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A uni�ed method for setting �nite

non-commutative associative algebras

and their properties

Dmitriy Moldovyan

Abstract. A uni�ed method for de�ning a class of the �nite non-commutative associative

algebras of di�erent even dimensions m > 6 is proposed to extend the set of potential algebraic

supports of the public-key cryptographic algorithms and protocols based on the hidden discrete

logarithm problem. The introduced method sets the algebras containing a large set of the global

left-sided units. A particular version of the method de�nes the algebras with parametrizable

multiplication operation all modi�cation of which are mutually associative. The cases m = 6

and m = 10 are detaily considered.

1. Introduction

One of the current challenges in the area of theoretic and applied cryptography rep-
resents developing the public-key cryptographic algorithms and protocols that run
e�ciently on classical computers but will resist quantum attacks [1, 2], i. e., attacks
performed with using hypothetical quantum computers that can be used to solve
the factorization problem (FP) and the discrete logarithm problem (DLP) in poly-
nomial time [15]. Development of the post-quantum public-key cryptoschemes is
connected with looking for di�cult computational problems that are di�erent from
the FP and DLP and can be used as primitives of the public-key cryptoschemes.

Much attention of the researchers has gained the conjugacy search problem
(CSP) in braid groups representing a particular type of non-commutative groups [3,
6]. On the base of the computational di�culty of that problem a number of the
public-key cryptoschemes have been designed [4, 16]. Another promising approach
to the development of the post-quantum digital signature schemes [8, 9] and pub-
lic key-agreement protocols is connected with exploiting so called hidden DLP
(HDLP). For the �rst time the HDLP was proposed in the form of combining the
DLP with the CSP as follows [11, 12]:

Y = Gw ◦Qx ◦G−w, (1)
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where the known values Y (the public key), G, and Q are elements of some �-
nite non-commutative group Γ; the unknown natural numbers w and x represent
the private key. The public key-agreement scheme, the public encryption and
commutative encryption algorithms have been introduced in [11, 12] using the
multiplicative group of the �nite algebra of quaternions, de�ned over the ground
�eld CF (p), as the group Γ. Detailed investigation [5] of the security of that cryp-
toschemes have revealed possibility of the polynomial reduction of the HDLP to
the LP in the �eld CF (p2). That result had shown fundamental di�culties for
development of the post-quantum public-key cryptoschemes on the base of the
HDLP de�ned in the form (1) when using the �nite algebra of quaternions as
the algebraic support of the HDLP. Therefore, the further research of the HDLP
as potential post-quantum cryptographic primitive is connected with looking for
new forms of the HDLP and/or new �nite non-commutative associative algebras
(FNAAs) as algebraic supports of the HDLP.

In present paper a uni�ed method for setting a class of the FNAAs of di�erent
even dimensions m > 6 is proposed. The introduced FNAAs possess two fea-
tures that are interesting for cryptographic applications: i) the algebras contain a
large set of the global left-sided units and ii) the algebras can be set so that that
the multiplication operation is parametrizable and arbitrary two modi�cations of
the multiplication operation are mutually associative. The last property is very
attractive for potential application in the public-key cryptoschemes in which the
modi�cations of the multiplication operation are used as a part of the private key.
The properties of the 6-dimensional and 10-dimensional FNAAs are investigated
in detail.

2. A method for setting a class of the FNAAs

2.1. Preliminaries

The FNAAs of small dimension m, which contain a large set of the global single-
sided units, are described in [10] (m = 2) and [13] (m = 3). However for developing
public-key cryptosystems based on the HDLP it is preferably to apply the FNAAs
of the dimensions m ≥ 4, which are de�ned over the �eld GF (p) with su�ciently
large characteristic p (for example, having the size equal to 256 to 512 bits).

The m-dimensional �nite algebra represents the m-dimensional vector space
over the �eld GF (p), in which the multiplication operation (that is distributive
relatively the addition operation) is additionally de�ned. The multiplication op-
eration (denoted as ◦) can be de�ned with using the representation of arbitrary
vector A = (a0, a1, . . . am−1) as the following sum of the single-component vectors
aiei:

A =

m−1∑
i=0

aiei,
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where e0 = (1, 0, 0 . . . , 0), e1 = (0, 1, 0 . . . , 0), ... em−1 = (0, 0 . . . , 0, 1) are the
basis vectors; a0, a1, . . . am−1 are coordinates of the vector A.

The result of the multiplying twom-dimensional vectors A and B =
∑m−1

j=0 bjej
is de�ned as follows:

A ◦B =

(
m−1∑
i=0

aiei

)
◦

m−1∑
j=0

bjej

 =

m−1∑
j=0

m−1∑
i=0

aibj (ei ◦ ej) , (2)

where the product of every pair of the basis vectors ei ◦ ej is to be replaced by
some single-component vector µek that is taken from the so called basis vector
multiplication table (BVMT), like Tables 2, 3 (see Section 3), and 4 (Section4).
When performing such replacement, one assumes that the intersection of the ith
row and the jth column de�nes the value µek = ei ◦ ej . The value µ 6= 1 is called
structural coe�cient. If the BVMT de�nes the multiplication operation that is
associative and non-commutative, then the algebra is called FNAA. The element
L (the element R) satisfying the vector equation L ◦A = A (A = A ◦R) for every
element A of the algebra is called the global left-sided (right-sided) unit.

2.2. Proposed uni�ed method for de�ning FNAAs

of di�erent even dimensions

The paper [7] describes a general method for de�ning a class of the FNAAs over
the �eld GF (p), which contain a large class of the single-sided units, for arbitrary
dimensions m > 1. However, using the general properties of such algebras, which
are described in [7], one can show that for arbitrary value of the dimension the
HDLP can be easily reduced to the DLP in the �eld GF (p). Therefore, in order to
extend the class of potential algebraic supports of the HDLP-based cryptoschemes
one can propose the following uni�ed method for de�ning the FNAAs over the
ground �eld GF (p).

The proposed method consists in using the BVMT described by the following
formula for multiplying the basis vectors ei and ej in the m-dimensional vector
space:

ei ◦ ej = ej−di, (3)

where the value j−di is computed modulo m. For arbitrary even value m one can
�ned the values d such that the BVMT described by the formula (3) will de�ne
non-commutative associative multiplication operation.

Let us consider threem-dimensional vectors A, B, and C =
∑m

k=1 ckek. Taking
into account the formula (2), for product of the vectors A, B, and C =

∑m
k=0 ckek

one can get the following
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(A ◦B) ◦ C =

m−1∑
i=0

m−1∑
j=0

m−1∑
k=0

aibjck (ei ◦ ej) ◦ ek;

A ◦ (B ◦ C) =

m−1∑
i=0

m−1∑
j=0

m−1∑
k=0

aibjckei ◦ (ej ◦ ek) .

The last formula shows the multiplication operation is associative, if the BVMT
de�nes associative multiplication of the basis vectors.

For multiplication of three basis vectors ei, ej , and ek, which is performed in
accordance with the formula (3), one can write

(ei ◦ ej) ◦ ek = ej−di ◦ ek = ek−dj+d2i;

ei ◦ (ej ◦ ek) = ei ◦ ek−dj = ek−dj−di.

Thus, the formula (3) de�nes associative multiplication of the basis vectors, if the
condition

d2 ≡ −d mod m. (4)

holds true.
For all values m > 2 the value d ≡ −1 mod m satis�es the condition (4)

and de�nes associative multiplication, however in this case we have commutative
multiplication. Non-commutative associative multiplication operation can be ob-
tained for even values of the dimensionm > 6, for example, whenm = 6, 10, 12, 14.
Table 1 shows the values of the parameter d at which we have the m-dimensional
FNAAs.

Table 1

Suitable values d for di�erent dimensions m

m 6 10 12 14 18 20 30 40 62
d 2; 3 4; 5 3; 8 6; 7 8; 9 4; 15 5; 24 6; 35 30; 31

It is easy to show that for the values m = 2q, where q is a prime, we have the
following two values of the parameter d: d1 = q and d2 = q − 1 (note that in this
case we have q2 ≡ q ≡ −q mod m and (q − 1)2 ≡ 1− q mod m).

The formula (3) generates the BVMTs that are free from structural coe�cients,
but one can experimentally �nd di�erent distributions of the inserted structural
coe�cients, which retain the property of the associativity of the multiplication
operation. After such modi�cation of the source BVMT constructed for the case
m = 6 and d = 2 one obtains the BVMT de�ning the 6-dimensional FNAA (that
contains p3 global left-sided units) used as algebraic support of the post-quantum
signature scheme in [14].



A uni�ed method for setting non-commutative associative algebras 297

For the case of even values of the parameter d one can propose the following
version of the proposed uni�ed method, which is described by the following formula
for de�ning the BVMTs containing the structural coe�cients λ and ε :

ei ◦ ej =

{
λej−di, if i ≡ 0 mod 2

εej−di, if i ≡ 1 mod 2,
(5)

Proposition 2.1. The formula (5) de�nes the m-dimensional FNAAs, if m and

d are even natural numbers and the condition (4) holds true.

Thus, the version of the considered uni�ed method described with the formula
(5) introduces a set of the FNAAs corresponding to the same distribution of the
basis vectors in the BVMT and di�erent pairs of the values of structural coe�-
cients λ and ε. One can call such set of FNAAs the algebra with parametrizable
multiplication operation. Concrete version of the multiplication operation is set
by selecting two �xed values the structural coe�cients λ and ε. In the considered
case of the FNAA with parametrizable multiplication operation we have the fol-
lowing interesting property that can be called mutual associativity of arbitrary
two modi�cations of the multiplication operation (earlier the mutual associativity
of di�erent modi�cations of the multiplication operation in FNAAs was considered
in [7]).

Proposition 2.2. Suppose m and d are even natural numbers and the condi-

tion (4) holds true. Then the formula (5) de�nes the m-dimensional FNAA with

parametrizable multiplication operation and with mutual associativity of all possible

pairs of the modi�cations ◦ and ? of the multiplication operation.

Proof. Suppose the structural coe�cients λ and ε de�ne the ◦-version of the
multiplication operation and the structural coe�cients λ′ and ε′ de�ne the ?-
version of the multiplication operation. One should consider the in�uence of the
pairs of structural coe�cients (λ, ε) and (λ′, ε′) in the following two products: i)
(ei ◦ ej) ? ek and ii) ei ◦ (ej ? ek) . In each of these two cases the oddness of the
value k does not in�uences the result in the indicated two cases. Therefore, one
should consider the following four cases.

1. The values i and j are even:

(ei ◦ ej) ? ek = λej−di ? ek = λλ′ek−d(j−di) = λλ′ek−dj+d2i = λλ′ek−dj−di;

ei ◦ (ej ? ek) = ei ◦ λ′ek−dj = λ′λek−dj−di.

2. The value i is even and the value j is odd:

(ei ◦ ej) ? ek = λej−di ? ek = ε′λek−dj+d2i = ε′λek−dj−di;

ei ◦ (ej ? ek) = ei ◦ ε′ek−dj = λε′ek−dj−di.

3. The value i is odd and the value j is even:

(ei ◦ ej) ? ek = εej−di ? ek = λ′εek−dj+d2i = λ′εek−dj−di;

ei ◦ (ej ? ek) = ei ◦ λ′ek−dj = ελ′ek−dj−di.
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4. The values i and j are odd:

(ei ◦ ej) ? ek = εej−di ? ek = εε′ek−dj+d2i) = εε′ek−dj−di;

ei ◦ (ej ? ek) = ei ◦ ε′ek−dj = ε′εek−dj−di.

Thus, in all cases we have (ei ◦ ej) ? ek = ei ◦ (ej ? ek) . The Proposition 2.2 is
proved.

Note that the Proposition 2.1 is direct corollary from the Proposition 2.2. Using
the formula (5) one can de�ne FNAAs with parametrizable multiplication opera-
tion, which have di�erent dimensions. Table 1 provides the following examples: i)
m = 6, d = 2; ii) m = 10, d = 4; iii) m = 12, d = 8; . . . iv) m = 62, d = 30.

For the case of odd values of the parameter d in the formula (3) one can propose
the following version of the considered uniform method which is described by the
following formula:

ei ◦ ej =


ej−di, if i ≡ 0 mod 2

ej−di, if i ≡ 1 mod 2 and j ≡ 0 mod 2

λej−di, if i ≡ 1 mod 2 and j ≡ 1 mod 2,

(6)

The reader can easily prove the following proposition.

Proposition 2.3. Suppose m is an even integer, d is an odd integer, and the

condition (4) holds true. Then the formula (6) de�nes the m-dimensional FNAAs.

Considering the �xed even valuem and �xed odd value d we have many FNAAs
relating to di�erent values of the structural coe�cient λ, which can be united by
the notion of FNAA with the parametrizable multiplication operation. However,
in such algebras di�erent modi�cations of the multiplication operation are not
mutually associative in general case.

3. The case of 6-dimensional FNAAs

3.1. The algebra with mutually associative modi�cations

of the multiplication operation

In the case m = 6, d = 2, and λ = 1 we have the BVMT shown as Table 2. Due to
the Proposition 2.2 this FNAA is an algebra is with parametrizable multiplication
operation all modi�cations of which are mutually associative. The 6-dimensional
FNAA de�ned with this table contains the set of p3 global left-sided units L =
(l0, l1, l2, l3, l4, l5) described with the following formula [14]:

L =
(
h, k, t, (1− h)ε−1,−εk,−tε−1

)
,

where h, k, t = 0, 1, . . . p− 1. Evidently, the considered 6-dimensional FNAA con-
tains no global right-sided unit. To �nd the formula describing local right-sided
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units one should consider solution of the vector equation A ◦ X = A, where
A = (a0, a1, a2, a3, a4, a5) is a �xed vector. The last equation can be reduced
to the following two independent systems each of which contains three unknowns:

(a0 + εa3)x0 + (εa1 + a4)x2 + (a2 + εa5)x4 = a0;

(a2 + εa5)x0 + (a0 + εa3)x2 + (εa1 + a4)x4 = a2;

(εa1 + a4)x0 + (a2 + εa5)x2 + (a0 + εa3)x4 = a4;
(a0 + εa3)x1 + (εa1 + a4)x3 + (a2 + εa5)x5 = a1;

(a2 + εa5)x1 + (a0 + εa3)x3 + (εa1 + a4)x5 = a3;

(εa1 + a4)x1 + (a2 + εa5)x3 + (a0 + εa3)x5 = a5.

Table 2

The BVMT de�ning the FNAA containing p3 global left-sided units [14]

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 εe4 εe5 εe0 εe1 εe2 εe3
e2 e2 e3 e4 e5 e0 e1
e3 εe0 εe1 εe2 εe3 εe4 εe5
e4 e4 e5 e0 e1 e2 e3
e5 εe2 εe3 εe4 εe5 εe0 εe1

The main determinant of each of the last two systems is equal to ∆A:

∆A = (a0 + εa3)
3

+ (εa1 + a4)
3

+ (a2 + εa5)
3 − 3 (a0 + εa3) (a2 + εa5) (εa1 + a4)

If ∆A 6= 0, then there exists unique local right-sided unit corresponding to the
vector A.

3.2. The algebra with p4 global left-sided units

In the case m = 6 and d = 3 the formula (6) de�nes the BVMT in the form of
Table 3. The left-sided units can be found from the vector equation X ◦ A = A
that reduces to the following system with six unknowns x0, x1, x2, x3, x4, and x5:

(x0 + x2 + x4) a0 + λ (x1 + x3 + x5) a3 = a0;

(x1 + x3 + x5) a0 + (x0 + x2 + x4) a3 = a3;

(x0 + x2 + x4) a1 + (x1 + x3 + x5) a4 = a1;

λ (x1 + x3 + x5) a1 + (x0 + x2 + x4) a4 = a4;

(x0 + x2 + x4) a2 + λ (x1 + x3 + x5) a5 = a2;

(x1 + x3 + x5) a2 + (x0 + x2 + x4) a5 = a5.
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Performing the variable substitution u1 = x0 + x2 + x4 and u2 = x1 + x3 + x5 one
can easily �nd the following solution that is independent of the value A: (u1, u2) =
(1, 0). The solution in terms of the variables u1 and u2 de�nes p

4 solutions in terms
of the variables x0, x1, x2, x3, x4, and x5. Every of the last solutions de�ne a unique
global left-sided unit. The set of all global left-sided units is described as follows
(where h, k, t, z = 0, 1, . . . p− 1):

L = (l0, l1, l2, l3, l4, l5) = (h, k, t, z, 1− h− t,−k − z) .

The formula describing local right-sided units can be derived from the vector
equation A◦X = A that can be reduced to the following three independent systems
of two linear equations every one of which contains two unknowns:{

(a0 + a2 + a4)x0 + λ (a1 + a3 + a5)x3 = a0;

(a1 + a3 + a5)x0 + (a0 + a2 + a4)x3 = a3;

{
(a0 + a2 + a4)x1 + (a1 + a3 + a5)x4 = a1;

λ (a1 + a3 + a5)x1 + (a0 + a2 + a4)x4 = a4;

{
(a0 + a2 + a4)x2 + λ (a1 + a3 + a5)x5 = a2;

(a1 + a3 + a5)x2 + (a0 + a2 + a4)x5 = a5;

Table 3

The BVMT of the 6-dimensional FNAA containing p4 global left-sided units

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e4 λe5 e0 λe1 e2 λe3
e2 e2 e3 e4 e5 e0 e1
e3 e0 λe1 e2 λe3 e4 λe5
e4 e4 e5 e0 e1 e2 e3
e5 e2 λe3 e4 λe5 e0 λe1

The main determinant of each of the last three systems is equal to ∆A:

∆A = (a0 + a2 + a4)
2 − λ (a1 + a3 + a5)

2
.

If ∆A 6= 0, then there exists unique local right-sided unit corresponding to the
vector A.
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4. The 10-dimensional FNAA

In the case m = 10, d = 4, λ 6= 1, and ε = 1 the formula (5) de�nes the BVMT in
the form of Table 4. The left-sided units can be found from the vector equation
X ◦A = A that reduces to the following system with ten unknowns x0, x1, . . . x9:

X ◦A = A. (7)

Using Table 3 one can represent (7) in the form of the following system of 10 linear
equations with coordinates of the left operand x0, x1, . . . , x9 as the unknown values:

λx0a0 + x1a4 + λx2a8 + x3a2 + λx4a6 + x5a0 + λx6a4 + x7a8 + λx8a2 + x9a6 = a0;

λx0a1 + x1a5 + λx2a9 + x3a3 + λx4a7 + x5a1 + λx6a5 + x7a9 + λx8a3 + x9a7 = a1;

λx0a2 + x1a6 + λx2a0 + x3a4 + λx4a8 + x5a0 + λx6a6 + x7a0 + λx8a4 + x9a8 = a2;

λx0a3 + x1a7 + λx2a1 + x3a5 + λx4a9 + x5a0 + λx6a7 + x7a1 + λx8a5 + x9a9 = a3;

λx0a4 + x1a8 + λx2a2 + x3a6 + λx4a0 + x5a0 + λx6a8 + x7a2 + λx8a6 + x9a0 = a4;

λx0a5 + x1a9 + λx2a3 + x3a7 + λx4a1 + x5a0 + λx6a9 + x7a3 + λx8a7 + x9a1 = a5;

λx0a6 + x1a0 + λx2a4 + x3a8 + λx4a2 + x5a0 + λx6a0 + x7a4 + λx8a8 + x9a2 = a6;

λx0a7 + x1a1 + λx2a5 + x3a9 + λx4a3 + x5a0 + λx6a1 + x7a5 + λx8a9 + x9a3 = a7;

λx0a8 + x1a2 + λx2a6 + x3a0 + λx4a4 + x5a0 + λx6a2 + x7a6 + λx8a0 + x9a4 = a8;

λx0a9 + x1a3 + λx2a7 + x3a1 + λx4a5 + x5a0 + λx6a3 + x7a7 + λx8a1 + x9a5 = a9.
(8)

The system (8) can be rewritten in the form of two systems each of which contains
�ve linear equations with 10 unknowns:

(λx0 + x5) a0 + (x3 + λx8) a2 + (x1 + λx6) a4 + (λx4 + x9) a6 + (λx2 + x7) a8 = a0;

(λx0 + x5) a2 + (x3 + λx8) a4 + (x1 + λx6) a6 + (λx4 + x9) a8 + (λx2 + x7) a0 = a2;

(λx0 + x5) a4 + (x3 + λx8) a6 + (x1 + λx6) a8 + (λx4 + x9) a0 + (λx2 + x7) a2 = a4;

(λx0 + x5) a6 + (x3 + λx8) a8 + (x1 + λx6) a0 + (λx4 + x9) a2 + (λx2 + x7) a4 = a6;

(λx0 + x5) a8 + (x3 + λx8) a0 + (x1 + λx6) a2 + (λx4 + x9) a4 + (λx2 + x7) a6 = a8;
(9)

(λx0 + x5) a1 + (x3 + λx8) a3 + (x1 + λx6) a5 + (λx4 + x9) a7 + (λx2 + x7) a9 = a1;

(λx0 + x5) a3 + (x3 + λx8) a5 + (x1 + λx6) a7 + (λx4 + x9) a9 + (λx2 + x7) a1 = a3;

(λx0 + x5) a5 + (x3 + λx8) a7 + (x1 + λx6) a9 + (λx4 + x9) a1 + (λx2 + x7) a3 = a5;

(λx0 + x5) a7 + (x3 + λx8) a9 + (x1 + λx6) a1 + (λx4 + x9) a3 + (λx2 + x7) a5 = a7;

(λx0 + x5) a9 + (x3 + λx8) a1 + (x1 + λx6) a3 + (λx4 + x9) a5 + (λx2 + x7) a7 = a9.
(10)

Performing the variable substitution

u0 = λx0+x5; u1 = x3+λx8; u2 = x1+λx6; u3 = λx4+x9; u4 = λx2+x7 (11)

in the systems (9) and (10) one can easily see that the solution

u0 = 1; u1 = 0; u2 = 0; u3 = 0; u4 = 0 (12)
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satis�es simultaneously the systems (9) and (10) for all elements A of the con-
sidered FNAA. Besides, if the vector A is such that the main determinant of the
system (9) ∆′A satis�es condition ∆′A 6= 0 or the main determinant of the sys-
tem (10) ∆′′A satis�es condition ∆′′A 6= 0, then the indicated solution is unique
relatively the unknowns u0, u1, u2, u3, and u0.

For very small portion of the vectors A, coordinates of which satisfy the both
conditions ∆′A = 0 and ∆′′A = 0, many other solutions exists. However, such
�marginal� vectors are to be not involved in the computations in frame of the
potential public-key cryptoschemes based on the considered FNAA. The additional
solutions de�ne the local left-sided units acting only in frame of the subset of the
�marginal� vectors. One can easily derive the formula describing the local left-
sided units, but we will describe only the set of global left-sided units (that act as
the left-sided units on every 10-dimensional vector).

Taking into account the formulas (11) and the solutions (12) one can get the
formula describing all p5 global left-sided units L = (l0, l1, l2, l3, l4, l5, l6, l7, l8, l9) :

L = (x0,−λx6, x2,−λx8, x4, 1− λx0, x6,−λx2, x8,−λx4) , (13)

where x0, x2, x4, x6, x8 = 0, 1, . . . , p− 1.

Table 4

De�ning the 10-dimensional FNAA containing p5 global left-sided units

◦ e0 e1 e2 e3 e4 e5 e6 e7 e8 e9
e0 λe0 λe1 λe2 λe3 λe4 λe5 λe6 λe7 λe8 λe9
e1 e6 e7 e8 e9 e0 e1 e2 e3 e4 e5
e2 λe2 λe3 λe4 λe5 λe6 λe7 λe8 λe9 λe0 λe1
e3 e8 e9 e0 e1 e2 e3 e4 e5 e6 e7
e4 λe4 λe5 λe6 λe7 λe8 λe9 λe0 λe1 λe2 λe3
e5 e0 e1 e2 e3 e4 e5 e6 e7 e8 e9
e6 λe6 λe7 λe8 λe9 λe0 λe1 λe2 λe3 λe4 λe5
e7 e2 e3 e4 e5 e6 e7 e8 e9 e0 e1
e8 λe8 λe9 λe0 λe1 λe2 λe3 λe4 λe5 λe6 λe7
e9 e4 e5 e6 e7 e8 e9 e0 e1 e2 e3

Consideration of the right-sided units is connected with solving the vector
equation

A ◦X = A. (14)

Using Table 3 one can represent (14) in the form of the following system of 10 linear
equations with coordinates of the right operand x0, x1, . . . , x9 as the unknown
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values:

λa0x0 + a1x4 + λa2x8 + a3x2 + λa4x6 + a5x0 + λa6x4 + a7x8 + λa8x2 + a9x6 = a0;

λa0x1 + a1x5 + λa2x9 + a3x3 + λa4x7 + a5x1 + λa6x5 + a7x9 + λa8x3 + a9x7 = a1;

λa0x2 + a1x7 + λa2x0 + a3x4 + λa4x8 + a5x2 + λa6x6 + a7x0 + λa8x4 + a9x8 = a2;

λa0x3 + a1x8 + λa2x1 + a3x5 + λa4x9 + a5x3 + λa6x7 + a7x1 + λa8x5 + a9x9 = a3;

λa0x4 + a1x9 + λa2x2 + a3x6 + λa4x0 + a5x4 + λa6x8 + a7x2 + λa8x6 + a9x0 = a4;

λa0x5 + a1x0 + λa2x3 + a3x7 + λa4x1 + a5x5 + λa6x9 + a7x3 + λa8x7 + a9x1 = a5;

λa0x6 + a1x1 + λa2x4 + a3x8 + λa4x2 + a5x6 + λa6x0 + a7x4 + λa8x8 + a9x2 = a6;

λa0x7 + a1x2 + λa2x5 + a3x9 + λa4x3 + a5x7 + λa6x1 + a7x5 + λa8x9 + a9x3 = a7;

λa0x8 + a1x3 + λa2x6 + a3x0 + λa4x4 + a5x8 + λa6x2 + a7x6 + λa8x0 + a9x4 = a8;

λa0x9 + a1x4 + λa2x7 + a3x1 + λa4x5 + a5x9 + λa6x3 + a7x7 + λa8x1 + a9x5 = a9.
(15)

If the main determinant of the system (15) ∆A 6= 0, then there exists unique
solution X = RA which depends on the vector A, i. e., RA is the local right-sided
unit element.

5. Common properties of the 6-dimensional

and 10-dimensional FNAAs

Sections 3 and 4 describe the 6-dimensional and 10-dimensional FNAAs de�ned
applying the proposed uni�ed method for setting FNAAs. It is shown that the
considered algebras contain a large set of global left-sided units. One can ex-
pect that for all even values of the dimension m > 6 the proposed method will
de�ne the FNAAs, containing a large set of the global left-sided units. In this
section we present some common properties of the described 6-dimensional and
10-dimensional FNAAs. One can suppose that the introduced propositions are
valid for other values of the dimension of the FNAAs de�ned using the both ver-
sions (see the Propositions 2.1 and 2.2) of the proposed uni�ed method.

Proposition 5.1. If the vector A satis�es condition ∆A 6= 0, then A◦Li 6= A◦Lj ,
for arbitrary two global left-sided units Li and Lj 6= Li.

Proof. SupposeA◦Li = A◦Lj . ThenA◦(Li − Lj) = O. Since ∆A 6= 0, the equation
A◦X = O has unique solution X = O. Therefore, we have Li−Lj = O ⇒ Li = Lj .
The obtained contradiction proves the Proposition 5.1.

Proposition 5.2. If the vector equation X ◦ A = B has solution X = S, then
di�erent values Xi = S ◦ Li, where Li takes on all values from the set of global

left-sided units, also are solutions of the given equation.

Proof. (S ◦ Li) ◦A = S ◦ (Li ◦A) = S ◦A = B. The Proposition 5.2 is proved.
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Proposition 5.3. If A ◦ B = L, where L is a global left-sided unit, then the

equality Ai ◦Bi = L holds true for arbitrary natural value i.

Proof. Ai◦Bi = Ai−1◦
(
L ◦Bi−1) = Ai−1◦Bi−1 = Ai−2◦Bi−2 = · · · = A◦B = L.

The Proposition 5.3 is proved.

Proposition 5.4. If A ◦B = L, where L is a global left-sided unit, then the map

de�ned by the formula ψ(X) = B ◦X ◦ A, where the vector X takes on all values

in the considered algebra, represents a homomorphism.

Proof. Suppose X1 and X2 are arbitrary two vectors. Then we have

ψ (X1 ◦X2) = B ◦ (X1 ◦X2) ◦A = B ◦ (X1 ◦ L ◦X2) ◦A =

(B ◦X1 ◦A) ◦ (B ◦X2 ◦A) = ψ (X1) ◦ ψ (X2) ;

ψ (X1 +X2) = B ◦ (X1 +X2) ◦A = (B ◦X1 ◦A) + (B ◦X2 ◦A) =

ψ (X1) + ψ (X2) .

The Proposition 5.4 is proved.

Proposition 5.5. The homomorphism-map operation ψ(X) = B ◦X ◦ A, where
A ◦B = L, and the exponentiation operation Xi are mutually commutative, i. e.,

the equality B ◦Xi ◦A = (B ◦X ◦A)
i
holds true.

Proof. Due to Proposition 5.4 we have ψ(Xi) = (ψ(X))
i
, i. e., B ◦ Xi ◦ A =

(B ◦X ◦A)
i
. The Proposition 5.5 is proved.

Multiplication of the elements of the considered FNAA by any �xed global
left-sided unit L at right represents a homomorphism map that is mutually com-
mutative with the exponentiation operation. This fact is due to the following two
propositions.

Proposition 5.6. Suppose the vector L is an arbitrary global left-sided unit and

the vector X takes on all values in the considered FNAA. Then the map de�ned

by the formula ϕ(X) = X ◦ L is a homomorphism.

Proof. Suppose X1 and X2 are arbitrary two 6-dimensional vectors. Then we have

ϕ (X1 ◦X2) = (X1 ◦X2) ◦ L = (X1 ◦ L) ◦ (X2 ◦ L) = ϕ (X1) ◦ ϕ (X2) ;

ϕ (X1 +X2) = (X1 +X2) ◦ L = X1 ◦ L+X2 ◦ L = ϕ (X1) + ϕ (X2) .

The Proposition 5.6 is proved.

Proposition 5.7. The homomorphism-map operation ϕ(X) = X ◦ L, where L is

a global left sided unit, and the exponentiation operation Xi are mutually commu-

tative, i. e., the equality Xi ◦ L = (X ◦ L)i holds true.
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Proof. Due to Proposition 5.6 we have ϕ(Xi) = (ϕ(X))
i
, i. e., Xi ◦L = (X ◦L)i.

The Proposition 5.7 is proved.

Every global left sided unit L is connected with di�erent homomorphism map
operations of other type which can be described with the following formula:

ψ(X) = Ai ◦X ◦Bi,

where i > 1 is an arbitrary non-negative integer and the vectors A and B are such
that A ◦B = L holds true.

Each of the homomorphism map operations ψ(X) and ϕ(X) is mutually com-
mutative with the exponentiation operation and represents interest for using it
as masking operation at setting new types of the HDLP. The next propositions
show that the local right-sided unit RA related the the vector A such that ∆A 6= 0
(the main determinant of the system of linear equation written for computing the
right-sided units) is contained in the set of the global left-sided units, i. e. the
value RA is simultaneously the local two-sided unit of the vector A. Therefore the
vectors A for which we have ∆A 6= 0 are called locally invertible vectors.

Proposition 5.8. Suppose the vector A is such that ∆A 6= 0. Then the sequence

A,A2, . . . , Ai, . . . is periodic and for some positive integer ω we have Aω = RA.

Proof. Assumption that the sequence A,A2, . . . , Ai, . . . contains the zero vector
O = (0, 0, 0, 0, 0, 0) leads to a contradiction. Indeed, due to the condition ∆A 6= 0
we have A 6= O. If for some natural number j > 1 we have Aj = O, then for some
positive integer k ≤ j the conditions Ak−1 6= O and Ak = O holds true. Therefore,
A◦Ak−1 = O. Since ∆A 6= 0 and X = O satis�es the equation A◦X = O, the last
equation has unique solution X = O, i. e., Ak−1 = O. The obtained contradiction
proves that the considered sequence does not include the zero vector O. Therefore,
due to �niteness of the considered algebra the indicated sequence is periodic. Then
for some minimum t > 1 we have{

A = At = At−1 ◦A = A ◦At−1}⇒ EA = At−1,

where EA is the local two-sided unit connected with the vector A. Evidently, due
to condition ∆A 6= 0 we have A◦EA−A◦RA = A◦(EA −RA) = O ⇒ EA−RA =
O ⇒ EA = RA. Therefore, for ω = t− 1 we have Aω = RA.

Proposition 5.9. Suppose the vector A is such that the conditions ∆A 6= 0,
∆′A 6= 0, and ∆′′A 6= 0 holds true. Then the local right-sided unit RA is contained

in the set of the global left-sided units.

Proof. Due to the Proposition 5.8 we have RA = EA and EA ◦ A = A, i. e., RA

acts on the vector A as the left-sided unit, but all left sided units of the vector A
are included in the set of global left-sided units.
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6. On potential cryptographic application

of the introduced FNAAs

In the case of de�ning of the HDLP in the 6-dimensional FNAAs containing many
di�erent global left-sided units, which are described in Section 3, the formula (1)
cannot be used because these algebras contains no globally invertible element.
However by analogy with the formula (1) one can use the mutual commutativity
of the homomorphism-map operations ψ and ϕ with the exponentiation operation
(see the Propositions 5.5 and 5.7) as follows.

Suppose the vectors A and B are such that ∆A 6= 0 and A ◦B = L0, where L0

is a global left-sided unit. Then using some locally invertible vector N satisfying
the conditions ∆N 6= 0 and N ◦ A 6= A ◦ N one can de�ne computation of the
public key Y by the next formula:

Y = Bt ◦Nx ◦At =
(
Bt ◦N ◦At

)x
, (16)

where the vectors A,B, and N are the known parameters and the positive integers
(t, x) are the unknown values generated at random and used as the private key.

The formula (16) de�nes a particular form of the HDLP which can be used in
the public key-agreement scheme in frame of which the common secret shared by
some two users is calculated as follows

Z = Bt1 ◦ Y x1
2 ◦At1 = Bt2 ◦ Y x2

1 ◦At2 ,

where the vectors Y1 and Y2 (the pairs (t1, x1) and (t2, x2)) are the public (private)
keys of the �rst and the second users correspondingly. Thus, this public key-
agreement scheme performs correctly, however estimating its security is currently
an open problem that require individual study.

For the development of the post-quantum public key-agreement schemes one
can propose another form of the HDLP in which the connection between the pub-
lic and private keys is complicated by introducing the additional masking element
of the private key, which represents the unit element L selected at random from
the set of the global left-sided units. The element L is used in the formula for
calculating the public key as the rightmost operand, therefore the value L signi�-
cantly in�uences the value Y. The proposed form of the HDLP is described by the
following formula for computing the public key:

Y = Bt ◦Nx ◦At ◦ L =
(
Bt ◦N ◦At

)x ◦ L,
where the integers t and x and the vector L represent three elements of the corre-
sponding private key. One can easily show that the public keys represented in the
last form also provide possibility of the public key-agreement. Investigation of the
security of such modi�ed public key-agreement scheme also is an open problem for
independent study.
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The idea of using the modi�cations of the multiplication operation as elements
of the private key in the public-key cryptoschemes represents special interest. For
example, such key operations can be used as additional masking operations for set-
ting novel forms of the HDLP in the FNAAs with parametrizable multiplication
operation with mutual associativity of all pairs of the modi�cations of the multipli-
cation operation. In future research we will pay signi�cant attention to the design
of the public-key cryptoschemes in which the modi�cations of the multiplication
operation are used as the elements of private key.

7. Conclusion

The proposed uni�ed method for de�ning FNAAs provides possibility to set a
class of algebras every one of which contains a large set global left sided units.
The method is implemented in two versions that are described by formulas (5)
and (6) relating to even and odd value of the parameter d correspondingly. In
the case of even values d there are set FNAAs with parametrizable multiplication
operation characterized in that all pairs of the modi�cations of the multiplication
operation are mutually associative. This subclass of algebras is very attractive as
algebraic support of the public-key cryptoschemes in which the modi�cations of
the multiplication operation are used as elements of the private key. However, the
design of the cryptoschemes of such type is a task of individual research.

In general case the FNAAs containing a large set of the global left-sided units
can be applied as algebraic support of the HDLP-based public-key cryptoschemes
and new forms of the HDLP characterized in using the homomorphism-map oper-
ations of the ψ-type and ϕ-type as masking operations. Estimation of the security
of the cryptoschemes of the last type to quantum attacks represents an attractive
task of independent work.
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