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On the properties of zero-divisor graphs of posets

Mojgan Afkhami, Kazem Khashyarmanesh and Faeze Shahsavar

Abstract. We determine the cut vertices in the zero-divisor graphs of posets and study the

posets with end-regular zero-divisor graph. Also, we investigate the zero-divisor graph of the

product of two posets. In particular, we determine all posets with planar and outerplanar zero-

divisor graphs.

1. Introduction

The investigation of graphs related to various algebraic structures is a very large
and growing area of research. In particular, Cayley graphs have attracted serious
attention in the literature, since they have many useful applications, see [13],
[16], [17], [20], [21], [24] for examples of recent results and further references.
Several other classes of graphs associated with algebraic structures have been also
actively investigated. For example, power graphs and divisibility graphs have been
considered in [14], [15], zero-divisor graphs have been studied in [3], [4], [5], [8],
[9], and cozero-divisor graphs and annihilating-ideal graphs have been considered
in [1] and [2], respectively.

Recently, the zero-divisor graph of a poset was de�ned and studied in [11],
[12], [19] and [23]. In this paper, we deal with the zero-divisor graphs of posets
based on terminology of [19]. In [19], Lu and Wu de�ned the zero-divisor graph
for an arbitrary partially ordered set (P,6) (poset, brie�y) with a least element
0, as an undirected graph whose vertices consists of all nonzero zero-divisors of P ,
and two distinct vertices x and y are adjacent if and only if {x, y}` = {0}, where
for a subset S of P , {S}` denotes the set of lower bounds of S. In this paper,
we denote this graph by Γ(P ). In Section 2, we study the cut vertices in Γ(P ).
Also, we investigate some basic properties of Γ(P1×P2), where P1 and P2 are two
�nite posets. In Section 3, we study the planarity of Γ(P1 × P2). In Section 4,
we investigate the outerplanarity in the zero-divisor graphs of posets. In the last
section, we study the posets with end-regular zero-divisor graphs.

Now we recall some de�nitions and notations on graphs and partially ordered
sets. We use the standard terminology of graphs in [6] and partially ordered sets
in [7]. Let G be a graph with vertex-set V (G) and edge-set E(G). In a graph
G, the distance between two distinct vertices a and b, denoted by d(a, b), is the
length of the shortest path connecting a and b, if such a path exists; otherwise,
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we set d(a, b) :=∞. The diameter of a graph G is diam(G) = sup{d(a, b) : a and
b are distinct vertices of G}. A graph G is said to be connected if there exists a
path between any two distinct vertices, and it is complete if it is connected with
diameter one. We use Kn to denote the complete graph with n vertices. Also, we
say that G is totally disconnected if no two vertices of G are adjacent. The valency
of a vertex a is the number of the edges of the graph G incident with a. A clique

of a graph is a maximal complete subgraph of it and the number of vertices in a
largest clique of G is called clique number of G and is denoted by ω(G). In the
graph theory, a unicycle graph is a graph that has exactly one cycle. The graph
with no vertices and no edges is the null graph.

In a partially ordered set (P,6) with a least element 0, an element a is called
an atom if a 6= 0, and, for an element x in P , the relation 0 6 x 6 a implies either
x = 0 or x = a. Also, for a, b ∈ P , we say that a < b, whenever a 6 b and a 6= b.
Assume that S is a subset of P . Then an element x in P is a lower bound of S if
x 6 s for all s ∈ S. An upper bound is de�ned in a dual manner. The set of all
lower bounds of S is denoted by S` and the set of all upper bounds of S by Su,
that is,

S` := {x ∈ P | x 6 s, for all s ∈ S}

and
Su := {x ∈ P | s 6 x, for all s ∈ S}.

We say that a non-empty subset I of P is an ideal of P if, for arbitrary elements
x and y in P , the relations x ∈ I and y 6 x imply that y ∈ I. Also the ideal I is
prime if x, y ∈ P with {x, y}` j I, then x ∈ I or y ∈ I. A maximal ideal of P is
a proper ideal of P which is maximal among all ideals of P .

2. Cut vertices in the zero-divisor graph of a poset

Throughout the paper, P is a �nite poset and A(P ) = {a1, a2, ..., an} is the set of
all atoms of P . Also, we denote the set of zero-divisors of the poset P by Z(P ),
that is,

Z(P ) = {x ∈ P | {x, y}` = 0, for some y ∈ P}.

Clearly, if |A(P )| = 1, then Γ(P ) is a null graph. Therefore, we suppose that
|A(P )| > 2.

A vertex a of a graph G is called a cut vertex if the removal of a and any edges
incident on a creates a graph with more connected components than G.

Theorem 2.1. If a is a cut vertex in Γ(P ), then {0, a} is an ideal of P .

Proof. One can easily see that {0, a} is an ideal of P if and only if a is an atom of
P . Hence it is su�cient to show that a = ai, for some i = 1, 2, . . . , n. Assume that
a is not an atom. Since a is a cut vertex, Γ(P )\{a} has at least two components
X and Y . We claim that A(P ) ⊆ X or A(P ) ⊆ Y . Otherwise there are atoms
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ai and aj , where 1 6 i 6= j 6 n, such that ai ∈ X and aj ∈ Y . Now we have
that ai is adjacent to aj , which is impossible. Without loss of generality, we may
assume that A(P ) ⊆ X. Then, for all y ∈ Y , we have y ∈ {ai}u, for i = 1, 2, . . . , n.
Thus y ∈ ∩ni=1{ai}u. This implies that y /∈ Z(P ), which is impossible. Therefore
a ∈ A(P ), and so {0, a} is an ideal of P .

The following example shows that the converse of Theorem 2.1 is not true in
general.

Example 2.2. Suppose that P is a poset in Figure 1. Then, it is easy to see that
a1 is an atom, but it is not a cut vertex in Γ(P ).

Figure 1. P and Γ(P )

Notation. Let i1, i2, . . . , in be integers with 1 6 i1 < i2 < · · · < ik 6 n. The
notation UP

i1i2...ik
stands for the following set:

{x ∈ P ; x ∈ ∩ks=1{ais}u\ ∪j 6=i1,i2,...,ik {aj}u}

Note that no two distinct elements in Ui1i2...ik are adjacent in Γ(P ). Also if the in-
dex sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of Ui1i2...ik and Uj1j2...jk′ , respectively,
are distinct, then one can easily check that Ui1i2...ik ∩ Uj1j2...jk′ = ∅. Moreover
P\{0} = ∪nk=1, 16i1<i2<···<ik6nUi1i2···ik . Also, if there is no ambiguity, we denote

UP
i1i2...ik

by Ui1i2...ik . Also by 1 · · · î · · ·n we means that 1 · · · i− 1 i + 1 · · ·n.

In the next theorem, we provide some conditions under which the converse of
Theorem 2.1 holds.

Theorem 2.3. Let |P | > 4. Then there exists i with 1 6 i 6 n such that ai is a

cut vertex in Γ(P ), if |Ui| = 1 and U1···̂i···n 6= ∅, for some 1 6 i 6 n.

Proof. It is enough to show that there exist vertices b and c in P such that ai is
in every path from b to c in Γ(P ). Since U1···̂i···n 6= ∅, there is an element b in
U1···̂i···n. Now, for some j 6= i, consider c ∈ Uj . Thus ai is in every path from b to
c in Γ(P ), and so it is a cut vertex in Γ(P ).

Proposition 2.4. Let a be a cut vertex in Γ(P ) and X be connected component

of Γ(P )\{a}. Also suppose that X is complete with at least two vertices. Then

V (X) ∪ {0} is an ideal of P .

Proof. Since a is a cut vertex in Γ(P ), by Theorem 2.1, a is an atom of P . Suppose
that a = a1. Now, we have the following cases:



4 M. Afkhami, K. Khashyarmanesh and F. Shahsavar

Case 1. A(P )\{a} ⊆ X. If X contains an element b such that b is not an
atom, then since X is complete, we have that b ∈ U1. Now, let Y 6= X be another
connected components of Γ(P )\{a} and let c ∈ Y . Clearly, c ∈ U23...n. Thus b
and c are adjacent which is impossible. So we have that X = A(P )\{a}, and thus
V (X) ∪ {0} is an ideal of P .

Case 2. A(P )\{a} * X. It is easy to see that in this situation X does not
contain any atom. Now, let x and y be distinct elements in X. Then we have
x, y ∈ U23...n, and so x is not adjacent to y, which is impossible. Therefore this
case does not happen.

The next example shows that the converse of Proposition 2.4 is not true in
general.

Example 2.5. Suppose that P is a poset of Figure 2. Clearly a1 is the cut
vertex in Γ(P ). Let V (X) = {a2, a3, c}. Then, by Figure 2, it is easy to see that
V (X) ∪ {0} is an ideal of P , but X is not a complete subgraph of Γ(P ).

Figure 2. P and Γ(P )

De�nition 2.6. Suppose that x is a vertex in Γ(P ). Set

Zx := {y ∈ P | {x, y}` = {0}}.

We say that Zx is properly maximal if Zx ⊆ Zb, for some b ∈ P\{0, x}, then we
have Zx = Zb.

Theorem 2.7. If a is a cut vertex in Γ(P ), then Za is properly maximal.

Proof. Assume on the contrary that Za $ Zb, for some vertices b in Γ(P ) with
b 6= a. Then clearly all vertices adjacent to a are also adjacent to b. This is a
contradiction with the fact that a is a cut vertex.

Let (P1,61) and (P2,62) be two posets with the least elements. Then the
cartesian product P1 × P2 is also a poset with the following relation. For two
distinct elements (x, y), (x′, y′) ∈ P1 × P2 we say that (x, y) 6 (x′, y′) if and only
if x 61 x′ and y 62 y′. Clearly (P1 × P2,6) has the minimum element (0, 0).
Suppose that P1 and P2 are two �nite posets such that A(P1) = {a1, a2, . . . , an}
and A(P2) = {b1, b2, . . . , bm}. In the following we study some properties of the
zero-divisor graph Γ(P1 × P2).

Lemma 2.8. In the poset P1×P2, we have A(P1×P2) = (A(P1)×{0})∪ ({0}×
A(P2)), and so |A(P1 × P2)| = |A(P1)|+ |A(P2)|.
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Proof. Suppose that (a, b) belongs to the set A(P1×P2). If a, b 6= 0, then we have
(0, 0) < (a, 0) < (a, b) which is impossible. Then we have a = 0 or b = 0. Without
loss of generally, we may assume that b = 0. If a /∈ A(P1), then there exists an
atom ai ∈ A(P1), for some 1 6 i 6 n, such that ai < a. Hence we have that
(0, 0) < (ai, 0) < (a, 0) which is impossible. Thus a ∈ A(P1), and so the result
holds.

We can extend the concept of P1×P2 for a product of �nite number of posets.

Corollary 2.9. Let P = P1×P2× · · ·×Pn, where (Pi,6i)'s are partially ordered

sets for i = 1, 2, . . . , n. Then A(P ) consists of elements (a1, a2, . . . , an) such that

there exists 1 6 j 6 n with aj ∈ A(Pj), and, for all i with 1 6 i 6= j 6 n, ai = 0.

Proposition 2.10. Let P = P1×P2× · · ·×Pn be a poset such that P 6= P1×P2,

with |P1| = |P2| = 2. If a = (0, 0, . . . , ui, 0, . . . , 0) ∈ Z(P ) is a cut vertex with

nonzero component ui such that ui /∈ Z(Pi), then |Pi| = 2 .

Proof. Assume on the contrary that Pi has at least three elements and so there
exists vi in Pi\{0, ui}. It is easy to see that Za ⊆ Z(0,0,...,vi,0,...,0). Since a is a cut
vertex, by Theorem 2.7, we have that Za = Z(0,0,...,vi,0,...,0), which implies that
a = (0, 0, . . . , vi, 0, . . . , 0). Hence ui = vi, which is a contradiction.

3. Planarity of Γ(P1 × P2)

Recall that a graph is said to be planar if it can be drown in the plane, so that
its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths. A
remarkable characterization of the planar graphs was given by Kuratowski in 1930.
Kuratowski's Theorem says that a graph is planar if and only if it contains no
subdivision of K5 or K3,3.

Theorem 3.1. If Γ(P1 × P2) is planar, then |A(P1)|+ |A(P2)| 6 4.

Proof. Suppose on the contrary that |A(P1)| + |A(P2)| > 5. Since the induced
subgraph of Γ(P1×P2) on the vertex-set A(P1×P2) is a complete graph, one can
�nd a subgraph of Γ(P1×P2) isomorphic to K5, and so, by Kuratowski's Theorem,
Γ(P1 × P2) is not planar. Hence we have |A(P1)|+ |A(P2)| 6 4.

By Theorem 3.1, we must study the cases that |A(P1)|+ |A(P2)| is equal to 2, 3
and 4. In the following proposition, we state the necessary and su�cient condition
for planarity of Γ(P1 × P2), when |A(P1)|+ |A(P2)| = 2.

Proposition 3.2. Suppose that |A(P1)| + |A(P2)| = 2 such that |A(P1)| = 1 =
|A(P2)|. Then Γ(P1 × P2) is planar if and only if |P1| 6 3 or |P2| 6 3.

Proof. Since |A(P1)|+ |A(P2)| = 2, we have that Γ(P1×P2) is a complete bipartite
graph. Now one can easily see that Γ(P1 × P2) is planar if and only if |P1| 6 3 or
|P2| 6 3.
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Now, suppose that P1 and P2 are posets such that |A(P1)|+ |A(P2)| = 3. Let
|A(P1)| = 1 and |A(P2)| = 2. If |P1|, |P2| > 4, then we can �nd a copy of K3,3 in
the graph Γ(P1 × P2). Thus, by Kuratowski's Theorem, Γ(P1 × P2) is not planar.
Therefore, if Γ(P1 × P2) is planar, then |P1| 6 3 or |P2| 6 3. Now, we have the
following cases:

Case 1. Suppose that |P1| = 2 and |UP2
i | > 2, for all 1 6 i 6 2. In this

situation we can �nd a subdivision of K5 as in Figure 3, where yi ∈ UP2
i \{bi}, for

all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.

Figure 3.

If |UP2
i | = 1 and |UP2

j | > 3, for some 1 6 i 6= j 6 2, then one can �nd a copy
of K3,3 with vertex-set {(a1, 0), (0, b1), (a1, b1)} ∪ {(0, b2), (0, y2), (0, y′2)}, where
yi, y

′
i ∈ UP2

i \{bi}, for all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.

Now, if |UP2
i | = 1 and |UP2

j | 6 2, for all 1 6 i 6= j 6 2, then Γ(P1 × P2) is
pictured in Figure 4, and so Γ(P1 × P2) is planar.

Figure 4.

Case 2. Suppose that |P1| = 3 and |UP2
i | > 3, for some 1 6 i 6 2. In

this situation one can �nd a copy of K3,3 with vertex-set {(a1, 0), (0, b2), (x, b2)}∪
{(0, b1), (0, y1), (0, y′1)}, where x ∈ P1\{0, a1} and yi, y

′
i ∈ UP2

i \{bi} for some 1 6
i 6 2, and so Γ(P1 × P2) is not planar.

Now, if |UP2
i | 6 2, for all 1 6 i 6 2, then one of the following situations happen:

(i) If |UP2
i | = 2, for all 1 6 i 6 2, then we can �nd a subdivision of K5 as in

Figure 3, where yi ∈ UP2
i \{bi} for all 1 6 i 6 2, and so Γ(P1 × P2) is not planar.



Zero-divisor graphs of posets 7

(ii) If |UP2
i | = 2, |UP2

j | = 1, for all 1 6 i 6= j 6 2 and UP2
12 6= ∅, then we can

�nd a subdivision of K5 as in Figure 5, where yi ∈ UP2
i \{bi} for some 1 6 i 6 2

and c12 ∈ UP2
12 . So Γ(P1 × P2) is not planar.

Figure 5.

If |UP2
i | = 2, |UP2

j | = 1, for all 1 6 i 6= j 6 2 and UP2
12 = ∅, then Γ(P1 × P2) is

pictured in Figure 6, and so Γ(P1 × P2) is planar.

Figure 6.

(iii) If |UP2
i | = 1, for all 1 6 i 6 2, then Γ(P1×P2) is pictured in Figure 7, and

so Γ(P1 × P2) is planar.

Figure 7.

Case 3. Suppose that |P2| = 3. In this situation Γ(P1 × P2) is pictured in
Figure 8, and hence Γ(P1 × P2) is planar.
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Figure 8.

Thus we have the following theorem.

Theorem 3.3. Suppose that |A(P1)| + |A(P2)| = 3 such that |A(P1)| = 1 and

|A(P2)| = 2. Then Γ(P1×P2) is planar if and only if one of the following conditions

hold.

(i) |P1| = 2, |UP2
i | = 1 and |UP2

j | 6 2, for all 1 6 i 6= j 6 2.

(ii) |P1| = 3 and |UP2
i | = 1, for all 1 6 i 6 2.

(iii) |P1| = 3, |UP2
i | = 2 and |UP2

j | = 1, for some 1 6 i 6= j 6 2 and UP2
12 = ∅.

(iv) |P2| = 3.

Finally, in order to complete the study of planarity of Γ(P1 × P2), we assume
that |A(P1)|+ |A(P2)| = 4. Now, we have the following cases:

Case 1. Suppose that |A(P1)| = 1 and |A(P2)| = 3. In this situation if
Γ(P1 × P2) is planar, then |P1| 6 3. Note that if Γ(P1 × P2) is planar and
|P1| > 4, then one can �nd a copy of K3,3 with vertex-set {(a1, 0), (x, 0), (x′, 0)} ∪
{(0, b1), (0, b2), (0, b3)}, where x, x′ ∈ P1\{0, a1}. Thus Γ(P1 × P2) is not planar.
Therefore |P1| 6 3.

Now, we investigate the planarity of Γ(P1 × P2) whenever, |P1| 6 3. To this
end, we consider the following situations:

(i) Suppose that |P1| = 2. If |UP2
i | > 2, for some 1 6 i 6 3, then we can �nd a

subdivision of K5 as in Figure 9, where yi ∈ UP2
i \{bi} for some 1 6 i 6 3.

Figure 9.
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If |UP2
ij | > 1, for some 1 6 i 6= j 6 3, then one can �nd a copy of K3,3 with

vertex-set {(a1, 0), (0, b3), (a1, b3)} ∪ {(0, b1), (0, b2), (0, c12)}, where cij ∈ UP2
ij for

some 1 6 i 6= j 6 3. So Γ(P1 × P2) is not planar.
Now, if |UP2

i | = 1, for all 1 6 i 6 3 and UP2
ij = ∅, for all 1 6 i 6= j 6 3, then

Γ(P1 × P2) is pictured in Figure 10, and so Γ(P1 × P2) is planar.

Figure 10.

(ii) Assume that |P1| = 3. If |UP2
i | > 2, for some 1 6 i 6 3, then we can �nd a

subdivision of K5 as in Figure 9, where yi ∈ UP2
i \{bi} for some 1 6 i 6 3.

If |UP2
ij | > 1, for some 1 6 i 6= j 6 3, then one can �nd a copy of K3,3 with

vertex-set {(a1, 0), (0, b3), (a1, b3)} ∪ {(0, b1), (0, b2), (0, c12)}, where cij ∈ UP2
ij , for

some 1 6 i 6= j 6 3. So Γ(P1 × P2) is not planar.
If UP2

123 6= ∅, then we can �nd a subdivition of K5 as in Figure 11, where
c123 ∈ UP2

123. So Γ(P1 × P2) is not planar.

Figure 11.

Now, if |UP2
i | = 1, for all 1 6 i 6 3 and UP2

i...j = ∅, for all 1 6 i 6= j 6 3, then
Γ(P1 × P2) is pictured in Figure 12, and so Γ(P1 × P2) is planar.

Figure 12.
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Case 2. Assume that |A(P1)| = 2 = |A(P2)|. In this situation we can �nd a
subdivision of K3,3 as in Figure 13, and so Γ(P1 × P2) is not planar.

Figure 13.

Hence we have the following theorem.

Theorem 3.4. Suppose that |A(P1)| + |A(P2)| = 4 such that |A(P1)| = 1 and

|A(P2)| = 3. Then Γ(P1×P2) is planar if and only if one of the following conditions

hold.

(i) |P1| = 2 and |UP2
i | = 1 for all 1 6 i 6 3 and UP2

ij = ∅ for all 1 6 i 6= j 6 3.

(ii) |P1| = 3, |UP2
i | = 1 for all 1 6 i 6 3 and UP2

i...j = ∅ for all 1 6 i 6= j 6 3.

4. Outerplanarity of Γ(P ) and Γ(P1 × P2)

A directed graph is outerplanar if it can be drawn in the plane without crossing
in such a way that all of the vertices belong to the unbounded face of the drawing.
There is a characterization for outerplanar graphs that says a graph is outerplanar
if and only if it does not contain a subdivision of K4 or K2,3.

In the following, we characterize all posets P such that Γ(P ) is outerplanar.

Lemma 4.1. If Γ(P ) is outerplanar, then |A(P )| 6 3.

Proof. Assume to the contrary that |A(P )| > 4. Since the induced subgraph of
Γ(P ) on vertex-set A(P ) is a complete subgraph, one can �nd a copy of K4 in
Γ(P ), and so Γ(P ) is not outerplanar. Hence we have |A(P )| 6 3.

By Lemma 4.1, we must study the cases that |A(P )| is equal to 2 and 3.
In the following proposition, we state the necessary and su�cient condition for
outerplanarity of Γ(P ), when |A(P )| = 2.

Proposition 4.2. Suppose that |A(P )| = 2. Then Γ(P ) is outerplanar if and only

if |Ui| = 1, for some 1 6 i 6 2, or |Ui| 6 2, for all 1 6 i 6 2.

Proof. Since |A(P )| = 2, we have that Γ(P ) is a complete bipartite graph. Now one
can easily see that Γ(P ) is outerplanar if and only if |Ui| = 1, for some 1 6 i 6 2,
or |Ui| 6 2, for all 1 6 i 6 2.
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In the sequel of this section, we investigate the outerplanarity of Γ(P ), when
|A(P )| = 3. If | ∪3i=1 Ui| > 5, then we can �nd a copy of K2,3 in the structure
of Γ(P ), and so Γ(P ) is not outerplanar. Therefore, if Γ(P ) is outerplanar, then
| ∪3i=1 Ui| 6 4. Now, we have the following cases:

Case 1. Suppose that | ∪3i=1 Ui| = 3. In this situation Γ(P ) is a unicyclic
graph which is in pictured in Figure 14, and so it is outerplanar.

Figure 14.

Case 2. Suppose that | ∪3i=1 Ui| = 4. Suppose that |Ui| = 2. If |Ujk| > 1,
for some 1 6 i 6= j 6= k 6 3, then we can �nd a copy of K2,3 with vertex-set
{a1, a′1} ∪ {a2, a3, c23}, where a′i ∈ Ui\{ai} and cjk ∈ Ujk, for some 1 6 i 6= j 6=
k 6 3, and so Γ(P ) is not outerplanar.

Now, if Ujk = ∅, for all 1 6 i 6= j 6= k 6 3, then Γ(P ) is isomorphic to the
graph which is pictured in Figure 15, and so Γ(P ) is outerplanar.

Figure 15.

Theorem 4.3. Suppose that |A(P )| = 3. Then Γ(P ) is outerplanar if and only if

one of the following conditions holds:

(i) | ∪3i=1 Ui| = 3.

(ii) | ∪3i=1 Ui| = 4 and if |Ui| = 2, for some 1 6 i 6 3, then Ujk = ∅, for all

1 6 i 6= j 6= k 6 3.

In the following, we characterize all posets P1 and P2 such that Γ(P1 × P2)
is outerplanar. Clearly, if Γ(P1 × P2) is outerplanar, then, by Lemmas 2.8 and
4.1, |A(P1)| + |A(P2)| 6 3. In the next two Theorems, we investigate the cases
|A(P1)|+ |A(P2)| = 2 and |A(P1)|+ |A(P2)| = 3.

Theorem 4.4. Suppose that |A(P1)| + |A(P2)| = 2 such that |A(P1)| = 1 =
|A(P2)|. Then Γ(P1 × P2) is outerplanar if and only if |Pi| 6 2 or, |Pj | 6 3 with

|Pi| 6 2, for some 1 6 i 6= j 6 2.

Proof. Since |A(P1)|+ |A(P2)| = 2, we have that Γ(P1×P2) is a complete bipartite
graph. Now one can easily see that Γ(P1×P2) is an outerplanar graph if and only
if |Pi| 6 2 or, |Pj | 6 3 and |Pi| 6 2, for some 1 6 i 6= j 6 2.
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Now, suppose that P1 and P2 are posets such that |A(P1)| = 1 and |A(P2)| = 2.
If |Pi| > 3 and |Pj | > 4, for all 1 6 i 6= j 6 2, then we can �nd a copy of K2,3 in
the graph Γ(P1×P2). Thus Γ(P1×P2) is not outerplanar. Therefore, if Γ(P1×P2)
is outerplanar, then |P1| = 2, or |P2| = 3 with |P1| 6 3. Now, in the following two
cases, we study the outerplanarity of Γ(P1 × P2) whenever |P1| = 2, or |P1| 6 3
with |P2| = 3.

Case 1. Suppose that |P1| = 2 and |UP2
i | > 2, for some 1 6 i 6 2. In this

case we can �nd a subdivision of K4 as in Figure 16, where yi ∈ UP2
i \{bi}, and so

Γ(P1 × P2) is not outerplanar.

Figure 16.

Now, if |UP2
i | = 1, for all 1 6 i 6 2, then Γ(P1 × P2) is pictured in Figure 17,

and so Γ(P1 × P2) is outerplanar.

Figure 17.

Case 2. Suppose that |P2| = 3 and |P1| 6 3. If |P1| = 3. Then Γ(P1 × P2) is
pictured in Figure 18, where x ∈ P1\{0, a1}, and so it is outerplanar.

Figure 18.

If |P1| = 2, then Γ(P1 × P2) is pictured in Figure 17, and so it is outerplanar.

Theorem 4.5. Suppose that |A(P1)| + |A(P2)| = 3 such that |A(P1)| = 1 and

|A(P2)| = 2. Then Γ(P1 × P2) is outerplanar if and only if one of the following

conditions hold.

(i) |P1| = 2 and |UP2
i | = 1, for all 1 6 i 6 2.

(ii) |P2| = 3 and |P1| 6 3.
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Let G be a graph with n vertices and q edges. We recall that a chord is any
edge of G joining two nonadjacent vertices in a cycle of G. Let C be a cycle of G.
We say C is a primitive cycle if it has no chords. Also, a graph G has the primitive

cycle property (PCP ) if any two primitive cycles intersect in at most one edge.
The number frank(G) is called the free rank of G and it is the number of primitive
cycles of G. Also, the number rank(G)=q − n + r is called the cycle rank of G,
where r is the number of connected components of G. The cycle rank of G can be
expressed as the dimension of the cycle space of G. By [10, Proposition 2.2], we
have rank(G) 6 frank (G). A graph G is called a ring graph if it satis�es in one
of the following equivalent conditions (see [10]).

(i) rank(G)= frank(G),

(ii) G satis�es the PCP and G does not contain a subdivision of K4 as a sub-
graph.

Clearly, every outerplanar graph is a ring graph and every ring graph is a planar
graph.

Now, in view of the proofs of Proposition 4.2 and Theorem 4.3 we have the
following result.

Theorem 4.6. The zero-divisor graph Γ(P ) is a ring graph if and only if it is an

outerplanar graph.

5. End-regularity of zero-divisor graphs of posets

Let G and H be graphs. A homomorphism f from G to H is a map from V (G)
to V (H) such that for any a, b ∈ V (G), a is adjacent to b implies that f(a) is
adjacent to f(b). Moreover, if f is bijective and its inverse mapping is also a
homomorphism, then we call f an isomorphism from G to H, and in this case
we say G is isomorphic to H, denoted by G ∼= H. A homomorphism (resp, an
isomorphism) from G to itself is called an endomorphism (resp, automorphism) of
G. An endomorphism f is said to be half-strong if f(a) is adjacent to f(b) implies
that there exist c ∈ f−1(f(a)) and d ∈ f−1(f(b)) such that c is adjacent to d.
By End(G), we denote the set of all the endomorphisms of G. It is well-known
that End(G) is a monoid with respect to the composition of mappings. Let S be a
semigroup. An element a in S is called regular if a = aba for some b ∈ S and S is
called regular if every element in S is regular. Also, a graph G is called end-regular

if End(G) is regular.
Now, we recall the following Lemma from [18].

Lemma 5.1. [18, Lemma 2.1] Let G be a graph. If there are pairwise distinct

vertices a, b, c in G satisfying N(c) $ N(a) ⊆ N(b), then G is not end-regular.

Lemma 5.2. Suppose that |A(P )| > 3. If Ui...j , Ui...j...k 6= ∅, such that |Ui...j | > 1,
for some 1 6 i < j < k < n, or Ui...j , Ui...j...k, Ui...j...k...t 6= ∅, for some 1 6 i <
j < k < t < n, then Γ(P ) is not end-regular.
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Proof. First suppose that Ui...j , Ui...j...k 6= ∅ and |Ui...j | > 1, for some 1 6 i < j <
k < n. Let a, b ∈ Ui...j and c ∈ Ui...j...k. Then N(c) $ N(a), since ak ∈ N(a)\N(c).
Now, we have N(c) $ N(a) ⊆ N(b), and so, by Lemma 5.1, Γ(P ) is not end-
regular. If Ui...j , Ui...j...k, Ui...j...k...t 6= ∅, for some 1 6 i < j < k < t < n, then
consider the elements a ∈ Ui...j , b ∈ Ui...j...k and c ∈ Ui...j...k...t. Now, we have
N(c) $ N(b) ⊆ N(a). Hence Γ(P ) is not end-regular.

Proposition 5.3. Suppose that |A(P )| = 2. Then Γ(P ) is end-regular.

Proof. Clearly Γ(P ) is a complete bipartite graph. Now, by [22, Theorem 3.4], we
have that Γ(P ) is end-regular.

Lemma 5.4. Suppose that x, y ∈ Z(P ). Then N(x) ⊆ N(y) if and only if Zx ⊆ Zy

and {x, y}` 6= {0}.

Proof. First assume that N(x) ⊆ N(y). Then Zx ⊆ Zy. Also, suppose to the
contrary that {x, y}` = {0}. Then x is adjacent to y. This means that y ∈ N(x) ⊆
N(y), and so y ∈ N(y), which is a contradiction.

Conversly, one can easy to see that result holds.

Proposition 5.5. Suppose that P = P1×P2×· · ·×Pn. Then we have the following

statements.

(i) If n > 3, then Γ(P1 × P2 × · · · × Pn) is not end-regular.

(ii) If |A(P1)| = 1 = |A(P2)|, then Γ(P1 × P2) is end-regular.

Proof. (i) Suppose that A(P1) = {a1, a2, . . . , an}, A(P2) = {b1, b2, . . . , bm} and
A(P3) = {c1, c2, . . . , ct}, where m,n, t > 1.

Set x := (ai, 0, . . . , 0), y := (ai, bj , 0, . . . , 0) and z := (ai, bj , ck, 0, . . . , 0), for
some 1 6 i 6 n, 1 6 j 6 m and 1 6 k 6 t. Then N(z) $ N(y) $ N(x). Now, by
Lemmas 5.1 and 5.4, Γ(P ) is not end-regular.

(ii) Note that in this case, Γ(P1 × P2) is a complete bipartite graph and, by
[22, Theorem 3.4], every complete bipartite graph is end-regular.

Lemma 5.6. Assume that Γ(P2) has distinct vertices x and y such that x, y /∈
A(P2) and N(x) ⊆ N(y). Then Γ(P1 × P2) is not end-regular.

Proof. Suppose that b ∈ A(P2). Then it follows from the fact that N(0, b) $
N(0, x) $ N(0, y).
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