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Retractable �nitely supported Cb-sets

Khadijeh Keshvardoost

Abstract. A construction for retractable state-�nite automata without outputs has been given

by Nagy. Retractable automata are automata all whose sub automata are retracts of it, and

retracts are the subobjects whose related inclusion morphism have a left inverse. Studying

retracts is an important subject in di�erent branches of mathematics as well as computer science.

In this paper, following Nagy's works, we study retractable �nitely supported Cb-sets. The

category of �nitely supported Cb-sets introduced by Pitts is equivalent to one of the presheaf

categories of Bazem, Coquand, and Huber. We characterize retractable �nitely supported Cb-

sets as ones which have a decomposition into retractable components. We also give a description

of retractable cyclic �nitely supported Cb-sets. Furthermore, recalling the notion of s-separated

�nitely supported Cb-sets, and support maps, we construct a subcategory of �nitely supported

Cb-sets consisted of s-separated �nitely supported Cb-sets with 2-equivariant support maps, and

characterize its retractable objects.

1. Introduction

Let D be a countable in�nite set. A permutation π on D is said to be �nitary if it
changes only a �nite number of elements of D. Consider the group G = Permf(D)
of �nitary permutations on D, and take a set X with an action of G on it, that is,
a G-set. An element x ∈ X is said to have a �nite support C ⊆ D if it is invariant
(�xed) under the action of each element π of G which �xes all the elements of C
(that is, if πc = c, for all c ∈ C, then πx = x).

A G-set X every element of which has a �nite support is said to be a nominal

set. The notion of a nominal set was introduced by Fraenkel in 1922, and developed
by Mostowski in the 1930s under the name of Fraenkel-Mostowski hierarchy or
brie�y FM-sets. The FM-sets were used to prove the independence of the axiom
of choice from the other axioms (in the classical Zermelo-Fraenkel (ZF) set theory).

In 2001, Gabbay and Pitts rediscovered those sets in the context of name
abstraction. They called them nominal sets, and applied this notion to properly
model the syntax of formal systems involving variable binding operations (see [5]).
Nominal techniques have also been used in game theory [1], in logic ([4], [9]), in
domain theory [11], and in proof theory [12].

In [10], Pitts generalized the notion of nominal sets, by �rst adding two ele-
ments 0,1 to D, then generalizing the notion of a �nitary permutation to �nite
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substitution, and considering the monoid Cb instead of the group G. Then he
de�ned the notion of a support for Cb-sets, sets with an action of Cb on them, and
invented the notion of �nitely supported Cb-sets, as a generalization of nominal
sets.

On the other hand, an equivariant map of a Cb-set X onto a sub Cb-set Y of
X is called retraction if it leaves the elements of Y �xed. A Cb-set X is called
retractable, if for every sub Cb-set Y , there exists a retraction of X onto Y . The
notion of retractable plays a crucial role in many areas of mathematics, such as
homological algebra, topological spaces, ordered algebraic structures, etc.

The main contribution of this paper is at giving a characterization of retractable
�nitely supported Cb-sets. In [8], Nagy showed that every retractable cyclic state-
�nite automaton has a sub automaton with no proper sub automaton called min-
imal automaton and then in Theorem 2 of [8], he characterized retractable state-
�nite automata without outputs. We found that every retractable cyclic �nitely
supported Cb-set has a unique �x-simple sub Cb-set with a unique zero element. In
[3], we introduced �x-simple �nitely supported Cb-sets with a unique zero element
as �nitely supported Cb-sets with no proper non-singleton sub Cb-sets. In fact,
our �x-simple �nitely supported Cb-sets with unique zero palys the role of Nagy's
minimal automaton. In Section 4, in Theorem 4.12, by the same scheme of Nagy
but di�erent in details and proofs, we characterize retractable �nitely supported
Cb-sets.

In the following, to have a better scenery of the structure of this paper, we bring
a summary of the results of each section. After a brief introduction in Section 1, we
bring the basic notions and results about M -sets, sets with an action of a monoid
M , and the monoid Cb in Section 2, needed in this paper. Then Section 3 is
about retractions of M -sets and a description of decomposable �nitely supported
Cb-sets is given. Section 4 is devoted to retractable �nitely supported Cb-sets and
we characterize them. In Section 5, a subcategory of �nitely supported Cb-sets is
introduced, and its retractable objects are characterized.

2. Preliminaries

This section has devoted to give some basic notions needed in this paper. For
more information one can see [2, 3, 7, 10].

2.1. M-sets

A (left) M -set for a monoid M with identity e is a set X equipped with a map
M × X → X, (m,x) 7→ mx, called an action of M on X, such that ex = x and
m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈ M . An equivariant map from
an M -set X to an M -set Y is a map f : X → Y with f(mx) = mf(x), for all
x ∈ X,m ∈M .
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An element x of an M -set X is called a zero (or a �xed) element if mx = x,
for all m ∈M . We denote the set of all zero elements of an M -set X by Z(X).

The M -set X all of whose elements are zero is called a discrete M -set, or an
M -set with identity action.

A subset Y of an M -set X is a sub M -set (or M -subset) of Y if for all m ∈M
and y ∈ Y we have my ∈ Y . The subset Z(X) of X is in fact a sub M -set.

AnM -set X is said to be zero-decomposable if there exists a collection {Xi}i∈I
of sub M -sets of X such that X =

⋃
i∈I

Xi , and Xi ∩ Xj = {θ} ∈ Z(X) or

X
i
∩X

j
= ∅, for all i 6= j. In this case, we say X has a zero-decomposition of X

i
's

and call Xi 's the components of X.
Note. If for all i 6= j we have Xi ∩Xj = ∅, then we call X decomposable.

2.2. The monoid Cb

Let D be an in�nite countable set, whose elements are sometimes called directions

(atomic names or data values) and PermD be the group of all permutations
(bijection maps) on D. A permutation π ∈ PermD is said to be �nitary if the set
{d ∈ D | π(d) 6= d} is �nite. Clearly the set PermfD of all �nitary permutations is
a subgroup of PermD.

Also, we take 2 = {0, 1} with 0, 1 6∈ D.

De�nition 2.1. (a) A �nite substitution is a map σ : D → D ∪ 2 for which
Domfσ = {d ∈ D | σ(d) 6= d} is �nite.

(b) A �nite substitution satis�es injectivity condition, if

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2⇒ d = d′.

(c) If d ∈ D and b ∈ 2, we write (b/d) for the �nite substitution which maps
d to b, and is the identity mapping on all the other elements of D. Each (b/d) is
called a basic substitution.

(d) If d, d′ ∈ D then we write (d d′) for the �nite substitution that transposes
d and d′, and keeps �xed all other elements. Each (d d′) is called a transposition

substitution.

De�nition 2.2. (a) Let Cb be the monoid whose elements are �nite substitutions
satisfying injectivity condition, with the monoid operation given by σ · σ′ = σ̂σ′,
where σ̂ : D ∪ 2 → D ∪ 2 maps 0 to 0, 1 to 1, and on D is de�ned the same as σ.
The identity element of Cb is the inclusion ι : D ↪→ D ∪ 2.

(b) Take S to be the subsemigroup of Cb generated by basic substitutions. The
members of S are of the form δ = (b1/d1) · · · (bk/dk) ∈ S for some di ∈ D and
bi ∈ 2, and we denote the set {d1, · · · , dk} by D

δ
.

Remark 2.3. (1) Notice that each �nite permutation π on D, can be considered
as a �nite substitution ι ◦ π : D → D ∪ 2. Doing so, throughout this paper, we
consider the group PermfD as a submonoid of Cb, and denote ι ◦ π with the same
notation π.
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(2) Let δ ∈ S, and π ∈ Permf(D). Then, πδ = δ′π, and δπ = πδ′′, where
D
δ′ = {πd : d ∈ D

δ
}, and D

δ′′ = {π
−1d : d ∈ D

δ
}.

(3) Let d 6= d′ ∈ D and b, b′ ∈ 2. Then

(b/d)(b′/d′) = (b′/d′)(b/d).

But, (1/d)(0/d) = (0/d) and (0/d)(1/d) = (1/d), and hence (1/d)(0/d) 6= (0/d)(1/d).

Theorem 2.4. [3] For the monoid Cb, we have

Cb = Permf(D)Sι,

where Sι = S ∪ {ι}.

2.3. Finitely supported Cb-sets

In this subsection, basic notions about �nitely supported Cb-sets which is needed
in the sequel are given, some of which [3, 10].

The following de�nition introduces the notion of a, so called, support, which is
the central notion to de�ne �nitely supported Cb-sets.

De�nition 2.5. (a) Suppose X is a Cb-set. A subset C ⊆ D supports an element
x of X if, for every σ, σ′ ∈ Cb,

(σ(c) = σ′(c), (∀c ∈ C))⇒ σx = σ′x

If there is a �nite (possibly empty) support C then we say that x is �nitely sup-

ported.
(b) A Cb-set X whose all elements have �nite supports, is called a �nitely

supported Cb-set.
We denote the category of all Cb-sets with equivariant maps between them by

Cb-Set, and its full subcategory of all �nitely supported Cb-sets by (Cb-Set)fs.

Remark 2.6. Let X be a Cb-set and x ∈ X.
(1) If X is �nitely supported, then the set {d ∈ D | (0/d)x 6= x} is in fact the

least �nite support of x. From now on, we call the least �nite support for x the

support for x, and denote it by suppx.
(2) x is a zero element if and only if suppx = ∅ if and only if δ x = x, for all

δ ∈ S.

Example 2.7. (1) The set D∪2 is a �nitely supported Cb-set, with the canonical
action given by evaluation; that is,

∀σ ∈ Cb, x ∈ D ∪ 2, σx = σ̂(x),

in which σ̂ is de�ned as in De�nition 2.2(a). Also, for each d ∈ D, supp d = {d},
and supp 0 = supp 1 = ∅, since both of 0, 1 are zero elements.
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(2) The set D ∪ {0} is a �nitely supported Cb-set with the action is given by

∀σ ∈ Cb, x ∈ D ∪ {0}, σx = σ̂(x).

Also, for each d ∈ D, supp d = {d}, and supp 0 = ∅, since 0 is a zero element.
(3) All discrete Cb-sets are clearly �nitely supported Cb-sets, because of Re-

mark 2.6(2).

Remark 2.8. [3] (1) Every �nitely supported Cb-set has a zero element.
(2) Every �nite �nitely supported Cb-set is discrete.

Lemma 2.9. [3] Let X be a non-empty �nitely supported Cb-set, and x ∈ X.

Then

(i) δ x = x if and only if D
δ
∩ suppx = ∅.

(ii) If δ ∈ S, then supp δx ⊆ suppx \ D
δ
.

(iii) For π ∈ Permf(D), we have suppπx = π suppx. In particular,

|suppπx| = |πsuppx| = |suppx|.

Remark 2.10. [3] For a �nitely supported Cb-set X and x ∈ X, we have

Sx
.
= {δ ∈ S | δx = x}, S′x

.
= S \ Sx = {δ ∈ S | δx 6= x},

which they are two subsemigroups of S.

The following lemma is useful in Theorem 2.14.

Lemma 2.11. Let X be a �nitely supported Cb-set, and x a non-zero element of

X. Then, S′
x
is an ideal of S.

Proof. Suppose δ ∈ S and δ1 ∈ S′x . We show that δδ1, δ1δ ∈ S′x . Notice that, since
δ1 ∈ S′x , we get δ1x 6= x and so using part (i) of Lemma 2.9, D

δ1
∩ suppx 6= ∅.

On the other hand, since D
δ1δ

= D
δδ1

= D
δ1
∪ D

δ
, we get D

δδ1
∩ suppx 6= ∅ and

D
δ1δ
∩ suppx 6= ∅. Thus δ1δx 6= x and δδ1x 6= x which means δ1δ, δδ1 ∈ S′x .

De�nition 2.12. A cyclic �nitely supported Cb-set X is a �nitely supported Cb-
set which is generated by only one element. That means, it is of the form Cbx,
for some x ∈ X.

Remark 2.13. [3] If Cbx is a non-singleton cyclic �nitely supported Cb-set, then

Cbx = Permf(D)S′xx ∪ Permf(D)x, Permf(D)S′xx ∩ Permf(D)x = ∅.

Theorem 2.14. Let Cbx be a non-singleton cyclic �nitely supported Cb-set. Then,
(i) Permf(D)S′xx is a sub Cb-set of Cbx.

(ii) If suppx = {d1, · · · , dk}, then Permf(D)S′xx =
⋃k
i=1

Cb(bi/di)x.
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Proof. First, notice that, since Cbx is non-singleton, we get that suppx 6= ∅. So,
for all d ∈ suppx, we have (0/d)x ∈ S′

x
x which means that Permf(D)S′xx is a

non-empty set.
(i) Let π1δ1x ∈ Permf(D)S′xx and σ ∈ Cb. Then, by Theorem 2.4, we have

σ ∈ Permf(D) or σ = πδ with π ∈ Permf(D) and δ ∈ S. If σ ∈ Permf(D), then
σπ1δ1x ∈ Permf(D)S′xx. Let σ = πδ. Then, applying Remark 2.3(2) and Lemma
2.11, we get that

σπ1δ1x = πδπ1δ1x = ππ1δ
′δ1x ∈ Permf(D)S′xx.

(ii) If d ∈ suppx, then by Lemma 2.9(i), (b/d) ∈ S′
x
, and so applying (i),

Cb(b/d)x ⊆ Perm
f
(D)S′

x
x. Thus,

⋃k
i=1

Cb(bi/di)x ⊆ Perm
f
(D)S′

x
x.

To prove the reverse inclusion, let a ∈ Perm
f
(D)S′

x
x. Then, there exist δ ∈ S′

x

and π ∈ Permf(D) with a = πδx. Since δ ∈ S′
x
, by Lemma 2.9(i), we get that

D
δ
∩suppx 6= ∅. Let d ∈ suppx∩D

δ
. Then, δx = δ1(b/d)x where δ1 ∈ S and b ∈ 2.

Thus, Cbδx ⊆ Cb(b/d)x which means that Perm
f
(D)S′

x
x ⊆

⋃k
i=1

Cb(bi/di)x.

3. Retractions of �nitely supported Cb-sets

In this section, we show that a retract of an indecomposableM -set is indecompos-
able. Theorem 3.6 gives a characterization of retracts of a decomposable �nitely
supported Cb-set. As a result of this theorem, for �nding retractions of a de-
composable �nitely supported Cb-set, it is su�cient to obtain retractions of its
indecomposable sub Cb-sets.

De�nition 3.1. Let Y be a (�nitely supported) M -set and X a sub M -set of it.
Then, X is called a retract of Y if there exists an equivariant map g : Y → X,
called retraction, such that g(x) = x, for all x ∈ X.

Lemma 3.2. ([7], Lemma I.5.36) Let X be an indecomposable M -set, and ϕ :
X → Y an equivariant map. Then, ϕ(X) is an indecomposable sub M -set of Y .

Proposition 3.3. A retract of an indecomposable M -set is indecomposable.

Proof. Let Y be a retract of an indecomposable M -set X. Then, there exists a
retraction ϕ : X → Y . We show that Y is indecomposable. On the contrary,
suppose Y = Y1 ∪ Y2 is a decomposition of Y . Since X is indecomposable, by
Lemma 3.2, ϕ(X) is indecomposable. So, ϕ(X) ⊆ Y1 or ϕ(X) ⊆ Y2. Assume
ϕ(X) ⊆ Y1. Since ϕ is a retraction and Y ⊆ X, we get that

Y = ϕ(Y ) ⊆ ϕ(X) ⊆ Y1,

which is impossible. Similarly, the case ϕ(X) ⊆ Y2 is impossible. Thus, Y is
indecomposable.
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Theorem 3.4. ([7], Theorem I.5.10 ) Every M -set has a decomposition into in-

decomposable sub M -sets.

Remark 3.5. Let X be a �nitely supported Cb-set and Y a sub Cb-set of X.
Then, by Theorem 3.4, X has a decomposition into its indecomposable sub Cb-
sets. Take X =

⋃
α
X
α
. Then,

Y = Y ∩X = Y ∩ (
⋃
α
Xα) =

⋃
α
(Y ∩Xα) =

⋃
α
Yα ,

where Y
α
= Y ∩X

α
.

Theorem 3.6. Let X be a decomposable �nitely supported Cb-set, and Y a sub

Cb-set of it considered in Remark 3.5. Then, Y is a retract of X if and only if

∀α (Y
α
6= ∅ ⇒ Y

α
is a retract of X

α
).

Proof. Suppose X =
⋃
α
X
α
and Y =

⋃
α
Y
α
. Let ϕ : X → Y be a retraction.

Then, ϕ|
Xα

: X
α
→ Y is an equivariant map. Suppose Y

α
6= ∅. Now, since

Y
α
⊆ X

α
and ϕ is a retraction, we get Y

α
⊆ ϕ(X

α
). On the other hand, by Lemma

3.2, ϕ|
Xα

(X
α
) = ϕ(X

α
) is indecomposable, and so, ϕ(X

α
) = Y

α
. Therefore,

ϕ|
Xα

: X
α
→ Y

α
is a retraction.

To prove the other part, let Y be a sub Cb-set of X. Then, we show that Y
is a retract of X. If Y

α
6= ∅, then since Y

α
is a retract of X

α
, we get a retraction

ϕ
α
: X

α
→ Y

α
. Now, the assignment ϕ : X → Y de�ned by

ϕ(x) =

{
ϕ
α
(x), if x ∈ X

α
and Y

α
6= ∅

θ ∈ Y, if x ∈ X
α
and Y

α
= ∅

is a retraction.

4. Retractable �nitely supported Cb-sets

In this section, we study retractable �nitely supported Cb-sets. Discrete �nitely
supported Cb-sets are retractable. So, we focus on non-discrete �nitely supported
Cb-sets. As a result of Lemma 4.3, a retractable indecomposable �nitely supported
Cb-set has a unique zero element. In Theorem 4.12, we give a characterization of
a non-discrete retractable �nitely supported Cb-set.

De�nition 4.1. Let X be a (�nitely supported) M -set. Then, X is called re-

tractable if every non-empty sub M -set of X is a retract of it.

Remark 4.2. (1) Every sub M -set of a retractable M -set is retractable.
(2) Retracts of a cyclic M -set are cyclic. This is because, if A is a retract of

Mx, then there exists a retraction ϕ :Mx→ A. Notice that, since ϕ is surjective,
we get ϕ(Mx) = A. On the other hand, since ϕ is equivariant, we get that
ϕ(Mx) =Mϕ(x). Therefore, A =Mϕ(x) which means that A is cyclic.
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Lemma 4.3. Let X be an indecomposable retractable M -set with Z(X) 6= ∅.
Then, X has a unique zero element.

Proof. If θ1 6= θ2 ∈ Z(X), then the sub M -set {θ1, θ2} is a retract of X, and so,
there exists a retraction ϕ : X → {θ1, θ2}. Notice that, since X is indecomposable,
by Lemma 3.2, ϕ(X) is indecomposable, and so, ϕ(X) = θ1 or ϕ(X) = θ2. If
ϕ(X) = θ1, then θ2 = ϕ(θ2) = θ1 which is a contradiction. Similarly, ϕ(X) = θ2
is impossible.

Corollary 4.4. A retractable indecomposable �nitely supported Cb-set has a unique

zero element.

Proof. It follows by Remark 2.8(1) and Lemma 4.3.

In characterizing retractable �nitely supported Cb-sets, we apply the notion
of �x-simple �nitely supported Cb-sets with unique zero element introduced and
characterized in [3]. A �x-simple �nitely supported Cb-set with a unique zero
element has no proper non-singleton sub Cb-sets. We called them θ-simple where
θ is a notation for a zero element.

First, we recall needed facts of [3]

Theorem 4.5. [3] For a non-discrete �nitely supported Cb-set X with a unique

zero element θ, the followings are equivalent:
(i) X is θ-simple;
(ii) X is a cyclic �nitely supported Cb-set of the form of Permf(D)x∪{θ}, for

some non-zero element x ∈ X. Furthermore, (b/d)x = θ, for all d ∈ suppx.

Remark 4.6. [3] Let X be an in�nite �nitely supported Cb-set with a unique
zero element θ, and x ∈ X. Then,

(1) X has a θ-simple sub Cb-set.
(2) If X is simple, then X is θ-simple.
(3) If X = Cbx is cyclic with |suppx| = 1, then X simple.
(4) X is simple if and only if X is θ-simple, and suppx 6= suppx′, for all

non-zero elements x 6= x′.

As a result of Theorem 4.5, we get the following corollary.

Corollary 4.7. All θ-simple (simple) �nitely supported Cb-sets are retractable.

Lemma 4.8. A retractable non-singleton cyclic �nitely supported Cb-set has a

unique θ-simple sub Cb-set.

Proof. Let X = Cbx be retractable with a non-zero element x. Then, by Corollary
4.4, X has a unique zero element θ. Also, by Remark 4.6(1), X has a θ-simple sub
Cb-set. Suppose X has two θ-simple sub Cb-sets X1 and X2. Applying Theorem
4.5, we get that X1 = Permf(D)x1 ∪ {θ} and X2 = Permf(D)x2 ∪ {θ}. Since X is
retractable, by Remark 4.2, X1 ∪X2 is a retract of X, and so is cyclic. Therefore,
X1 = X2.
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Proposition 4.9. Suppose that X is a non-discrete retractable �nitely supported

Cb-set. Also, suppose {Bi}i∈I is the collection of all distinct θ-simple sub Cb-sets
of X. Take X

i
=
⋃
x∈X
{Cbx : B

i
⊆ Cbx}. Then,

(i) every X
i
is a retracteble sub Cb-set of X.

(ii) every X
i
is indecomposable, and has a unique zero element.

(iii) for all i 6= j, Xi ∩Xj = ∅ or Xi ∩Xj = {θ}.
(iv) X =

⋃
i∈I

X
i
.

Proof. (i) Let x ∈ Xi and σ ∈ Cb. Then, we show that σx ∈ Xi. Notice that
B
i
⊆ Cbx. Since X is retractable, by Remark 4.2(1), Cbx is retractable, and so,

by Lemma 4.8, Cbx has a unique θ-simple sub Cb-set Bi . Also, since Cbσx ⊆ Cbx,
we get that Bi ⊆ Cbσx, and so, σx ∈ Xi. Now, applying Remark 4.2(1), Xi 's are
retractable.

(ii) Since
⋂
{Cbx : B

i
⊆ Cbx} = B

i
, we get X

i
is indecomposable. Now, since

X is retractable, by Remark 4.2(1), X
i
is retractable, and so, by Lemma 4.3, has

a unique zero element.

(iii) Let x ∈ Xi ∩Xj with x 6= θ. Then, Cbx ⊆ Xi ∩Xj and so Bi, Bj ⊆ Cbx
which contradicts Lemma 4.8 that states Cbx has a unique θ-simple sub Cb-set.

(iv) To prove the non-trivial part, let x ∈ X. Then, since X is retractable,
by Remark 4.2(1), Cbx is retractable. Applying Lemma 4.8, there exists a unique
θ-simple sub Cb-set Bi with Bi ⊆ Cbx. Thus by the assumption x ∈ Xi .

Lemma 4.10. Let X be a �nitely supported Cb-set with a zero-decomposition of

retractable components. Then, X is retractable.

Proof. SupposeX =
⋃
X
i
is a zero-decomposition of retractable �nitely supported

Cb-sets X
i
. Let Y be a sub Cb-set of X. Then, we show that Y is a retract of

X. Take Yi = Y ∩ Xi . Notice that Yi is a (possibly empty) sub Cb-set of Y . If
Yi 6= ∅, then since Xi is retractable, we get a retraction ϕi : Xi → Yi . Now, the
assignment ϕ : X → Y de�ned by

ϕ(x) =

{
ϕ
i
(x), if x ∈ X

i
and Y

i
6= ∅

θ ∈ Y, if x ∈ X
i
and Y

i
= ∅

is a retraction.

Corollary 4.11. Disjoint union of two retractable �nitely supported Cb-sets is

retractable.

In the following theorem, we give a charatcterization of retractable �nitely
supported Cb-sets.

Theorem 4.12. Let X be a �nitely supported Cb-set. Then, X is retractable if

and only if X has a zero-decomposition of retractable components.
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Proof. If X is discrete, then X is retractable and has a zero-decomposition of
retractable components. Suppose X is non-discrete and retractable. Also, suppose
{B

i
}
i∈I is the collection of all distinct θ-simple sub Cb-sets of X which exist by

Lemma 4.8. Take X
i
=
⋃
x∈X
{Cbx : B

i
⊆ Cbx}. Then, by Proposition 4.9,

X =
⋃
Xi is a zero-decomposition of retractable Xi .

The other part holds by Lemma 4.10.

The following lemma is needed in Theorem 4.14 which gives a necessary con-
dition for a cyclic �nitely supported Cb-set to be retractable.

Lemma 4.13. If Cbx is a non-singleton retractable cyclic �nitely supported Cb-
set, then there exists d ∈ suppx with Permf(D)S′xx = Cb(b/d)x, where b ∈ 2.

Proof. Let suppx = {d1, · · · , dk}. Then, applying Theorem 2.14(ii), we get that

Permf(D)S′xx =
⋃k
i=1

Cb(bi/di)x. Since Permf(D)S′xx is a sub Cb-set of Cbx, and
Cbx is retractable, by Remark 4.2, we get that Permf(D)S′xx is cyclic. So, there
exists a ∈ Permf(D)S′xx with Permf(D)S′xx = Cba. Since a ∈ Permf(D)S′xx,
there exist i = 1, · · · , k and σ ∈ Cb with a = σ(bi/di)x. Applying Theorem
2.4, σ ∈ Perm

f
(D) or σ = πδ, where π ∈ Permf(D) and δ ∈ S. If σ = πδ and

δ ∈ S′
(bi/di)

, then Cba = Cbδ(bi/di)x which is a proper sub Cb-set of Cb(bi/di)x.

Thus Permf(D)S′xx = Cbδ(bi/di)x, and so Cb(bi/di)x ⊆ Cbδ(bi/di)x which is a
contradiction. Therefore, σ = π or σ = πδ with δ ∈ S

(bi/di)
, and hence, we get

that Cba = Cb(bi/di)x.

In Theorem 4.14, we give a description of a retractable cyclic �nitely supported
Cb-set.

Theorem 4.14. Suppose Cbx is a cyclic �nitely supported Cb-set. Also, suppose

suppx = {d1, · · · , dk}. If Cbx is retractable, then

Cbx = Permf(D)x ∪
l⋃
i=1

Permf(D)(bi/di) · · · (b1/d1)x ∪ {θ},

where l ∈ {1, · · · , k} and dj ∈ supp (b
j−1

/d
j−1

) · · · (b
1
/d

1
)x, for all j = 2, · · · , l.

Proof. Suppose Cbx is retractable. If Permf(D)S′xx = {θ}, then by Remark 2.13
we get that Cbx = Permf(D)x ∪ {θ}. Suppose there exists δ ∈ S′

x
with δx 6= θ.

By Lemma 4.13, there exist d ∈ suppx and b ∈ 2, say d = d1, b = b1, with
Permf(D)S′xx = Cb(b1/d1)x. So applying Remark 2.13, we have

Cbx = Permf(D)x ∪ Cb(b1/d1)x.

By the assumption, Cbx is retractable. So, by Remark 4.2(1), Cb(b1/d1)x is
retractable. Now, if Permf(D)S′(b1/d1)

(b1/d1)x = {θ}, then

Cbx = Permf(D)x ∪ Permf(D)(b1/d1)x ∪ {θ}.
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Otherwise, we show that Permf(D)S′(b1/d1)
(b1/d1)x = Cb(b2/d2)(b1/d1)x, with

d2 ∈ supp (b1/d1)x. Similar to the proof of Theorem 2.14,

Permf(D)S′(b1/d1)
(b1/d1)x =

⋃
j

Cb(bj/dj)(b1/d1)x,

where for all j, dj ∈ supp (b1/d1)x. On the other hand, Cb(b1/d1)x is retractable,
and so applying Lemma 4.13, Permf(D)S′(b1/d1)

(b1/d1)x is cyclic. Therefore, there

exist d2 ∈ supp (b1/d1)x and b2 ∈ 2 such that

Cb(b1/d1)x = Permf(D)(b1/d1)x ∪ Cb(b2/d2)(b1/d1)x.

By continuing this process, we get

Cbx = Permf(D)x ∪
l⋃
i=1

Permf(D)(bi/di) · · · (b1/d1)x ∪ {θ},

where l = 1, · · · , k.

5. 2-s-separated �nitely supported Cb-sets

In this section, we consider s-separated �nitely supported Cb-sets with 2-equivariant
support maps (brie�y 2-s-separated �nitely supported Cb-set) introduced in [6],
and characterize retractable objects in this category.

To �nd retractable s-separated �nitely supported Cb-sets with 2-equivariant
support maps, �rst, in Theorem 5.8, we give a description of them. Thereafter,
in Theorem 5.10, we prove that retractable s-separated �nitely supported Cb-sets
with 2-equivariant support maps are discrete or simple or are a disjoint union of a
simple sub Cb-set and a discrete sub Cb-set. Also, we give a description of cyclic
s-separated �nitely supported Cb-sets with 2-equivariant support maps.

First, we recall our de�nitions of the support map and 2-equivariant support
map of [6].

De�nition 5.1. Let X be a �nitely supported Cb-set, and x ∈ X. Then,
(a) the map

supp : X → P
f
(D ∪ 2), x 7→ suppx

is called the support map of X.
(b) the support map of X is 2-equivariant if suppσx = (σsuppx) \ 2, for all

σ ∈ Cb.

De�nition 5.2. [6] (a) A �nitely supported Cb-set X is called an stabilizer-

separated or brie�y s-separated if suppx 6= suppx′, for all non-zero elements x 6=
x′ ∈ X.

(b) A �nitely supported Cb-set X is called an s-separated with 2-equivariant
support map or brie�y 2-s-separated if X is s-separated and the support map of
X is 2-equivariant.
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Remark 5.3. Applying De�nition 5.2 and Remark 4.6(4), we get that all s-
separated θ-simple �nitely supported Cb-sets are simple.

Lemma 5.4. [6] Suppose X is a �nitely supported Cb-set, and x ∈ X.

(i) Let X be s-separated and x′ 6= x be two non-zero elements of X. Then,

|suppx| = |suppx′| if and only if Cbx = Cbx′.
(ii) The support map of X is 2-equivariant if and only if supp δx = (suppx)\D

δ
,

for all δ ∈ S′
x
.

Corollary 5.5. Suppose X is an s-separated �nitely supported Cb-set with 2-
equivariant support map. Let x ∈ X with |suppx| > 1. Then,

(1) For all d ∈ suppx, we have (0/d)x = (1/d)x.
(2) For all δ1, δ2 ∈ S′x , we have δ1δ2x = δ2δ1x.
(3) For all d 6= d′ ∈ suppx, we have Cb(0/d)x = Cb(0/d′)x.
(4) If X is a non-singleton cyclic, then X has a unique zero element.

Proof. (1) Since the support map of X is 2-equivariant, and |suppx| > 1, by
Lemma 5.4(ii), we get that supp (1/d)x = supp (0/d)x = suppx \ {d} 6= ∅. Now,
by De�nition 5.2, we have (0/d)x = (1/d)x.

(2) By (1), we have

(0/d)(1/d)x = (0/d)(0/d)x = (0/d)x
= (1/d)x = (1/d)(1/d)x = (1/d)(0/d)x.

Now, applying Remark 2.3, we get that δ1δ2x = δ2δ1x.
(3) Let d, d′ ∈ suppx. Then, since supp (0/d)x = suppx \ {d} 6= ∅ and

supp (0/d′)x = suppx \ {d′} 6= ∅, we get that |supp (0/d)x| = |supp (0/d′)x|.
Therefore, applying Lemma 5.4(i), Cb(0/d)x = Cb(0/d′)x.

(4) Suppose X = Cbx, for some non-zero element x ∈ X. If θ1 6= θ2 ∈ Z(Cbx),
then there exist δ1, δ2 ∈ S′x with θ1 = δ1x and θ2 = δ2x. Now, by (2),

θ1 = δ2θ1 = δ2δ1x = δ1δ2x = δ1θ2 = θ2,

which is a contradiction.

In the following lemma, for an s-separated �nitely supported Cb-set, by Corol-
lary 5.5, we show that the sub Cb-set Permf(D)S′xx of a cyclic Cb-set Cbx is
cyclic.

Lemma 5.6. Suppose X is an s-separated �nitely supported Cb-set with 2-equivariant
support map. Let x ∈ X with |suppx| > 1. Then, there exists d ∈ suppx with

Permf(D)S′xx = Cb(0/d)x.

Proof. Let suppx = {d1, · · · , dk} with k > 1. Then, applying Theorem 2.14, we

get that Permf(D)S′xx =
⋃k
i=1

Cb(bi/di)x is a sub Cb-set of Cbx where bi ∈ 2.
Now, by Corollary 5.5(1,3), we get that Permf(D)S′xx is cyclic. Therefore, there
exists d ∈ suppx such that Permf(D)S′xx = Cb(0/d)x.
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Remark 5.7. Suppose X is an s-separated �nitely supported Cb-set and x 6= x′

are two non-zero elements of X. Let the support map of X be 2-equivariant. Then,
Case (1): If |suppx| = |suppx′|, then by Lemma 5.4(i), Cbx = Cbx′.
Case (2): If |suppx| < |suppx′|, then Cbx ( Cbx′ and if |suppx′| < |suppx|,

then Cbx′ ( Cbx. To prove this, let |suppx| = k and |suppx′| = l. Assuming
k < l, we show that Cbx ( Cbx′. The other part is proved similarly. Take
suppx′ = {d1, · · · , dk, dk+1, · · · , dl}. Since the support map of X is 2-equivariant,
we get that

supp (0/dl) · · · (0/dk+1
)x′ = suppx′ \ {dl, · · · , dk+1

}
= {d1, · · · , dk}.

Thus, |supp (0/dl) · · · (0/dk+1
)x′| = k. Now, applying Lemma 5.4(i), we get that

Cb(0/dl) · · · (0/dk+1
)x′ = Cbx and so x ∈ Cbx′.

Theorem 5.8. Suppose X is an s-separated �nitely supported Cb-set. Let the

support map of X be 2-equivariant. Then, X is decomposable if and only if X is

discrete or X = Y ∪ Z is a disjoint union of a non-singleton indecomposable sub

Cb-set of Y and a discrete sub Cb-set Z.

Proof. To prove the non-trivial part, suppose X is non-discrete. Take X =
∐

α
Xα

to be a decomposition of X into indecomposable sub Cb-sets. We show that all the
non-zero elements of X belong to exactly one component of X. On the contrary,
let x

α
∈ X

α
and x

β
∈ X

β
be two non-zero elements. Then, |suppx

α
| ≤ |suppx

β
|

or |suppx
β
| ≤ |suppx

α
|. Now, applying Remark 5.7, Cbx

α
⊆ Cbx

β
⊆ X

β
or

Cbx
β
⊆ Cbxα ⊆ Xα which is a contradiction. Thus, there exists a unique α0 with

X \ Z(X) ⊆ Xα
0
which means that X can be written as a disjoint union of a

non-singleton indecomposable sub Cb-set and a discrete sub Cb-set.

Now, we are ready to characterize retractable s-separated �nitely supported
Cb-sets with 2-equivariant support maps.

In the following lemma, we characterize retractable s-separated cyclic �nitely
supported Cb-sets with 2-equivariant support maps.

Lemma 5.9. Suppose X is an s-separated cyclic �nitely supported Cb-set. Let

the support map of X be 2-equivariant. Then, X is retractable if and only if X is

simple.

Proof. If X is singleton, then it is clear that X is retractable and simple. Suppose
X = Cbx is cyclic with a non-zero element x of X. Also, let X be retractable.
Then, by Corollary 4.4, X has a unique zero element θ. Notice that, by Remark
4.6(1), X has a θ-simple sub Cb-set, say Cbx0 = Permf(D)x0∪{θ}. Thus, applying
Remark 5.3, Cbx0 is simple. Since x0 ∈ Cbx, by Theorem 2.4, we get that x0 = πx
or x

0
= πδ

0
x. If x

0
= πx, then Cbx = Cbx

0
, and so, X is simple. Suppose

x
0
= πδ

0
x. In this case, we also show that δ

0
∈ S

x
, and so, Cbx

0
= Cbx. On the

contrary, let δ
0
∈ S′

x
. Then, by Lemma 2.9(i), δ

0
x 6= x, and so, Cbx

0
is a proper sub

Cb-set of Cbx. Since X is retractable, there exists a retraction ϕ : Cbx→ Cbδ
0
x.
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First, we show that ϕ(x) = δ0x. Since ϕ(x) ∈ Cbδ0x, by Remark 2.13, we have
ϕ(x) ∈ Permf(D)S′δ0xδ0x or ϕ(x) ∈ Permf(D)δ0x. If ϕ(x) ∈ Permf(D)S′δ0xδ0x,
then ϕ(x) = π′δ′δ0x where δ′ ∈ S′

δ0x
and π′ ∈ Permf(D). Since ϕ is a retraction

and δ0x ∈ Cbδ0x, we get that δ0x = ϕ(δ0x) = δ0ϕ(x) = δ0π
′δ′δ0x.

Now, applying Lemma 2.9, we get that |supp δ0x| = |supp δ0π′δ′δ0x| < |supp δ0x|,
which is impossible. Therefore, ϕ(x) ∈ Permf(D)δ0x, and so there exists π′ ∈
Permf(D) with ϕ(x) = π′δ0x. Also, since ϕ is a retraction and δ0x ∈ Cbδ0x, we
get that

δ0x = ϕ(δ0x) = δ0ϕ(x) = δ0π
′δ0x = π′δ′0δ0x.

where the last equality is true by Remark 2.3(2). Now, δ′0 ∈ Sδ0x , since otherwise,
if δ′0 ∈ S′δ0x , then by Lemma 2.9

|supp δ0x| = |suppπ′δ′0δ0x| = |supp δ′0δ0x| < |supp δ0x|,

which is impossible. Thus, δ′0 ∈ Sδ0x and so δ0x = π′δ′0δ0x = π′δ0x. Therefore,
ϕ(x) = δ0x.

Now, take d ∈ (suppx) \ supp δ
0
x, and d′ ∈ supp δ

0
x. Then, since X is s-

separated, we have (d d′)x = x. Also, since ϕ is a retraction, we get that

(d d′)δ
0
x = (d d′)ϕ(x) = ϕ((d d′)x) = ϕ(x) = δ

0
x.

Thus,
d = (d d′)d′ ∈ (d d′)supp δ

0
x = supp (d d′)δ

0
x = supp δ

0
x,

which is impossible.
The other part follows by Corollary 4.7.

Theorem 5.10. Suppose X is an s-separated �nitely supported Cb-set. Let the

support map of X be 2-equivariant. Then, X is retractable if and only if X is

discrete or simple or X is a disjoint union of a simple sub Cb-set and a discrete

sub Cb-set.

Proof. Discrete Cb-sets are retractable. Also, by Corollary 4.7, simple �nitely
supported Cb-sets are retractable.

To prove the other part, let X be non-discrete and retractable. Then, by
Theorem 5.8, X = Y ∪ Z is a disjoint union of a discrete sub Cb-set Z, and an
indecomposable sub Cb-set Y . Notice that, by Remark 4.2(1), Y is retractable. So,
applying Corollary 4.4, we get that Y has a unique zero element θ. We show that
Y is simple. To show this, �rst, we prove that Y has a unique simple sub Cb-set.
By Remark 4.6(1), Y has a θ-simple sub Cb-set. Since Y is s-separated, by Remark
5.3, we get that Y has a simple sub Cb-set. Now, suppose B1 and B2 are two simple
sub Cb-sets of Y . So, applying Theorem 4.5, B1 = Cby1 and B2 = Cby2 are cyclic.
Assuming B1 = Cby1, we show that |supp y1| = 1. Notice that, (0/d)y1 = θ, for all
d ∈ supp y1. Since Y is s-separated with 2-equivariant support map, we get that
∅ = supp (0/d)y1 = (supp y1) \ {d}. Thus supp y1 = {d}, and so, |supp y1| = 1.
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Similarly, |supp y2| = 1. Thus, since |supp y1| = |supp y2| = 1, by Remark 5.7, we
get that B1 = B2. Hence, Y has a unique simple sub Cb-set, say B.

Now, we prove that Y = B. Let y ∈ Y . Then, since Y is retractable, by
Remark 4.6(1), we get that Cby is retractable. Now, applying Lemma 5.9, Cby is
simple. Thus, Cby = B, and so, y ∈ B. Therefore, B ⊆ Y ⊆ B which means that
Y = B is simple.

In Theorem 5.11, we give a description of a cyclic s-separated �nitely supported
Cb-set with 2-equivariant support map.

Theorem 5.11. If Cbx is an s-separated �nitely supported Cb-set with 2-equivariant
support map and suppx = {d1, · · · , dk}, then

Cbx = Permf(D)x ∪
k⋃
i=1

Permf(D)(0/di) · · · (0/d1)x,

where dj ∈ supp (0/d
j−1

) · · · (0/d
1
)x, for j = 2, · · · , k.

Proof. Let suppx = {d1, · · · , dk}. Then, applying Lemma 5.6, there exists some
di ∈ suppx, say di = d1, with Permf(D)S′xx = Cb(0/d1)x. Now, we show that
Permf(D)S′(0/d1)

(0/d1)x = Cb(0/d2)(0/d1)x, where d2 ∈ supp (0/d1)x. Similar to

the proof of Theorem 2.14,

Permf(D)S′(0/d1)
(0/d1)x =

⋃
j

Cb(0/dj)(0/d1)x,

where for all j, dj ∈ supp (0/d1)x.
On the other hand, for all j, we have supp (0/dj)(0/d1)x = suppx\{dj , d1}. So,

for all r 6= s, we get |supp (0/dr)(0/d1)x| = |supp (0/ds)(0/d1)x|. Now, applying
Lemma 5.4, Cb(0/dr)(0/d1)x = Cb(0/ds)(0/d1)x. Thus, Permf(D)S′(0/d1)

(0/d1)x

is cyclic. So, there exists d ∈ supp (0/d1)x, say d = d2 with

Cb(0/d1)x = Permf(D)(0/d1)x ∪ Cb(0/d2)(0/d1)x.

By continuing this process, we get

Cbx = Permf(D)x ∪
k⋃
i=1

Permf(D)(0/di) · · · (0/d1)x.
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