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The transitivity of primary conjugacy

in a class of semigroups

Maria Borralho

Abstract. Elements a, b of a semigroup S are said to be primarily conjugate or just p-conjugate,

if there exist x, y ∈ S1 such that a = xy and b = yx. The p-conjugacy relation generalizes

conjugacy in groups, but for general semigroups, it is not transitive. Finding the classes of

semigroups in which this notion is transitive is an open problem. The aim of this note is to show

that for semigroups satisfying xy ∈ {yx, (xy)n} for some n > 1, primary conjugacy is transitive.

By a notion of conjugacy for a class of semigroups, we mean an equivalence re-
lation de�ned in the language of that class of semigroups such that when restricted
to groups, it coincides with the usual notion of conjugacy.

Before introducing the notion of conjugacy that will occupy us, we recall some
standard de�nitions and notation (we generally follow [4]). For a semigroup S, we
denote by S1 the semigroup S if S is a monoid; otherwise S1 denotes the monoid
obtained from S by adjoining an identity element 1.

Any reasonable notion of semigroup conjugacy should coincide in groups with
the usual notion. Elements a, b of a group G are conjugate if there exists g ∈ G
such that a = g−1bg. Conjugacy in groups has several equivalent formulations that
avoid inverses, and hence generalize syntactically to any semigroup. For many of
these notions including the one we focus on here, we refer the reader to [2, 5, 8].

For example, if G is a group, then a, b ∈ G are conjugate if and only if a = uv
and b = vu for some u, v ∈ G. Indeed, if a = g−1bg, then setting u = g−1b and
v = g gives uv = a and vu = b; conversely, if a = uv and b = vu for some u, v ∈ G,
then setting g = v gives g−1bg = v−1vuv = uv = a.

This last formulation was used to de�ne the following relation on a free semi-
group S (see [9]):

a ∼p b ⇐⇒ ∃u,v∈S1 a = uv and b = vu.

If S is a free semigroup, then ∼p is an equivalence relation on S [9, Cor.5.2], and
so it can be considered as a notion of conjugacy in S. In a general semigroup
S, the relation ∼p is re�exive and symmetric, but not transitive. If a ∼p b in
a semigroup, we say that a and b are primarily conjugate or just p-conjugate for
short (hence the subscript in ∼p); a and b were said to be �primarily related� in [8].
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Lallement [9] credited the idea of the relation ∼p to Lyndon and Schützenberger
[10].

In spite of its name, ∼p is a valid notion of conjugacy only in the class of
semigroups in which it is transitive. Otherwise, the transitive closure ∼p∗ of ∼p
has been de�ned as a conjugacy relation in a general semigroup [3, 7, 8]. Finding
classes of semigroups in which ∼p itself is transitive, that is, ∼p=∼p∗, is an open
problem. The aim of this note is to prove the following theorem.

Theorem. Let n > 1 be an integer and let S be a semigroup satisfying the

following: for all x, y ∈ S,
xy ∈ {yx, (xy)n} .

Then primary conjugacy ∼p is transitive in S.

There are various motivations for studying this particular class of semigroups.
First, it naturally generalizes two classes of semigroups in which ∼p is transitive.

Proposition. Let S be a semigroup.

(1) If S is commutative, then ∼p is transitive.

(2) If S satis�es xy = (xy)2 for all x, y ∈ S, then ∼p is transitive.

Proof. (1). In a commutative semigroup, ∼p is the identity relation and hence it
is trivially transitive.

(2). If a ∼p b, then a = uv and b = vu for some u, v ∈ S1. Thus a2 = (uv)2 =
uv = a and b2 = (vu)2 = vu = b so that a, b are idempotents. In particular, a, b are
completely regular elements of S. The restriction of ∼p to the set of completely
regular elements is a transitive relation [6].

The other motivation for studying this class of semigroups is that it has been
of recent interest in other contexts. In particular, J. P. Araújo and M. Kinyon [1]
showed that a semigroup satisfying x3 = x and xy ∈ {yx, (xy)2} for all x, y is a
semilattice of rectangular bands and groups of exponent 2.

The proof of Theorem was found by �rst proving the special cases n = 2, 3, 4
using the automated theorem prover Prover9 developed by McCune [11]. After
studying these proofs, the pattern became apparent, leading to the proof of the
general case. Note that Prover9 and other automated theorem provers usually
cannot handle statements like our theorem directly because there is not a way to
specify that n is a �xed positive integer. Thus the approach of examining a few
special cases and then extracting a human proof of the general case is the most
e�cient way to use an automated theorem prover in these circumstances.

Proof of Theorem. Suppose a, b, c ∈ S satisfy a ∼p b and b ∼p c. Since a ∼p b,
there exist a1, a2 ∈ S1 such that a = a1a2 and b = a2a1. Similarly, since b ∼p c,
there exist b1, b2 ∈ S1 such that b = b1b2 and c = b2b1. We want to prove there
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exist x, y ∈ S1 such that a = xy and c = yx. If a = b or if b = c, then there is
nothing to prove. Thus we may assume without loss of generality that a1a2 6= a2a1
and b2b1 6= b1b2.

Assume �rst that n = 2. Then

a = a1a2 = (a1a2)(a1a2) = a1(a2a1)a2 = a1ba2 = (a1b1)(b2a2) ,

and

c = b2b1 = (b2b1)(b2b1) = b2(b1b2)b1 = b2bb1 = (b2a2)(a1b1) .

Thus setting x = a1b1 and y = b2a2, we have a ∼p c in this case.

Now assume n > 2. We have

a = a1a2 = (a1a2)
n = (a1a2) · · · (a1a2)︸ ︷︷ ︸

n

= a1(a2a1) · · · (a2a1)︸ ︷︷ ︸
n−1

a2

= a1b
n−1a2

= a1bb
n−2a2

= a1(b1b2)b
n−2a2

= (a1b1)(b2b
n−2a2)

and

c = b2b1 = (b2b1)
n = (b2b1) · · · (b2b1)︸ ︷︷ ︸

n

= b2(b1b2) · · · (b1b2)︸ ︷︷ ︸
n−1

b1

= b2b
n−1b1

= b2b
n−2bb1

= b2b
n−2(a2a1)b1

= (b2b
n−2a2)(a1b1) .

Thus setting x = a1b1 and y = b2b
n−2a2, we have that a ∼p c.
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