outstanding math-
ematicians were involved, among them Dieudonné, Pontryagin, Weyl. Hoops are
naturally ordered commutative residuated integral monoids, introduced by Bos-
bach in [6, 7]. In the last years, the hoops theory have enriched with deep structure
theorems [1, 2, 3, 4, 5, 6, 7, 12]. Many of these results have a strong impact with
fuzzy logic. Particularly, from the structure theorem of �nite basic hoops ([2],
Corollary 2.10) one obtains an elegant short proof of the completeness theorem for
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the propositional basic logic ([2], Theorem 3.8), introduced by Hájek in [9]. The
algebraic structures corresponding to Hájek's propositional (fuzzy) basic logic,
BL-algebras, are particular cases of hoops. Now, in this paper, we introduce the
concept of (semi)topological hoops and we bring some useful examples of them.

2. Preliminaries

In this section, we gather some basic notions relevant to hoop which will need in
the next sections.

A hoop is an algebraic structure (A,�,→, 1) of type (2, 2, 0) such that, for all
x, y, z ∈ A:
(HP1) (A,�, 1) is a commutative monoid.
(HP2) x→ x = 1.
(HP3) (x� y)→ z = x→ (y → z).
(HP4) x� (x→ y) = y � (y → x).

On a hoop A we de�ne x 6 y if and only if x→ y = 1. Then ” 6 ” is a partial
order on A. A hoop A is bounded if, for all x ∈ A, there is an element 0 ∈ A
such that 0 6 x. Let A be a bounded hoop. For all x ∈ A, we de�ne a negation
” ′ ” on A by, x′ = x → 0. If (x′)′ = x, for all x ∈ A, then the bounded hoop A
is said to have the double negation property, or (DNP) for short. Finally, we let
x0 = 1, xn = xn−1 � x, for any n ∈ N (cf. [2]).

Example 2.1. (cf. [8]) (i) Let G = (G,+,−, 0,∨,∧) be an `-group and 0 6 u ∈
G. Suppose that operations � and → on G[u] = [0, u] are de�ned as follows:

x� y = (x− u+ y) ∨ 0 , x→ y = (y − x+ u) ∧ 0.

Then by routine calculations we can see that G[u] = (G[u],�,→, u) is a hoop.
(ii) Let A = {0, a, b, c, d, 1} and operations � and → on A are de�ned as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

Then with these operations A is a bounded hoop with (DNP).

The following proposition provides some properties of hoops.
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Proposition 2.2. (cf. [6, 7]) Let A be a hoop. Then, for all x, y, z ∈ A, the
following conditions hold:

(i) (A,6) is a meet-semilattice with x ∧ y = x� (x→ y).
(ii) x� y 6 z if and only if x 6 y → z.
(iii) x� y 6 x, y.
(iv) x 6 y → x.
(v) x→ 1 = 1.

(vi) 1→ x = x.
(vii) x 6 y → (x� y).

(viii) x� (x→ y) 6 y.
(ix) x 6 (x→ y)→ y.
(x) x 6 y implies x� z 6 y � z.
(xi) x 6 y implies z → x 6 z → y.

(xii) x 6 y implies y → z 6 x→ z.
(xiii) (x→ y) 6 (y → z)→ (x→ z).

Proposition 2.3. (cf. [8]) Let A be a bounded hoop. Then, for all x, y ∈ A, the
following conditions hold:

(i) 1′ = 0 and 0′ = 1.
(ii) x 6 x′′.

(iii) x� x′ = 0.
(iv) x′′′ = x′.
(v) x′ 6 x→ y.
(vi) If x = x′′, then x→ y = y′ → x′.

(vii) x = x′′ if and only if (x→ y)→ y = (y → x)→ x.

Proposition 2.4. (cf. [8]) Let A be a hoop and for any x, y ∈ A, we de�ne,

x t y = ((x→ y)→ y) ∧ ((y → x)→ x)

Then, for all x, y, z ∈ A, the following conditions are equivalent:

(i) t is associative operation on A,
(ii) x 6 y implies x t z 6 y t z,

(iii) x t (y ∧ z) 6 (x t y) ∧ (x t z),
(iv) t is the join operation on A.

A hoop A is called a t-hoop, if t is a join operation on A.

Remark 2.5. (cf. [8]) t-hoop (A,t,∧) is a distributive lattice.

Let A be a hoop. A non-empty subset F of A is called a �lter of A if,
(F1) x, y ∈ F implies x� y ∈ F .
(F2) x 6 y and x ∈ F imply y ∈ F , for any x, y ∈ A.
We use F(A) to denote the set of all �lters of A. Clearly, 1 ∈ F , for all

F ∈ F(A). F ∈ F(A) is called a proper �lter if F 6= A. It can be easily seen that,
if A is a bounded hoop, then a �lter is proper if and only if it does not contain 0
(cf. [8]).
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Proposition 2.6. (cf. [8]) Let A be a hoop and F be a non-empty subset of
A. Then F ∈ F(A) if and only if 1 ∈ F and if, for any x, y ∈ A, x ∈ F and
x→ y ∈ F , then y ∈ F .

Let A be a hoop and F ∈ F(A). We de�ne a binary relation ∼F on A by
x ∼F y if and only if x → y, y → x ∈ F , for any x, y ∈ A. Then ∼F is a
congruence relation on A. Let A/F = {x | x ∈ A}, where x = {y ∈ A | x ∼F y}.
Then the binary relation 6 on A/F de�ned by:

x 6 y if and only if x→ y ∈ F,

is a partial order on A/F (cf. [9]). Thus (A/F,⊗, , 1A/F ) is a hoop, where for
any x, y ∈ A:

1A/F = 1, x⊗ y = x� y, x y = x→ y.

In the follows, we recall some de�nitions of topological spaces.
A set X with a family T of its subsets is called a topological space, denoted by
(X, T ), if X, ∅ ∈ T and T is closed under a �nite intersection and arbitrary union.
The members of T are called open sets of X and the complement of U ∈ T , that
is U c, is said to be a closed set. If B is a subset of X, the smallest closed set
containing B is called the closure of B and denoted by B. A subfamily {Uα} of
T is said to be a base of U if for any x ∈ U ∈ T , there exists an α such that
x ∈ Uα ⊆ U, or equivalently, each U ∈ T is the union of members of {Uα}. A
subset P of a topological space (X, T ) is said to be a neighborhood of x ∈ X if
there exists an open set U such that x ∈ U ⊆ P. A topological space X is said to
be disconnected if it is the union of two disjoint non-empty open sets. Otherwise,
X is said to be connected (cf. [10, 11]).

Let (A, ∗) be an algebra of type 2 and T be a topology onA. ThenA = (A, ∗, T )
is called:
• left (right) topological algebra if for each a ∈ A, the map la : A→ A(ra : A→ A)
is de�ned by x → a ∗ x(x → x ∗ a) is continuous, or equivalently, for any x ∈ A,
and any open neighborhood U of a∗x(x∗a), there exists an open neighborhood V
of x such that a ∗ V ⊆ U(V ∗ a ⊆ U). In this case we also call that the operation
∗ is continuous in the second (�rst) variable.
• semitopological algebra if A is a right and left topological algebra. In this case
we also call that the operation ∗ is continuous in each variable separately.
• topological algebra if the operation ∗ is continuous, or equivalently, if for any
x, y ∈ A and any open neighborhoodW of x∗y, there exist two open neighborhoods
U and V of x and y, respectively, such that U ∗ V ⊆W (cf. [11]).

Proposition 2.7. (cf. [11]) Let (A, ∗) be a commutative algebra of type 2 and
T be a topology on A. Then, right and left topological algebras are equivalent.
Moreover, (A, ∗, T ) is a semitopological algebra if and only if it is right or left
topological algebra.

Let A be a non-empty set, {∗i}i∈I be a family of operations of type 2 on A
and T be a topology on A. Then:
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(i) (A, {∗i}i∈I , T ) is a right(left) topological algebra if for any i ∈ I, (A, ∗i, T )
is a right (left) topological algebra,

(ii) (A, {∗i}i∈I , T ) is a (semi)topological algebra if for all i ∈ I, (A, ∗i, T ) is a
(semi)topological algebra (cf. [11]).

Note: From now one, A is a hoop and T is a topology on A.

3. (Semi)topological hoop

In this section we de�ne the notions of (semi)topological hoop and state and prove
some related results.

De�nition 3.1. Let (A, {∗i}, T ), where {∗i} ⊆ {�,→}, be a (semi)topological
algebra. Then (A, {∗i}, T ) is called a (semi)topological hoop. Moreover, we say
(A, T ) is a (semi)topological hoop if (A,�,→, T ) is a (semi)topological hoop.

Note: Let U, V ⊆ A. Then we de�ne U � V , U → V and U × V as follows:

U � V = {x� y | x ∈ U, y ∈ V }, U → V = {x→ y | x ∈ U, y ∈ V }.

Example 3.2. (i) Every hoop with the discrete topology is a topological hoop.
(ii) Let A = {0, a, b, 1} be a set. De�ne the operations � and → on A as

follows:
� 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then A with these operations and the topology T = {∅, {0}, {1, a, b}, A} is a
bounded topological hoop.

Note: We know that, any topological hoop is always a semitopological hoop. In
the following example we show that every semitopological hoop is not a topological
hoop, in general.

Example 3.3. Let A = {0, a, b, 1} be a set. De�ne the operations � and → on A
as follows:

� 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then A with these operations and the topology T = {∅, {1, b}, {1, a, b}, A} is a
semitopological hoop, but it is not a topological hoop. Because 0→ 0 = 1 ∈ {1, b}
and A→ A = A and it is clear that A * {1, b}.
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Example 3.4. Let � and → on the real unit interval A = [0, 1] be de�ned as
follows:

x� y = min{x, y} and x→ y =

{
1 x 6 y
y otherwise

Then A with these operations is a bounded hoop.
Now, let T be a topology on A with the base B = {(a, b]∩A | a, b ∈ R}. Then

V = (a, 0] ∩A = {0} for a < 0, and so {0} is an open neighborhood of 0.
We prove (A,�, T ) is a topological hoop. For this, let x, y ∈ A and U ∈ T

such that x� y ∈ U .
Case 1: Let x = y = 0. Then {0} is an open neighborhood of 0 and x � y ∈

{0} � {0} ⊆ U .
Case 2: Let x = 0 and 0 6= y. Then x � y = 0 ∈ U . Since {0} is an open

neighborhood of 0 and y ∈ (0, y], we have x� y ∈ {0} � (0, y] = {0} ⊆ U .
Case 3: Let 0 6= x = y. Then x � x = x ∈ U . Hence (0, x] ∩ U is an open

neighborhood of x such that x� x ∈ ((0, x] ∩ U)� ((0, x] ∩ U) ⊆ U.
Case 4: Let x < y. Then x � y = x ∈ U . Since x ∈ (0, x] ∩ U ∈ T and

y ∈ (x, y] ∈ T , we obtain x� y ∈ ((0, x] ∩ U)� (x, y] = (0, x] ∩ U ⊆ U.
Case 5: Let x > y. Then x � y = y ∈ U . Since x ∈ (y, x] and y ∈ (0, y] ∩ U ,

x� y ∈ (y, x]� ((0, y] ∩ U) = (0, y] ∩ U ⊆ U.
Hence, (A,�, T ) is a topological hoop. Now, we prove that (A,→, T ) is not a

topological hoop. For this, we consider 1/2 → 1/2 = 1 ∈ (1/2, 1]. Let a ∈ R and
(a, 1/2] be a neighborhood of 1/2. Suppose b = (a + 1/2)/2. Then b ∈ (a, 1/2],
and so b < 1/2. Hence, 1/2→ b = b /∈ (1/2, 1].

Proposition 3.5. Let x2 = x, for all x ∈ A. Then there exists a topology T on
A such that � is continuous.

Proof. Let a ∈ A. De�ne Aa = {x ∈ A | x � a = a}. Clearly, a ∈ Aa. We prove
that Aa ∈ F(A). For this, let x, y ∈ Aa. Then x� a = y � a = a. By (HP1),

(x� y)� a = x� (y � a) = x� a = a.

Hence, x� y ∈ Aa. Also, suppose x 6 y and x ∈ Aa, for some x, y ∈ A. Then by
Proposition 2.2(iii) and (x), we have a = x � a 6 y � a 6 a. Thus, y � a = a.
Hence, y ∈ Aa, and so Aa ∈ F(A), for all a ∈ A. Let B = {Aa | a ∈ A}. Suppose
a ∈ Ax ∩Ay and z be an arbitrary element of Aa. Then

z � x = z � (a� x) = (z � a)� x = a� x = x

and

z � y = z � (a� y) = (z � a)� y = a� y = y.

Thus, z ∈ Ax ∩Ay, and so B is a basis. Let T be a topology generated by B. We
prove that � is continuous. Let x, y ∈ A. Then x� y ∈ Ax�y. Since x ∈ Ax and
y ∈ Ay, it is enough to prove that Ax�Ay ⊆ Ax�y. Let α ∈ Ax�Ay. Then there
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exist a ∈ Ax and b ∈ Ay such that α = a� b. Since a ∈ Ax and b ∈ Ay, a� x = x
and b� y = y, respectively. Thus, by (HP1),

α� (x� y) = (a� b)� (x� y) = (a� x)� (b� y) = x� y.

Hence, α ∈ Ax�y. Therefore, � is continuous.

Proposition 3.6. Let A be bounded with (DNP ). Then (A,→, T ) is a semitopo-
logical hoop if and only if (A,�,′ , T ) is a semitopological hoop.

Proof. (⇒) Let (A,→, T ) be a semitopological hoop. It is clear that ′ is continuous.
Now, we prove that � is continuous in the second variable. Let x � y ∈ U ∈ T .
Since A has (DNP), by (HP3)

x� y = (x� y)′′ = ((x� y)→ 0)→ 0 = (x→ (y → 0))→ 0 = (x→ y′)′,

hence (x → y′)′ ∈ U . Since ′ is continuous, there exists V ∈ T , such that
x→ y′ ∈ V and V ′ ⊆ U . Also, since → is continuous in the second variable, there
exists W ∈ T , such that y′ ∈ W and x → y′ ∈ x → W ⊆ V . Again, since ′ is
continuous, there is Q ∈ T such that y ∈ Q and y′ ∈ Q′ ⊆ W . Now, Q ∈ T is an
open neighborhood of y ∈ Q and x� y ∈ x�Q ⊆ U , because if z ∈ Q, then

x� z = (x→ z′)′ ∈ (x→ Q′)′ ⊆ (x→W )′ ⊆ V ′ ⊆ U.

Since the operator � is commutative, � is continuous in each variable. Hence,
(A,�,′ , T ) is a semitopological hoop.

(⇐) Let (A,�,′ , T ) be a semitopological hoop. We prove that (A,→, T ) is a
semitopological hoop. For this, we prove that → is continuous in two variables.
At �rst, we show that→ is continuous in the second variable. Let x→ y ∈ U ∈ T .
Since A has (DNP), by (HP3),

(x� y′)′ = x→ y′′ = x→ y ∈ U

Since ′ is continuous, there exists an open neighborhood V of x � y′ such that
V ′ ⊆ U . Also, since � is continuous in the second variable, there exists an open
neighborhood W of y′ such that x� y′ ∈ x�W ⊆ V . Again, since ′ is continuous,
there is Q ∈ T , such that y ∈ Q and Q′ ⊆ W . Now, Q is an open neighborhood
of y such that x→ y ∈ x→ Q ⊆ U , because if z ∈ Q, then

x→ z = (x� z′)′ ∈ (x�Q′)′ ⊆ (x�W )′ ⊆ V ′ ⊆ U.

Now, we prove that → is continuous in the �rst variable. For this, let x → y ∈
U ∈ T . Then x → y = (x � y′)′ ∈ U . Since ′ is continuous, there is V ∈ T such
that x � y′ ∈ V and V ′ ⊆ U . Since � is continuous in the �rst variable, there
exists Q ∈ T , x ∈ Q and x� y′ ∈ Q� y′ ⊆ V . Thus, Q is an open neighborhood
of x such that

x→ y = (x� y′)′ ∈ (Q� y′)′ ⊆ V ′ ⊆ U
Hence, → is continuous in the �rst variable.
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Theorem 3.7. Let A be bounded with (DNP ). If (A,→, T ) is a topological hoop,
then (A, T ) is a topological hoop.

Proof. Let→ be continuous. Then the maps ′ and f : A×A ↪→ A×A by f(x, y) =
(x, y′), both, are continuous. Since for each x, y ∈ A, x � y = (x → y′)′, we get
that � is the composite of continuous maps f,→ and ′. Hence � is continuous.

For an arbitrary element a ∈ A we de�ne the subset

V (a) = {x ∈ A | x→ a, a→ x ∈ V }.

Theorem 3.8. There is a nontrivial topology T on A such that (A, T ) is a topo-
logical hoop.

Proof. Let

T = {U ⊆ A | for every a ∈ U, there exists F ∈ F(A) such that F (a) ⊆ U}.

Suppose {Ui : i ∈ I} is a collection of members of T . For any x ∈
⋃
Ui, there

are F ∈ F(A) and j ∈ I such that F (x) ⊆ Uj ⊆
⋃
Ui. Hence

⋃
Ui ∈ T . On

the other hand, for any x ∈
⋂
Ui and any i ∈ I, there are Fi ∈ F(A) such that

x ∈ Fi(x) ⊆ Ui. Let F =
⋂
Fi. Then x ∈ F (x) ⊆

⋂
Ui. Hence

⋂
Ui ∈ F(A). Thus,

T is a topology on A. Let F ∈ F(A), x ∈ A and y ∈ F (x). If z ∈ F (y), then z → y
and y → z, both, are in F. Since y → x and x → y, both, are in F, we get that
z → x ∈ F and x→ z ∈ F. Hence F (y) ⊆ F (x) and so F (x) is in T . Therefore, T
is nontrivial topology. Let ∗ ∈ {�,→}, F ∈ F(A) and x, y ∈ A. Since F (x) = x
and F (y) = y, F (x ∗ y) = F (x) ∗ F (y). This proves that ∗ is continuous.

Corollary 3.9. Let T be as in Theorem 3.8 and X ⊆ A. Then:
(i) for each F ∈ F(A), F (X) is an open and closed subset of A. Moreover,

each �lter is an open and closed set,
(ii) X =

⋂
{F (X) | F ∈ F(A)}.

Proof. (i). Let F ∈ F(A), and y ∈ F (X). Then, F (y) ∩ F (X) 6= ∅. Hence there
is x ∈ X, such that F (y) = F (x) and so y ∈ F (x) ⊆ F (X). Therefore, F (X) is
closed. But F (X) is open because it is a union of open sets.

(ii). Let X ⊆ A and x ∈ X. Since for all F ∈ F(A), x→ x = 1 ∈ F , we have
x ∈ F (x), and so x ∈

⋂
{F (X) | F ∈ F(A)}.

Conversely, let x ∈
⋂
{F (X) | F ∈ F(A)}. Then, for all F ∈ F(A), x ∈ F (X).

Since F (X) =
⋃
a∈X F (a), there exists b ∈ X such that x ∈ F (b). Moreover, since

x→ b ∈ F and b→ x ∈ F , we have b ∈ F (x) ∩X. Hence, x ∈ X.

Theorem 3.10. Let Ω be a family of nonempty subsets of A such that Ω is closed
under intersection and for each x, y ∈ A and V ∈ Ω,

(i) if x ∈ V and x 6 y, then y ∈ V,
(ii) if x ∈ V, then there exists U ∈ Ω such that U(x) ⊆ V,
(iii) there exists W ∈ Ω such that W (x) ⊆ V , for any x ∈W or equivalently,
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W (W ) ⊆ V.
Then there is a nontrivial topology T on A such that (A, T ) is a topological hoop.

Proof. It is easy to prove that F(A) ⊆ Ω. Let

T = {O ⊆ A | for every a ∈ O, there exists V ∈ Ω such that V (a) ⊆ O}.

Firstly, we prove that T is closed under union and intersection. For this let
{Oi : i ∈ I} ⊆ T . Then, for every a ∈

⋃
Oi, there exist i ∈ I and V ∈ Ω such

that a ∈ V (a) ⊆ Oi ⊆
⋃
Oi. Hence T is closed under union. For any a ∈

⋂
Oi

and any i ∈ I, there exists Vi ∈ Ω such that a ∈ Vi(a) ⊆ Oi. Put V =
⋂
Vi,

then V (a) ⊆
⋂
Vi(a) ⊆

⋂
Oi and so T is closed under intersection. Hence, T is a

topology on A. Now, we prove that for each V ∈ Ω and a ∈ A, V (a) is an open set.
Let a ∈ A, V ∈ Ω and x ∈ V (a). Then, x→ a, a→ x ∈ V . By (ii), there exist U1

and U2 ∈ Ω such that U1(a→ x) ⊆ V and U2(x→ a) ⊆ V. Put W = U1 ∩U2 ∈ Ω.
If y ∈W (x), then x→ y and y → x ∈W . By Proposition 2.2(xiii),

x→ y 6 (y → a)→ (x→ a), y → x 6 (x→ a)→ (y → a).

By (i),

(y → a)→ (x→ a) ∈W, (x→ a)→ (y → a) ∈W

Thus,

y → a ∈W (x→ a) ⊆ (U1 ∩ U2)(x→ a) ⊆ U2(x→ a) ⊆ V.

By the similar way, we can see that a → y ∈ V . Then obviously, W (x) ⊆ V (a).
Hence, V (a) is an open set and T is a nontrivial topology. Clearly, the set B =
{V (a) : V ∈ Ω, a ∈ A} is a base for T .

Now we prove that (A, T ) is a topological hoop. At �rst, we show that � is
continuous. Let x� y ∈ O ∈ T . Consider V ∈ Ω such that V (x� y) ⊆ O. By (i),
1 ∈ V, so x � y ∈ V (x � y). By (iii), there is W ∈ Ω such that W (W ) ⊆ V. Let
u ∈ W (x) and v ∈ W (y). Then u → x, x → u, v → y and y → v, all, belong to
W . By Proposition 2.2(iv), (x→ u) 6 [(x� y)→ (u� v)]→ (x→ u) and by (i),
[(x� y)→ (u� v)]→ (x→ u) ∈W. On the other hand, we have

(x→ u)→ ((x� y)→ (u� v)) = (x→ u)→ [x→ (y → (u� v))], by (HP3)

= [x� (x→ u)]→ [y → (u� v)], by Prop. 2.2

> u→ [y → (u� v)], by Prop. 2.2

> y → v.

Since W ∈ Ω and y → v ∈ W , by (i), (x→ u)→ ((x� y)→ (u� v)) ∈ W. Thus,
(x�y)→ (u�v) ∈W (x→ u) ⊆W (W ) ⊆ V. Hence, (x�y)→ (u�v) ∈ V . By the
similar way, we have (u� v)→ (x� y) ∈ V . Therefore, W (x)�W (y) ⊆ V (x� y).
This proves that � is continuous.
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Now, we prove that → is continuous. Let x → y ∈ V (x → y). By (iii),
there is W ∈ Ω such that W (W ) ⊆ V. Let u ∈ W (x) and v ∈ W (y). Then
u→ x, x→ u, v → y and y → v ∈W . By (HP3) we have,

(v → y)→ ((u→ v)→ (x→ y)) = [(u→ v)� (v → y)]→ (x→ y), by Prop. 2.2

≥ (u→ y)→ (x→ y), by (HP3)

= x→ ((u→ y)→ y), by Prop. 2.2

≥ x→ u

Since W ∈ Ω and x → u ∈ W , by (i), (v → y) → ((u → v) → (x → y)) ∈ W .
Also, by Proposition 2.2(iv), v → y 6 ((u → v) → (x → y)) → (v → y). Again,
since W ∈ Ω and v → y ∈ W , by (i), ((u → v) → (x → y)) → (v → y) ∈ W.
Thus, (u → v) → (x → y) ∈ W (v → y) ⊆ W (W ) ⊆ V. This implies that
(u → v) → (x → y) ∈ V . By the similar way, we have (x → y) → (u → v) ∈ V .
Therefore, W (x)→W (y) ⊆ V (x→ y) which implies that → is continuous.

Corollary 3.11. Let T be the topology in Theorem 3.10 and X ⊆ A. Then:
(i) for each V ∈ Ω, V (X) is an open and closed subset of A,
(ii) X =

⋂
{F (X) | F ∈ F(A)}.

Proof. (i). Let V ∈ Ω and y ∈ V (X). Then there exists a net {yi : i ∈ I} which
convergence to y. Since → is continuos, the nets {yi → y} and {y → yi}, both,
convergence to 1. Since 1 ∈ V, yi → y and y → yi, both, are in V, for some i ∈ I.
Hence y ∈ V (yi) ⊆ V (X). Therefore, V (X) is closed. But it is open because it is
the union of open sets.

(ii). The proof is similar to the proof of Corollary 3.9(ii).

Proposition 3.12. If (A, T ) is a topological hoop, then (A,∧, T ) is a topological
hoop.

Proof. Let f : A × A → A × A by f(x, y) = (x, x → y), for all x, y ∈ A. Since
(A,→, T ) is a topological hoop, f is continuous. Also, by Proposition 2.2(i),

∧(x, y) = x ∧ y = x� (x→ y) = (� ◦ f)(x, y).

Since � and f are continuous, ∧ is continuous. Therefore, (A,∧, T ) is a topological
hoop.

Proposition 3.13. Let A be a t-hoop and T be a topology on A. Then:
(i) if (A,∧,→, T ) is a topological hoop, then (A,t, T ) is a topological hoop,
(ii) if A has (DNP ) and (A,→, T ) is a topological hoop, then (A,t, T ) is a

topological hoop.

Proof. (i). Let f : A × A → A is de�ned by f(x, y) = (x → y) → y and
g : A × A → A by g(x, y) = (y → x) → x, for all x, y ∈ A. Since (A,→, T ) is
a topological hoop, f and g are continuous. Also, de�ne f ∧ g : A × A → A by
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(f ∧ g)(x, y) = f(x, y) ∧ g(x, y), for all x, y ∈ A. Since (A,→, T ) is a topological
hoop, by Proposition 3.12, ∧ is continuous. Then f ∧ g is continuous. Moreover,

t(x, y) = xty = ((x→ y)→ y)∧((y → x)→ x) = f(x, y)∧g(x, y) = (f∧g)(x, y).

Hence, t = f ∧ g is continuous.
(ii). Let x, y ∈ A, U ∈ T and x t y ∈ U . Since A has (DNP), by Proposition

2.3(vii), x t y = (x→ y)→ y. Moreover, since (A,→, T ) is a topological hoop, t
is continuous.

Theorem 3.14. Let T be a topology on A and h : A3 → A2 is de�ned by
h(a, b, c) = (a → b, b → c), for all a, b, c ∈ A. If {1} is an open set and h is
continuous, then (A, T ) is a topological hoop.

Proof. Let a ∈ A and ha(b) = (a → b, b → a). Since h is continuous, ha is
continuous. Now, since {1} is open, {1} × {1} is open in A2. On the other hand,

h−1a (1, 1) = {b ∈ A | ha(b) = (1, 1)} = {b ∈ A | (a→ b, b→ a) = (1, 1)}
= {b ∈ A | a→ b = 1, b→ a = 1} = {b ∈ A | b = a} = {a}.

Hence, {a} is an open set and T is a discrete topology. Therefore, (A, T ) is a
topological hoop.

Theorem 3.15. Let (A,→, T ) be a semitopological hoop. If {1} is an open set,
then (A, T ) is a topological hoop.

Proof. Let {1} be an open set and x ∈ A. Since (A, T ) is a semitopological hoop
and x → x = 1 ∈ {1}, there is an open sets U such that x ∈ U , x → U = 1 and
U → x = {1}, which implies that U = {x}. Hence T is a discrete topology on A
and so (A, T ) is a topological hoop.

Proposition 3.16. Let (A,→, T ) be a topological hoop and F ∈ F(A). Then:
(i) if 1 is an interior point of F , then F is an open set,
(ii) if F is an open set, then F is closed,
(iii) if A is connected, then A has no open proper �lter.

Proof. Let (A,→, T ) be a topological hoop and F ∈ F(A).
(i). Suppose x ∈ F. Since 1 is an interior point of F, there exists U ∈ T such

that x → x = 1 ∈ U ⊆ F . Since → is continuous, there exists V ∈ T such that
x ∈ V and V → V ⊆ F . Now, for all y ∈ V , we have x → y ∈ V → V ⊆ F , and
so x → y ∈ F . Since F ∈ F(A) and x ∈ F , by Proposition 2.6, y ∈ F . Thus,
y ∈ V ⊆ F which implies that F is an open set.

(ii). Let F be an open set. We prove that F is closed. For this, we show that
F c is an open set. Let x ∈ F c. Then x /∈ F . Since x → x = 1 ∈ F ∈ T and →
is continuous, there exists U ∈ T such that x ∈ U and U → U ⊆ F . Now, we
prove that U ⊆ F c. For this, let U ∩ F 6= ∅. Then there is y ∈ U ∩ F such that
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y → U ⊆ F . So, for all z ∈ U , y → z ∈ F . Since F ∈ F(A), by Proposition 2.6,
z ∈ F , and so U ⊆ F . Thus, x ∈ F , which is a contradiction. Then U ∩ F = ∅.
Hence, x ∈ U ⊆ F c shows that F c is an open set and so F is closed.

(iii). Suppose F is an open �lter of A. Then by (ii), F is closed. Since A is
connected, we have A = F .

A topological space A is called totally disconnected, if every connected subset
X ⊆ A is either empty or a singleton. A subset X of A is called a component
subspace, if it is the maximal connected subspace (cf. [11]).

Proposition 3.17. Let (A,→, T ) be a semitopological hoop. Then A is totally
disconnected if and only if every its connected subset containing 1 consists just 1.

Proof. (⇒) Suppose A is totally disconnected and X ⊆ A is a connected of 1.
Then it is clear that X = {1}.

(⇐) Let D be a connected subset of A and x ∈ D. Then by (HP2), 1 ∈ (D →
x)∩ (x→ D). Since (A,→, T ) is a semitopological hoop and D is connected, it is
clear that x → D and D → x are connected. By assumption, D → x = {1} and
x→ D = {1} and so D = {x}. Therefore, A is totally disconnected.

Proposition 3.18. Let (A, T ) be a topological hoop and C ⊆ A be a component
of 1 which contains all connected subset of A. Then C is a �lter of A.

Proof. Let a ∈ C. Since (A,�, T ) is a topological hoop, a�C is a connected subset
of A. Since a ∈ C ∩ (a�C), the set C ∪ (a�C) is a connected subset of A which
contains 1. By assumption, C∪(a�C) ⊆ C, and so a�C ⊆ C. Hence, C�C ⊆ C.
Now, suppose that x 6 y and x ∈ C, for some x, y ∈ A. Then x ∧ y = x ∈ C.
Thus, x = x ∧ y ∈ C ∧ y. Since (A, T ) is a topological hoop, by Proposition 3.12,
(A,∧, T ) is a topological hoop. Thus, C ∧ y is a connected set, and so C ∧ y ⊆ C.
Hence, y = 1 ∧ y ∈ C ∧ y ⊆ C, and so y ∈ C. Therefore, C ∈ F(A).

Let A be a hoop and F ∈ F(A). In the preliminary, we saw that A/F is
a quotient hoop and πF : A → A/F is a canonical epimorphism. Let T be a
topology on A and U be a subset of A/F . Then we say that U is an open subset
of A/F if and only if π−1F (U) is an open subset of A. Now, if we consider

T = {U ⊆ A/F | π−1F (U) ∈ T }

then it is easy to show that T is a topology on A/F . This topology on A/F is
called the quotient topology induced by πF . It is well known that it is the largest
topology on A/F making πF continuous.

Theorem 3.19. Let A be a hoop and F ∈ F(A). If (A, T ) is a (semi)topological
hoop and πF is an open set, then (A/F, T ) is a (semi)topological hoop.
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Proof. Let (A, T ) be a topological hoop, ? ∈ {⊗, } and x ? y ∈ V ∈ T , for
x, y ∈ A/F . Then x ∗ y ∈ V , for some ∗ ∈ {�,→}. Since πF is continuous,
x ∗ y ∈ π−1F (V ) ∈ T . Since (A, T ) is a topological hoop, there exist U,W ∈ T such
that x ∈ U , y ∈W and x ∗ y ∈ U ∗W ⊆ π−1F (V ). Since πF is an open map, πF (U)
and πF (W ) are in T , x ∈ πF (U), y ∈ πF (W ) and x ? y ∈ πF (U) ? πF (W ) ⊆ V.
Hence, (A/F, ?, T ) is a topological hoop.

Proposition 3.20. Let (A, T ) be a topological hoop and F ∈ F(A). Then:

(i) A/F has a discrete topology if and only if F is open,

(ii) if (A, T ) is a compact topological hoop, then A/F is a discrete �nite topolo�

gical hoop if and only if F is open.

Proof. (i). Since A/F has a discrete topology, every single set such as {x/F} is
open, for any x ∈ A. Since 1 ∈ A, {1/F} is open. Since {1/F} = F , F is open.
Conversely, if F is an open set, then {1/F} is an open set, too. Since A/F is a
hoop, by Theorem 3.15, A/F has a discrete topology.

(ii). Suppose A is compact. Since π is a continuous epimorphism, π(A) = A/F
is compact. Let F is open. Then by (i), A/F has a discrete topology and so every
single subset is open. Moreover, since A/F is compact, A/F is equal to union of
�nite open subsets. Thus A/F is �nite. The converse, by (i) is clear.

De�nition 3.21. (cf. [11]) Let (X, T ) be a topological space and x ∈ X. A local
basis at x is a set B of open neighborhoods of x such that for all U ∈ T if x ∈ U,
then there exists H ∈ B such that x ∈ H ⊆ U .

Lemma 3.22. Let F ∈ F(A). If T is a topology on A and T is the quotient
topology on A/F , then for each x ∈ A, π−1F (πF (x)) = x. Moreover, if V ∈ T , then
there exists U ∈ T such that πF (U) = V .

Proof. The proof is easy.

Theorem 3.23. Let (A, T ) be a semitopological hoop and F ∈ F(A). Then

B = {π(U ∗ x) | U ∈ T , 1 ∈ U, x ∈ A}

is a local base of the space A/F at the point x/F ∈ A/F , such that ∗ ∈ {�,→}
and the map π : A→ A/F is open.

Proof. Let U ∈ T . Since 1 ∈ U , it is clear that x ∈ U ∗ x, for all x ∈ A. Thus,
x/F ∈ π(U ∗ x). Now, suppose that x/F ∈ A/F . Then there exists W ∈ T such
that x/F ∈ W . Since W is open and π is continuous, we have x ∈ π−1(W ) = O.
On the other hand, by (HP1), x = 1 ∗ x ∈ O. Since ∗ is continuous, there exists
U ∈ T such that 1 ∈ U and x ∈ U ∗ x ⊆ O. Thus,

x/F ∈ π(U ∗ x) ⊆ π(O) = π(π−1(W )) = W
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and so π−1(π(U ∗ x)) ⊆ O. By Lemma 3.22, π−1(π(U ∗ x)) = (U ∗ x)/F ⊆ O.
Thus, π(U ∗x) ⊆W . Hence, B is a local basis. By de�nition of quotient topology,
π(U ∗ x) = (U ∗ x)/F =

⋃
y∈U∗x y/F and by Lemma 3.22,

π−1(π(U ∗ x)) = (U ∗ x)/F =
⋃

y∈U∗x
y/F .

Since
⋃
y∈U∗x y/F is open in A and π is continuous, we get π(U ∗ x) is open in T .

Therefore, π is open.
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