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Categorical equivalences

in the theory of sharp transitivity

Timothy L. Clark

Abstract. There are well-known correspondences between loops and regular permutation sets;

neardomains and sharply 2-transitive groups; and KT-�elds and sharply 3-transitive groups.

Initially, these correspondences only considered isomorphisms. However, the �rst two correspon-

dences were realized as more general categorical equivalences. In this note, we o�er a simpli�ed

development of these equivalences and extend the results to a categorical equivalence between

KT-�elds and sharply 3-transitive groups. We then show how these three equivalences are related

to one another via a diagram of functors.

1. Introduction and overview

Given a loop L, its set of left translations T1L = {λa : x 7→ ax | a ∈ L} acts
regularly on L, meaning for every x, y ∈ L, there is a unique λa ∈ T1L such
that λa(x) = y. It turns out, not only is this construction functorial, it forms an
equivalence between the category of loops (denoted Loop) and the category of
regular permutation sets (denoted RPS) [1].

There is a related correspondence between neardomains and sharply 2-transitive
groups. Here, a neardomain essentially consists of (F,+, ·) where (F,+) is a loop
and (F \ {0}, ·) is a group, while a sharply 2-transitive group is a group action
that is regular on pairs of distinct points. Given a neardomain, its group of a�ne
transformations T2F = {x 7→ a + bx | b 6= 0} acts sharply 2-transitively on F
(cf. [2] (6.1)). In [1], this correspondence was proven to be an equivalence be-
tween the category of neardomains (denoted nDomain) and a category of sharply
2-transitive groups (denoted s2tGroup). Proving that T2 is a categorical equiva-
lence hinges on the de�nition of s2tGroup; the crucial realization in [1] is that not
every conceivable morphism of sharply 2-transitive groups corresponds to a near-
domain morphism, so we must pare down our morphisms of sharply 2-transitive
groups accordingly.

Finally, there is another correspondence between KT-�elds and sharply 3-
transitive groups, where KT-�elds are neardomains with a distinguished invo-
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lution (thought of as a generalized inversion) and sharply 3-transitive groups are
groups that act regularly on triples of distinct points. As shown in [2] (11.1),
given a KT-�eld F , one can form the group of generalized fractional a�ne trans-
formations T3F which acts sharply 3-transitively on F . The name �generalized
fractional a�ne transformations� comes from the fact that, if F is a �eld, then

T3F =
{
x 7→ a+bx

c+dx | ad− bc 6= 0
}
. In general, T3F is generated as a subgroup of

the permutations on F by T2F and the distinguished involution of F . Our main re-
sult is that, not only is T3 functorial, the category of KT-�elds (denoted KTfield)
is equivalent to a category of sharply 3-transitive groups (denoted s3tGroup); cf.
Theorem 3.13. Moreover the three equivalences T1, T2, and T3 enjoy a particularly
nice interdependence.

As is the case for T2, proving that T3 is an equivalence of categories largely
depends on the morphisms we allow in s3tGroup. In particular, the construction
of T3F demands that morphisms in s3tGroup induce morphisms in s2tGroup
on stabilizers. Once this is done, however, the argument proceeds swiftly. This is
substantially a consequence of the general scheme in which T1, T2, and T3 �t. As
we will see:

• Given a neardomain F , the functor T2 is essentially two applications of T1 �
once to (F \ {0}, ·) and once to (F,+).

• Given a KT-�eld F with distinguished involution σ, the functor T3 is essen-
tially T2 after forgetting and then remembering σ.

So, overall, our categorical equivalences T2 and T3 are built in a very tangible way

from the comparatively simple equivalence T1 : Loop
'−→ RPS; this is formalized

in Theorem 3.14.

Organization. Section 2 focuses on preliminary de�nitions and basic results
from category theory, non-associative algebra, and sharply multiply transitive ac-
tions. In particular, we have the lemma:

Lemma 1.1. Let C and D be categories and suppose there are functors F : C→ D
and G : D→ C such that GF = idC. If G is faithful, then F is an equivalence of
categories with inverse G.

We also have the lemma:

Lemma 1.2. Let C be one of the categories RPS, s2tGroup, or
s3tGroup. Then two morphisms (f,Φ) and (g,Ψ) are equal in C if and only if
Φ = Ψ.

These two lemmas combine in Section 3 to shorten the proofs of Theorems
3.4, 3.9, and 3.13 regarding the assortment of categorical equivalences mentioned
above. In particular, in Section 3 we prove:
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Theorem 1.3. There is an equivalence of categories T3 : KTfield
'−→ s3tGroup.

We also concisely exhibit the relationship between T1, T2, and T3 in Section 3 via
the following theorem:

Theorem 1.4. There is a commutative diagram of functors:

KTfield
T3

' //

��

s3tGroup

��
nDomain

T2

' //

��

s2tGroup

��
Loop

T1

' // RPS.

2. Preliminaries

This section is dedicated to some de�nitions and basic results for reference in the
development to follow.

2.1. Category theory

We assume familiarity with the notions of category and functor; the standard
reference is [4]. We recall some basic de�nitions here, namely that of natural
equivalence and categorical equivalence. We also prove Lemma 2.1 that helps us
provide succinct proofs of our main theorems in Section 3.

Natural and categorical equivalences. Given two functors F,G : C → D, a
natural transformation η : F → G is an assignment for each object X of C a
morphism ηX : F (X) → G(X) in D such that, for every morphism f : X → Y in
C, the following diagram commutes

F (X)

F (f)

��

ηX // G(X)

G(f)

��
F (Y )

ηY
// G(Y ).

A natural transformation in which each ηX is an equivalence is called a natural
equivalence.

We are primarily interested in exhibiting pairs of categories as equivalent, in a
sense we will make precise immediately: A functor F : C→ D is an equivalence

of categories if there is a functor G : D→ C and natural equivalences FG
∼=−→ idD
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and GF
∼=−→ idC. In this case, we write F : C

'→ D or simply C ' D, and we call G
the inverse of F . Assuming the Axiom of Choice, F : C→ D is an equivalence of
categories if and only if F is full, faithful, and essentially surjective ([4] Theorem
IV.4.1).

The faithful retract lemma. We will call a category C a retract of a category
D provided there are functors F : C → D and G : D → C such that GF = idC.
In this case, the functor G is called a retraction. If, additionally, there is a

natural equivalence FG
∼=−→ idD, we call C a deformation retract of D. We

recognize deformation retract as a stronger notion of categorical equivalence. This
next lemma is an adaptation of a familiar result from category theory that if a
retraction has a left inverse, then it has a two sided inverse.

Lemma 2.1 (Faithful Retract Lemma). Suppose C is a retract of D via F : C→
D and G : D → C. If G is faithful, then there exists a natural transformation

FG
∼=−→ idD. In particular, F is an equivalence of categories with inverse G.

Proof. Suppose G is a retraction. We claim G is essentially surjective and full. To
see this, let X be an object in C. Then GF (X) = X since GF = idC, thus G is
(essentially) surjective on objects. Now suppose f : G(X)→ G(Y ) is a morphism
in C where X and Y are objects of D. Then, GFf = f : G(X)→ G(Y ), hence G
is full.

So, if G is also faithful, then G is an equivalence of categories. This means

there exists a functor H : C → D and a natural equivalence HG
∼=−→ idD. Thus,

there is a natural equivalence HGF
∼=−→ idDF , i.e. a natural equivalence H

∼=−→ F .

Therefore, we induce a natural equivalence FG
∼=−→ HG

∼=−→ idD as claimed.

2.2. Loops, neardomains, and KT-�elds

In this section, we briskly review some basic de�nitions from non-associative alge-
bra and de�ne categories of loops, neardomains, and KT-�elds.

Loops. A loop is a nonempty set L with a binary operation (a, b) 7→ ab such
that:

1. The operation has a two-sided identity element e ∈ L;

2. For every a, b ∈ L, there exist unique x, y ∈ L such that ax = b and ya = b.

A morphism of loops is a function f : L→ L′ that preserves the loop operation.
The category whose objects are loops and whose arrows are loop homomorphisms
will be denoted Loop.
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Neardomains. A set F with operations + and · is called a neardomain if:

1. F is a loop under + with identity 0;

2. For all a, b ∈ F : a+ b = 0 implies b+ a = 0;

3. F − {0} is a group under · with identity 1;

4. For all a ∈ F : 0 · a = 0;

5. For all a, b, c ∈ F : a · (b+ c) = a · b+ a · c;

6. For all a, b ∈ F , there exists da,b ∈ F − {0} such that, for all x ∈ F ,
a+ (b+ x) = (a+ b) + da,b · x.

A morphism of neardomains f : F → F ′ is a function that preserves both
operations. The category of neardomains and neardomain morphisms is denoted
nDomain. Note: F is a near�eld if and only if all of the da,b = 1 (i.e., if and only
if F is a group under +). Every �nite neardomain is a near�eld. Whether there
exists a neardomain that is not a near�eld was a long-standing open question, but
the construction provided in [5] con�rms the existence of proper neardomains.

It can be shown (cf. [1] Property 3.2) that all neardomain morphisms are
injective. Consequently, if there exists a neardomain morphism f : F → F ′, then
char F = 2 if and only if char F ′ = 2. This fact turns out to be essential for
de�ning the appropriate category of sharply 2-transitive groups in Section 3.

KT-�elds. A KT-�eld is quadruple (F,+, ·, σ) such that

1. (F,+, ·) is a neardomain;

2. σ : F → F is an involutary automorphism of (F \ {0}, ·) satisfying

σ(1 + σ(x)) = 1− σ(1 + x) ,

for all x ∈ F \ {0,−1}.

The characteristic of F as a KT-�eld is de�ned to be the characteristic of the near-
domain F . Amorphism of KT-�elds (F,+, ·, σ) and (F ′,+, ·, σ′) is a neardomain
morphism f : F → F ′ such that σ′ ◦ f = f ◦ σ on F \ {0}. KT-�elds and KT-�eld
morphisms constitute a category denoted KTfield. We note that if F is a �eld,
then σ(x) = x−1 ([2] Theorem 13.2).

2.3. Sharply multiply transitive actions

We now review some basic de�nitions and results from the theory of sharply tran-
sitive actions. We then de�ne categories of regular permutations sets, sharply
2-transitive groups, and sharply 3-transitive groups, utilizing the crucial insight
from [1] regarding which morphisms to allow between sharply 2-transitive groups.
The section ends with a proof of Lemma 2.4 that allows us to more easily identify
when two morphisms in these categories are equal.
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Regular permutation sets. A regular permutation set is a triple (M,Ω, ∗)
where Ω is a set, ∗ ∈ Ω is a chosen base point, and M is a subset of the set of all
permutations on Ω such that:

1. The identity map idΩ : α 7→ α is in M ;

2. M acts regularly on Ω: for every α, β ∈ Ω, there is a unique m ∈M such
that m(α) = β.

A morphism of regular permutation sets (M,Ω, ∗) and (N,Σ, ∗) is a pair
of functions (f,Φ) where f : M → N and Φ: Ω → Σ such that Φ(∗) = ∗, and the
following diagram commutes:

M × Ω

f×Φ

��

ev // Ω

Φ

��
N × Σ

ev
// Σ,

where the horizontal maps are the evaluation maps. Regular permutation sets and
morphisms of regular permutation sets (with composition de�ned componentwise)
assemble into a category which we denote RPS.

An action of a group G on a set Ω is said to be sharply transitive provided
for every α, β ∈ Ω, there exists a unique g ∈ G such that gα = β. A sharply
transitive group action of a group G on a set Ω corresponds (via the standard
identi�cation of G ≤ symΩ) to a regular permutation set (G,Ω, ∗) for a chosen
base point ∗ ∈ Ω. In this way, we can de�ne the category s1tGroup as the full
subcategory of RPS whose objects are sharply transitive group actions.

Sharply 2-transitive groups. Suppose a group G acts on a set Ω. The action is
sharply 2-transitive provided: for every (α1, α2), (β1, β2) ∈ Ω×Ω where α1 6= α2

and β1 6= β2, there is a unique g ∈ G with gα1 = β1 and gα2 = β2.
It is tempting at this point to try to de�ne a category of sharply 2-transitive

groups analogous to the category RPS. To start, we might say the objects of
this category are of the form (G,Ω, 0, 1) where G acts sharply 2-transitively on
Ω and 0, 1 ∈ Ω are distinct base points. Then, we could de�ne a morphism to
be a pair of functions (f,Φ) : (G,Ω, 0, 1) → (H,Σ, 0, 1) with f : G → H a group
homomorphism, Φ : Ω → Σ a function sending 0 7→ 0 and 1 7→ 1, such that the
following diagram commutes:

G× Ω //

f×Φ

��

Ω

Φ

��
H × Σ // Σ.

This de�nes a perfectly reasonable category. However, as shown in [1], this cate-
gory has �too many� morphisms to be equivalent to the category of neardomains!
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So, we must eliminate morphisms between sharply 2-transitive groups that do
not correspond to neardomain morphisms. Recall: all neardomain morphisms are
injective and, consequently, the existence of a neardomain morphism f : F → F ′

implies char F = 2 if and only if char F ′ = 2. The characterestic of a neardomain
turns out to be related to what is called the type of its corresponding sharply
2-transitive group, which we explore forthwith.

Suppose a group G acting sharply 2-transitively on a set Ω and consider the
involutions of G, invG = {g ∈ G | g 6= idΩ, g

2 = idΩ}. Note: invG is never empty
if Ω has at least two elements. It can be shown that exactly one of the following
conditions holds: (1) every g ∈ invG has a unique �xed point; or (2) no g ∈ invG
has a �xed point ([2] Section 2).

If each g ∈ invG has a unique �xed point we say G is of type 1, and if no g ∈
invG has a �xed point, we say G is of type 0. We can now de�ne the appropriate
category of sharply 2-transitive groups as follows: The category s2tGroup has
objects (G,Ω, 0, 1) where G is a group that acts sharply 2-transitively on a set Ω,
and 0, 1 ∈ Ω are distinct base points. The morphisms in s2tGroup are pairs of
maps (f,Φ): (G,Ω, 0, 1)→ (H,Σ, 0, 1) where

1. G and H are of the same type;

2. f : G→ H is a group homomorphism;

3. Φ: Ω→ Σ is injective, mapping 0 7→ 0 and 1 7→ 1; and

4. the following diagram commutes:

G× Ω

f×Φ

��

// Ω

Φ

��
H × Σ // Σ ,

where the horizontal maps are evaluation.

Let (G,Ω, 0, 1) be a sharply 2-transitive group on a set Ω. In the case G has
type 1, call ι the unique (by [2] (3.1)) involution �xing the base point 0 ∈ Ω. We
de�ne a subset aG ⊆ G by aG = invG◦ ι if G has type 1, and aG = invG∪{idΩ}
if G has type 0. It is shown in [2] that (aG,Ω, 0) is a regular permutation set.
Moreover, this construction is functorial:

Proposition 2.2. There is a functor a : s2tGroup→ RPS.

Proof. For a sharply 2-transitive group (G,Ω, 0, 1) de�ne a(G,Ω, 0, 1) = (aG,Ω, 0)
as above. The fact that (aG,Ω, 0) is a regular permutation set is shown in [2]
Theorem 3.3. To show that a is functorial, let (f,Φ) : (G,Ω, 0, 1) → (H,Σ, 0, 1)
be a morphism in s2tGroup. By Lemma 3.8 in [1], we have f(aG) ⊆ aH.
Thus, we de�ne af as the restriction f |aG: aG → aH. We are left to show that
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(af,Φ) : (aG,Ω, 0) → (aH,Σ, 0) is a morphism in RPS, as verifying that a is
functorial is then routine.

First, we note that Φ(0) = 0 by assumption. Now, consider the following
commutative diagram:

aG× Ω �
� //

af×Φ

��

G× Ω //

f×Φ

��

Ω

Φ

��
aH × Σ

� � // H × Σ // Σ.

The left square commutes by de�nition of af , while the right square commutes
since (f,Φ) is a morphism in s2tGroup. Thus, the total rectangle commutes,
verifying that (af,Φ) is a morphism in RPS.

Sharply 3-transitive groups. A group action of G on a set Ω is said to be
sharply 3-transitive if, for all 3-tuples of distinct elements of Ω, (α1, α2, α3) and
(β1, β2, β3), there is a unique g ∈ G such that gαi = βi for i = 1, 2, 3. We can
recognize sharply 3-transitive groups in terms of sharply 2-transitive groups as
follows:

Proposition 2.3. A group G acts sharply 3-transitively on a set Ω if and only if
for every α ∈ Ω the stabilizer Gα acts sharply 2-transitively on Ω \ {α}.
Proof. See [2] (1.1)(a).

As with the category of sharply 2-transtive groups, we must be careful to avoid
excess morphisms in our category of sharply 3-transitive groups. Let (G,Ω) be
a sharply 3-transitive group. As shown in [2] Section 2, each stabilizer (Ga,Ω \
{a}) is a sharply 2-transitive group of the same type. This allows us to de�ne
the appropriate category of sharply 3-transitive groups, as follows: The category
s3tGroup has objects (G,Ω, 0, 1,∞) where G is a group that acts sharply 3-
transitively on a set Ω, and 0, 1,∞ ∈ Ω are distinct base points. The morphisms
in s3tGroup are pairs of maps (f,Φ): (G,Ω, 0, 1,∞)→ (H,Σ, 0, 1,∞) where:

1. The stabilizers G∞ and H∞ have the same type as sharply 2-transitive
groups;

2. f : G→ H is a group homomorphism;

3. Φ: Ω→ Σ is injective, mapping 0 7→ 0, 1 7→ 1, and ∞ 7→ ∞; and

4. the following diagram commutes:

G× Ω

f×Φ

��

// Ω

Φ

��
H × Σ // Σ ,

where the horizontal maps are evaluation.
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The sharp morphism lemma. We now prove a lemma that allows us to more
easily recognize when two morphisms in RPS, s2tGroup, and s3tGroup are
equal. Together with Lemma 2.1, this result greatly expedites the proofs of The-
orems 3.4, 3.9, and 3.13.

Lemma 2.4 (Sharp Morphism Lemma). Let C be one of the categories RPS,
s2tGroup, or s3tGroup. Then two morphisms (f,Φ) and (g,Ψ) are equal in C
if and only if Φ = Ψ.

Proof. We will prove the nontrivial assertion for C = s3tGroup. The proofs for
the other options of C are similar.

Let (f,Φ), (g,Ψ): (G,Ω, 0, 1,∞)→ (H,Σ, 0, 1,∞) be two morphisms in
s3tGroup, and suppose Φ = Ψ. Now, let x ∈ G and α ∈ Ω. Since (f,Φ) and
(g,Φ) are morphisms in s3tGroup, we have f(x)Φ(α) = Φ(x(α)) = g(x)Φ(α). For
α ∈ {0, 1,∞}, this implies we must have f(x)(0) = g(x)(0), f(x)(1) = g(x)(1),
and f(x)(∞) = g(x)(∞). Now, each of g(x)(0), g(x)(1), and g(x)(∞) must be
distinct since the base points are distinct. By the sharp 3-transitivity of H on
Σ, g(x) is the unique element of H such that 0 7→ g(x)(0), 1 7→ g(x)(1), and
∞ 7→ g(x)(∞). Thus, we must have f(x) = g(x), hence f = g.

3. The categorical equivalences

In this section, we show that there are categorical equivalences (1) RPS ' Loop
(Theorem 3.4); (2) s2tGroup ' nDomain (Theorem 3.9); and (3) s3tGroup '
KTfield (Theorem 3.13). The �rst two equivalences were �rst proved in [1]. We
review their development for completeness (especially since we understand the
third equivalence in terms of the �rst two), using Lemmas 2.1 and 2.4 to provide
alternate, more concise proofs. We then exhibit the close relationship between
these equivalences with a diagram of functors in Theorem 3.14.

3.1. Regular permutation sets and loops

Given a loop L, constructing an object of RPS is relatively straightforward. De-
note T1L = {λa : x 7→ ax | x, a ∈ L} the set of left translations of L. Then
(T1L,L, e) is a regular permutation set ([1] Property 2.5). As we see in the next
proposition, this construction is functorial.

Proposition 3.1. There is a functor T1 : Loop→ RPS.

Proof. For L a loop, de�ne T1L as above. For a loop homomorphsim f : L → L′,
if we de�ne T1f : λa 7→ λf(a), it can be shown that T1 is a functor.

Constructing a loop out of a regular permutation set is a little more subtle.
Let (M,Ω, ∗) be a regular permutation set. Ultimately, we would like to �nd a
loop structure on Ω. We do so by �rst building a loop out of M (which, being
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a set of permutations, comes with a little more structure than Ω), and importing
the structure on M to Ω.

While composition of functions is the obvious operation on symΩ, there is no
guarantee that the subset M ⊆ symΩ is closed under this operation. However,
since the action of M on Ω is regular, the map µ : M → Ω de�ned by m 7→ m(∗)
is a bijection. We de�ne the operation ⊗∗ : M ×M → M so that the following
diagram commutes:

M ×M �
� i×i //

⊗∗
��

symΩ× symΩ

◦
��

M Ω
µ−1

∼=oo symΩ.
ev(−,∗)

oo

Explicitly, we have ⊗∗ : (m,n) 7→ µ−1(m ◦ n(∗)). It can be shown that M is a
loop under ⊗∗ with identity idΩ. Furthermore, if M is a subgroup of symΩ, then
(M,⊗∗) = (M, ◦) (cf. [1] Property 2.1).

We use µ to de�ne an operation ·∗ on Ω by the following commutative diagram:

Ω× Ω
µ−1×µ−1

∼=
//

·∗
��

M ×M

⊗∗
��

Ω M.
µ

∼=oo

Explicitly, we have ·∗ : (α, β) 7→ µ−1(α)(β).

Proposition 3.2. For Ω and ·∗ as above, Ω is a loop under ·∗ with identity ∗, and
µ : M → Ω is a loop isomorphism. In particular, if M is a subgroup of symΩ, then
(Ω, ·∗) is a group. Furthermore, if (f,Φ) : (M,Ω, ∗)→ (N,Σ, ∗) is a morphism in
RPS, then Φ: Ω→ Σ is a homomorphism of loops.

Proof. See [1] Property 2.2 and Corollary 2.4.

This lets us de�ne two functors RPS→ Loop:

• P⊗ : RPS→ Loop sends (M,Ω, ∗) 7→ (M,⊗∗) and (f,Φ) 7→ f .

• P : RPS→ Loop sends (M,Ω, ∗) 7→ (Ω, ·∗) and (f,Φ) 7→ Φ.

These functors are naturally equivalent, as shown in the following proposition:

Proposition 3.3. There is a natural equivalence µ : P⊗
∼=−→ P .

Proof. For any regular permutation set (M,Ω, ∗), de�ne µM : M → Ω as the

composite M
(id,∗)−−−→ M × Ω

ev−→ Ω. As we have seen in Proposition 3.2, µM :

(M,⊗∗)
∼=−→ (Ω, ·∗) is a loop isomorphism.
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We are left to show that this construction is natural. Consider a morphism of
regular permutation sets (f,Φ) : (M,Ω, ∗) → (N,Σ, ∗). By [1] Property 2.3, we
have Φ ◦ µM = µN ◦ f witnessing the naturality of µ.

Finally, we have the following theorem:

Theorem 3.4 (Cara�Kieboom�Vervloet [1]). The functors P : RPS � Loop :T1

constitute an equivalence of categories. Moreover, Loop is a deformation retract
of RPS.

Proof. See [1] Theorem 2.6 for a proof that PT1 = idLoop. The fact that P is
faithful follows from Lemma 2.4, and the full result then follows from Lemma
2.1.

In light of Proposition 3.2, we have the following corollary:

Corollary 3.5. The equivalence of categories P : RPS � Loop :T1 restricts to
an equivalence of categories s1tGroup � Group. Thus, we have the following
commutative diagram of functors:

Group

��

' // s1tGroup

��
Loop

'
T1

// RPS,

where the vertical functors are inclusions.

3.2. Sharply 2-transitive groups and neardomains

Given a neardomain F , the set of a�ne transformations is

T2F = {〈a, b〉 : x 7→ a+ bx | a, x ∈ F, b ∈ F \ {0}}.

In [2], it is shown that T2F is a subgroup of symF that acts sharply 2-transitively
on F . This construction turns out to be functorial. Compare this with Proposition
3.1.

Proposition 3.6. There is a functor T2 : nDomain→ s2tGroup.

Proof. See [2] (6.1) for a proof that (T2F, F, 0, 1) is a sharply 2-transitive group. To
show that T2 is functorial, consider a morphism of near domains f : F → F ′. Now
de�ne T2f : T2F → T2F

′ by 〈a, b〉 7→ 〈f(a), f(b)〉. Then (T2f, f) is veri�ed to be a
morphism in s2tGroup in the proof of Theorem 4.1 of [1], and this assignment is
easily seen to be functorial.

Given a neardomain F , the next proposition lets us identify the composite
aT2F as the set of left translations of the loop (F,+), i.e. aT2F = T1(F,+).
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Proposition 3.7. Let F be a neardomain. Then aT2F = {〈a, 1〉 | a ∈ F} =
T1(F,+). Thus, there is a commutative diagram of functors:

nDomain
T2 //

(+)

��

s2tGroup

a

��
Loop

T1

// RPS,

where (+): nDomain→ Loop is de�ned by (F,+, ·) 7→ (F,+) and f 7→ f .

Proof. See [2] (6.5).

Now consider a sharply 2-transitive group action of a group G on a set Ω (with
at least two elements). For two distinct base points 0, 1 ∈ Ω, consider the regular
permutation sets (aG,Ω, 0) and (G0,Ω \ {0}, 1) (by [2] (1.1)(a)). The functor
P : RPS→ Loop can be used to de�ne two loops, namely (Ω,+0) = P (aG,Ω, 0)
and (Ω\{0}, ·1) = P (G0,Ω\{0}, 1). Note that, since G0 is a group, so is (Ω\{0}, ·1)
by Proposition 3.2. We can further de�ne α ·1 β = 0 if either α = 0 or β = 0 to
extend the operation ·1 to all of Ω. These two operations constitute a neardomain
structure on Ω, and with our carefully curated morphisms in s2tGroup, we have
the following result:

Proposition 3.8. For a sharply 2-transitive group (G,Ω, 0, 1), the set Ω equipped
with addition +0 and multiplication ·1 forms a neardomain F = (Ω,+0, ·1). Fur-
thermore, G is of type 0 if and only if char F = 2, and if (f,Φ) is a morphism in
the category of sharply 2-transitive groups, then Φ is a morphism of neardomains.

Proof. See [2] (6.2), [3] Section 7.10, and [1] Property 3.9.

This means we can de�ne a functor Q : s2tGroup→ nDomain by (G,Ω, 0, 1) 7→
(Ω,+0, ·1) and (f,Φ) 7→ Φ. We now have the following theorem:

Theorem 3.9 (Cara�Kieboom�Vervloet [1]). The functors
Q : s2tGroup � nDomain :T2 constitute an equivalence of categories. Moreover,
nDomain is a deformation retract of s2tGroup.

Proof. See [1] Theorem 4.1 for a proof that QT2 = idnDomain. The fact that Q
is faithful follows from Lemma 2.4, and the full result then follows from Lemma
2.1.

Given a sharply 2-transitive group (G,Ω, 0, 1), the associated neardomain
(Ω,+0, ·1) is a near�eld if and only if aG is a subgroup of G (see the proof of
Theorem 4.3 in [1]). Call s2tGroupa the full subcategory of s2tGroup whose
objects (G,Ω, 0, 1) have aG a subgroup of G, and call nField the full subcategory
of nDomain whose objects are near�elds. We have the following corollary:
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Corollary 3.10 (Cara�Kieboom�Vervloet [1]). The functors
Q : s2tGroup � nDomain :T2 restrict to an equivalence of cateogries
s2tGroupa � nField. Thus, we have a commutative diagram of functors:

nField
' //

��

s2tGroupa

��
nDomain

T2

' // s2tGroup,

where the vertical functors are inclusions.

Proof. See [1] Theorem 4.3.

3.3. Sharply 3-transitive groups and KT-�elds

Conisder a KT-�eld F . Let ∞ /∈ F , and call F = F ∪ {∞}. Extend + and · to
F by a +∞ = ∞ and b · ∞ = ∞ for all a ∈ F and b ∈ F \ {0}. Extend σ to an
involution on F by σ(0) =∞ and σ(∞) = 0.

For a ∈ F and b ∈ F \ {0}, extend 〈a, b〉 : F → F to a permutation of F by
asserting ∞ 7→ ∞. Then, by Proposition 3.6, T2F = {〈a, b〉 | a ∈ F, b ∈ F \ {0}}
is a group that acts sharply 2-transitively on F \ {∞} = F .

Now, by [2] Theorems 10.21 and 1.1(b), and [6] Theorem 10.6.16, T2F is the
stabilizer G∞ of a sharply 3-transitive group G on F , where G = 〈T2F, σ〉 ⊆ symF .
Thus, we assign T3F = 〈T2F, σ〉. We think of T3F as generalized fractional a�ne
transformations on F . This construction turns out to be functorial, as shown in
the next proposition. Compare this with Propositions 3.1 and 3.6.

Proposition 3.11. There is a functor T3 : KTfield→ s3tGroup

Proof. See [2] Theorem 11.1 for a proof that T3F acts sharply 3-transitively on F .
To verify that T3 is functorial, consider a morphism of KT-�elds f : (F,+, ·, σ)→
(F ′,+, ·, σ′). De�ne T3f : T3F → T3F

′ by extending T2f : 〈a, b〉 7→ 〈f(a), f(b)〉
and σ 7→ σ′ to a group homomorphism 〈T2F, σ〉 → 〈T2F

′, σ′〉. Extend f to F
by saying f(∞) = ∞. We now verify that (T3f, f) is indeed a morphism in
s3tGroup between (T3F, F , 0, 1,∞) and (T3F

′, F ′, 0, 1,∞). That this assignment
is functorial is readily veri�ed.

Notice, since f is a morphism of neardomains, f is necessarily injective and
satis�es f(0) = 0, f(1) = 1, and f(∞) =∞. Furthermore, char F = 2 if and only
if char F ′ = 2. Thus, the sharply 2-transitive stabilizers of ∞, T2F and T2F

′, are
of the same type.
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It remains to show that the following diagram commutes:

T3F × F
T3f×f //

��

T3F
′ × F ′

��
F

f
// F ′.

This follows from Theorem 3.9 and the fact that, as a KT-�eld morphism, σ′ ◦f =
f ◦ σ.

Suppose, now, we have a group G acting sharply 3-transitively on a set Ω
with distinct base points 0, 1,∞ ∈ Ω. We know G∞ acts sharply 2-transitively on
Ω \ {∞} by Proposition 2.3, and we can construct the corresponding neardomain
Q(G∞,Ω \ {∞}, 0, 1,∞) = (Ω \ {∞},+0, ·1). This neardomain can then be �xed
up with an appropriate involution σ producing a KT-�eld as follows: σ is the
restriction to Ω\{∞, 0} of the unique involution τ ∈ G sending 1 7→ 1 and 0 7→ ∞
(see [2] (11.2)). The next proposition shows that this construction is functorial.

Proposition 3.12. There is a functor R : s3tGroup→ KTfield.

Proof. Let (G,Ω, 0, 1,∞) be a sharply 3-transitive group. De�ne R(G,Ω, 0, 1,∞)
to be (Ω \ {∞},+0, ·1, σ) as described above. Now, consider a morphism (f,Φ) :
(G,Ω, 0, 1,∞) → (H,Σ, 0, 1,∞) in the category s3tGroup. Then G∞ and H∞
have the same type, and

(f |G∞ ,Φ |Ω\{∞}) : (G∞,Ω \ {∞}, 0, 1)→ (H∞,Σ \ {∞}, 0, 1)

can be veri�ed to be a morphism in s2tGroup. Thus,

Q(f |G∞ ,Φ |Ω\{∞}) = Φ |Ω\{∞}: Ω \ {∞} → Σ \ {∞}

is a morphism of neardomains by Proposition 3.8. To show that Φ |Ω\{∞} is a
morphism of KT-�elds, we must verify that the following diagram commutes:

Ω \ {∞, 0}
Φ|Ω\{∞,0} //

σ

��

Σ \ {∞, 0}

σ′

��
Ω \ {∞, 0}

Φ|Ω\{∞,0}

// Σ \ {∞, 0}.

To start, recall that (f,Φ) is a morphism in s3tGroup, so in particular, for
every g ∈ G and α ∈ Ω, we have f(g)(Φ(α)) = Φ(g(α)). Now, let τ : Ω → Ω and
τ ′ : Σ → Σ be the involutions of G and H, respectively, that restrict to σ and σ′,
respectively. We note that f(τ) = τ ′ since:
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• f(τ)f(τ) = f(τ2) = f(idΩ) = idΣ, as f is a group homomorphism;

• for α ∈ {0, 1,∞}, f(τ)(α) = f(τ)(Φ(α)) = Φ(τ(α)) = τ ′(α).

So, by uniqueness of the choice of τ ′, we are forced to conclude f(τ) = τ ′.
We then �nd that for every α ∈ Ω, we have f(τ)(Φ(α)) = Φ(τ(α)), i.e. τ ′ ◦Φ =

Φ ◦ τ . This implies the desired result on the restrictions of these functions to
Ω \ {∞, 0}. Therefore, we de�ne R(f,Φ) = Q(f |G∞ ,Φ |Ω\{∞}) = Φ |Ω\{∞}, which
is easily veri�ed to be functorial.

We now prove the main result of this section:

Theorem 3.13. The functors R : s3tGroup � KTfield :T3 constitute an equiv-
alence of categories. Moreover, KTfield is a deformation retract of s3tGroup.

Proof. Since QT2 = idnDomain, one can readily verify that RT3 is idKTfield. Sup-
pose we have R(f,Φ) = R(g,Ψ) for two morphisms of sharply 3-transitive groups
(f,Φ) and (g,Ψ). Then we have Φ |Ω\{∞}= Ψ |Ω\{∞}, and since Φ(∞) = ∞ =
Ψ(∞), we conclude Φ = Ψ. Lemma 2.4 implies f = g, thus R is faithful and the
desired result follows from Lemma 2.1.

3.4. A diagram of categorical equivalences

Far from being ad hoc, the categorical equivalences described above are very closely
related to one another. In addition to our functors from the preceding develop-
ment, we de�ne:

• U : KTfield → nDomain is the forgetful functor, sending (F,+, ·, σ) 7→
(F,+, ·) and f 7→ f ;

• (−)∞ : s3tGroup→ s2tGroup sends (G,Ω, 0, 1,∞) 7→ (G∞,Ω \ {∞}, 0, 1)
and (f,Φ) 7→ (f |G∞ ,Φ |Ω\{∞}); and

• (+): nDomain→ Loop sends (F,+, ·) 7→ (F,+) and f 7→ f .

Now, call A the diagram KTfield
U−→ nDomain

(+)−−→ Loop and call S the dia-

gram s3tGroup
(−)∞−−−→ s2tGroup

a−→ RPS. We have the following theorem:

Theorem 3.14. There is a (pointwise) natural equivalence T : A '−→ S.
Proof. The components of T are T1, T2, and T3, as in the commutative diagram
of functors:

KTfield
T3

' //

U

��
(1)

s3tGroup

(−)∞

��
nDomain

T2

' //

(+)

��
(2)

s2tGroup

a

��
Loop

T1

' // RPS,
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where square (1) commutes by de�nition of T3, and square (2) commutes by Propo-
sition 3.7.
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