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The equivalence graph

of the comaximal graph of a group

Atefeh Hasanvand and Rashid Rezaei

Abstract. Let G be a �nite group. The comaximal graph of G, denoted by Γm(G), is a graph

whose vertices are the proper subgroups of G that are not contained in the Frattini subgroup of

G and join two distinct vertices H and K, whenever G = 〈H,K〉. In this paper, we de�ne an

equivalence relation ∼ on V (Γm(G)) by taking H ∼ K if and only if their open neighborhoods are

the same. We introduce a new graph determined by equivalence classes of V (Γm(G)), denoted

ΓE(G), as follows. The vertices are V (ΓE(G)) = {[H]|H ∈ V (Γm(G))} and two equivalence

classes [H] and [K] are adjacent in ΓE(G) if and only if H and K are adjacent in Γm(G). We

will state some basic graph theoretic properties of ΓE(G) and study the relations between some

properties of graph Γm(G) and ΓE(G), such as the chromatic number, clique number, girth

and diameter. Moreover, we classify the groups for which ΓE(G) is complete, regular or planar.

Among other results, we show that if the number of maximal subgroups of the group G is less

or equal than 4, then Γm(G) and ΓE(G) are perfect graphs.

1. Introduction

The study of algebraic structures using the properties of graphs has been an excit-
ing research topic, leading to many fascinating results and questions. Associating
a graph to a group or a ring and using information on one of the two objects
to solve a problem for the other is an interesting research topic, for instance, see
[?, ?, ?]. For example, in [?] Sharma and Bhatwadekar de�ned a graph on a
non-zero commutative ring with identity R, Γ(R), with vertices as elements of R,
where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. In
[?] the authors introduced and studied the comaximal graph of a �nite bounded
lattice, denoted by Γ(R). They investigated some graph-theoretic properties of
Γ(R). It is shown that for two �nite semi-local rings R and S, if R is reduced,
then Γ(R) ∼= Γ(S) if and only if R ∼= S.

Let G be a group and L(G) be the set of all subgroups of G. We can associate
a graph to G in many di�erent ways (see, for example, [1, 2, 3, 14]). Here we
consider the following way: Let Φ(G) be the Frattini subgroup of G. Associate a
graph Γm(G) to G, the comaximal graph of G, as follows: The vertex set is all
proper subgroups of G that are not contained in Φ(G) and two distinct vertices H
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and K joined by an edge if and only if G = 〈H,K〉. Note that if G ∼= Cpn , a cyclic
group of order pn, then Φ(G) ∼= Cpn−1 and so Γm(G) is a null graph. Recently,
this graph was investigated by H. Ahmadi and B. Taeri in [?, ?, ?], in which it is
referred to as the graph related to the join of subgroups.

For a simple graph Γ, two vertices H, K are equivalent if and only if their
open neighborhoods are the same, i.e., H ∼ K if and only if N(H) = N(K)
where N(H) = {L ∈ V (Γ) | H and L are adjacent in Γ}. It is clear that ∼ is an
equivalence relation on V (Γ) and we denote the class of H by [H]. The graph of
equivalence classes of Γ, denoted by ΓE , is the simple graph whose vertex set is
V (ΓE) = {[H]|H ∈ V (Γ)} and two distinct equivalence classes [H] and [K] are
adjacent in ΓE , denoted [H]− [K], if H and K are adjacent in Γ. The remarkable
thing is that ΓE can be considered as a subgraph of Γ, and it can inherit many
properties of Γ. In particular, in many cases, some graph theoretic properties of Γ
and ΓE are the same, such as the chromatic number, clique number and diameter.
For example, in [?] the authors considered the graph of equivalence classes of
the non-commuting graph of a group G and investigated some graph-theoretic
properties of this graph.

In this paper, we will introduce the graph of equivalence classes of Γm(G) and
we will state some of basic graph theoretical properties of ΓE(G), for instance
determining diameter, girth, dominating set, planarity of the graph and we give
some relation between the graph properties of Γm(G) and ΓE(G). We will classify
all solvable groups G for which ΓE(G) is a complete graph. Furthermore, we show
that for a non-nilpotent group G, ΓE(G) is planner if and only if |G| = 2n3m and
G/Φ(G) ∼= S3. In Section 3, some results on groups whose equivalence graph of
comaximal graphs are complete are given. In Section 4, we will state some results
on planarity of ΓE(G). Finally, in Section 5 we will study on the perfection of
ΓE(G) and we will show that if |Max(G)| 6 4, then ΓE(G) is a perfect graph and
conclude if |Max(G)| 6 4, then Γm(G) is a perfect graph, too, where Max(G) is
the set of all maximal subgroups of the group G.

2. De�nitions and basic results

For a simple graph Γ, we denote the sets of the vertices and the edges of Γ by V (Γ)
and E(Γ), respectively. A graph Γ is said to be connected if there exists a path
between any two distinct vertices. The distance between two distinct vertices H
andK, denoted by d(H,K), is the length of the shortest path connectingH andK,
if such a path exists; otherwise, we set d(H,K) :=∞. The degree ofH, denoted by
deg(H), is the number of edges incident with H. The graph Γ is regular if and only
if for any two distinct vertices of graph have a same degree. Moreover, the diameter
of a connected graph Γ, denoted by diam(Γ), is sup{d(H,K) : H,K ∈ V (Γ)}. A
graph in which each pair of distinct vertices is joined by an edge is called a complete
graph. We use Kn for the complete graph with n vertices. For a positive integer
r, an r-partite graph is one whose vertex-set can be partitioned into r subsets so
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that no edge has both ends in any one subset. A complete r-partite graph is one
in which each vertex is joined to every vertex that is not in the same subset. The
complete bipartite graph (2-partite graph) with part sizes m and n is denoted by
Km,n. The girth of Γ, denoted by girth(Γ), is the length of the shortest cycle in
Γ, if Γ contains a cycle; otherwise, we set girth(Γ) := ∞. A subset X of V (Γ) is
called a clique if the induced subgraph on X is a complete graph. The maximum
size of a clique in a graph Γ is called the clique number of Γ and denoted by ω(Γ).
The chromatic number of a graph Γ, denoted by χ(Γ), is the minimal number of
colors which can be assigned to the vertices of Γ in such a way that every two
adjacent vertices have di�erent colors. A subset X of the vertices of Γ is called an
independent set if the induced subgraph on X has no edges. The maximum size
of an independent set in a graph Γ is called the independence number of Γ and
denoted by α(Γ). A subset D of V (Γ) is a dominating set of Γ if every vertex in
V (Γ)\D is adjacent to some vertex in D. The domination number λ(Γ) of Γ is the
minimum cardinality of a dominating set. The complement of a graph Γ, denoted
by Γ, is the graph with the same vertex set such that two distinct vertices H and
K are adjacent in Γ if and only if they are not adjacent in Γ.

Let Γm(G) be the comaximal graph of a group G and

N(H) = {L ∈ V (Γm(G)) | H and L are adjacent in Γm(G)}

be the open neighborhood of the vertex H in Γm(G). Two vertices H and K are
equivalent in Γm(G) if and only if their open neighborhoods are the same, i.e.,
H ∼ K if and only if N(H) = N(K). One can see that ∼ is an equivalence
relation on V (Γm(G)) and we denote the class of H by [H].

De�nition 2.1. Let G be a group and Γm(G) be its comaximal graph. The graph
of equivalence classes of Γm(G), denoted by ΓE(G), is the graph whose vertex set
is V (ΓE(G)) = {[H] : H ∈ V (Γm(G))}, and two distinct equivalence classes [H]
and [K] are adjacent in ΓE(G) if and only if H and K are adjacent in Γm(G).

Proposition 2.2. Let Cn be a cyclic group of order n = pα1
1 pα2

2 . . . pαmm , where
αi ∈ N and m > 2. Then ΓE(Cn) ∼= ΓE(Cp1...pm).

Proof. Assume that Cn = 〈a〉. It is easy to check that

N(〈ap
β1
i1
p
β2
i2
...p

βk
ik 〉) = N(〈api1pi2 ...pik 〉)

where {i1, i2, . . . ik} ⊂ {1, 2, . . . ,m} and 1 6 βi 6 αi. Therefore [〈ap
β1
i1
p
β2
i2
...p

βk
ik 〉] =

[〈api1pi2 ...pik 〉] and so the result follows.

Let π(G) be the set of all prime divisors of |G|. By Proposition 2.2 we have
the following result.

Proposition 2.3. Let Cn and Cm be two cyclic groups of order n,m. If π(Cn) =
π(Cm) = {p1, . . . , pk}, then ΓE(Cn) ∼= ΓE(Cm) ∼= ΓE(Cp1...pk).
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Let H be a proper subgroup of G. Set M(H) = {M ∈ Max(G)|H ⊆M}.

Lemma 2.4. Let H and K be proper subgroups of G. Then

(i) [H] and [K] are adjacent in ΓE(G) if and only if M(H) ∩M(K) = ∅.

(ii) [H] = [K] if and only if M(H) = M(K).

In particular, if H is only contained in a single maximal subgroup M , then [H] =
[M ].

Proof. (i). Assume that H and K are adjacent in Γm(G). If M is a maximal
subgroup of G that contains both of them, then 〈H,K〉 6= G, a contradiction.
Conversely, assume that the intersection ofM(H) andM(K) is the empty set and
[H] and [K] are not adjacent in ΓE(G). Then 〈H,K〉 is a proper subgroup of G
and so H and K lie in a maximal subgroup of G which is a contradiction.

(ii). Let [H] = [K] and M be a maximal subgroup of G such that M ∈
N(H) = N(K). Then M is adjacent to both of H and K, which implies that for
any maximal subgroup N of G, H ⊆ N if and only if K ⊆ N . Therefore M(H) =
M(K). Conversely, assume thatM(H) = M(K) and [H] 6= [K]. Then H � K and
so N(H) 6= N(K). Therefore there is a vertex L in Γm(G) such that G = 〈L,H〉
and 〈L,K〉 lies in a maximal subgroup of G, which is a contradiction.

Remark 2.5. Let G be a group and Max(G) = {M1, . . . ,Mn}. For In =
{1, . . . , n} we put

Vi1i2...ir = {H ∈ V (Γm(G))|M(H) = {Mi1 ,Mi2 , . . . ,Mir}}

where i1, i2, . . . , ir ∈ In and r 6 n− 1. By Lemma 2.4 we have H,H ′ ∈ Vi1i2...ir if
and only if [H] = [H ′]. Now if Vi1i2...ir 6= ∅, we may denote the vertex Vi1i2...ir in
ΓE(G) by [vi1i2...ir ]. Furthermore, for 1 6 i 6 n we denote the class of Vi by [Mi].
Then we have

V (ΓE(G)) = {[Mi] : 1 6 i 6 n} ∪n−1r=2 {[vi1i2···ir ] : 1 6 i1, · · · , ir 6 n, Vi1i2...ir 6= ∅}.

Furthermore, It is clear that [vi1i2...ir ] and [vj1j2...js ] are adjacent in ΓE(G) if and
only if {i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅ where 1 6 r, s 6 n− 1.

Proposition 2.6. Assume that G is a �nite group. Then

(i) ω(ΓE(G)) = ω(Γm(G)) = χ(Γm(G)) = χ(ΓE(G)) = |Max(G)|.

(ii) diam(ΓE(G)) = diam(Γm(G)) 6 slant3. In particular, ΓE(G) is connected.

(iii) If |Max(G)| > 3, then girth(ΓE(G)) = 3.

(iv) α(ΓE(G)) 6 α(Γm(G)).
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Proof. (i). Let |Max(G)| = n. We claim that {[M1], . . . , [Mn]} is a maximum
clique in ΓE(G). Let {[H1], . . . , [Hr]} be a clique in graph ΓE(G). Since [Hi]
and [Hj ] are adjacent, by Lemma 2.4, M(Hi) ∩M(Hj) = ∅, thus every subgroup
Hi is contained in a maximal subgroup of G and so r 6 n. By the same way
we have {M1, . . . ,Mn} is a maximum clique in Γm(G). Therefore ω(ΓE(G)) =
ω(Γm(G)) = |Max(G)|. Moreover, it is clear that for any graph Γ, ω(Γ) 6 χ(Γ).
Now assume that ω(Γm(G)) = t and Max(G) = {M1, · · · ,Mt}. Then for 1 6 i 6 t,
Si = L(Mi)\L(Φ(G)) is an independent set and V (Γm(G)) = ∪ti=1Si, where L(X)
is the set of all subgroups of a group X. Hence χ(Γ) 6 ω(Γ) and the proof is
complete.

(ii). Assume that [H] and [K] are two distinct vertices in ΓE(G). If H ∩K *
Φ(G), then there is a maximal subgroup M of G such that G = 〈M,H〉 = 〈M,K〉
and so d([H], [K]) 6 2. Now assume that H ∩K ⊆ Φ(G). Then there are maximal
subgroups M1 and M2 of G such that

G = 〈M1, H〉 = 〈M2,K〉 = 〈M1,M2〉

and so d([H], [K]) 6 3. Therefore diam(ΓE(G)) 6 slant3. By the same way one
may have diam(Γm(G)) 6 slant3, as required.

(iii). Suppose that a group G contains at least three maximal subgroups M1,
M2 and M3. Then {M1,M2,M3} and {[M1], [M2], [M3]} are triangles in Γm(G)
and ΓE(G) respectively and so girth(Γm(G)) = girth(ΓE(G)) = 3.

(iv). It is clear that if {H1, . . . ,Hr} is an independent set in the graph
Γm(G), then {[H1], . . . , [Hr]} is an independent set in ΓE(G). Thus α(ΓE(G)) 6
α(Γm(G)).

3. On the completeness of ΓE(G)

Let G be a �nite group. In [14], the authors have introduced the concept of
maximal graph, denoted by ΓM(G), as the graph whose vertices are the maximal
subgroups of G and join two distinct vertices M1 and M2, whenever M1∩M2 6= 1.
If the intersection of every pair of distinct maximal subgroups of G is trivial, then
the graph ΓM(G) has no edges. Now we may recall the following theorem.

Theorem 3.1. [14, Proposition 1.3] Let G be a �nite group. The intersection of
every pair of distinct maximal subgroups of G is trivial if and only if G is solvable
and one of the following holds:

(i) G ∼= Cpn (p is prime).

(ii) G ∼= Cpq (p, q di�erent primes).

(iii) G ∼= Cp × Cp (p is prime).

(iv) G = P o Q, where P is an elementary abelian p-group of order pn (p a
prime), |Q| = q, where q is a prime di�erent from p, and Q acts irreducibly
and �xed point freely on P .
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In the following theorem, we characterize all groups whose graph of equivalence
classes of comaximal graph of G are complete.

Theorem 3.2. The equivalence graph of the comaximal graph of G is complete if
and only if G is solvable and one of the following holds.

(i) G ∼= Cpn (p is prime).

(ii) G ∼= Cprqs (p, q di�erent primes).

(iii) G is a p-group, where G/Φ(G) ∼= Cp×Cp (p a prime). In particular, if G is
an abelian p-group then G ∼= Cpr × Cps and ΓE(G) ∼= Kp+1.

(iv) G/Φ(G) ∼= PoQ, where P is an elementary abelian p-group of order pn (p is
prime), |Q| = q, where q is a prime di�erent from p, and Q acts irreducibly
and �xed point freely on P . Moreover, in this case, G is not nilpotent.

Proof. Let ΓE(G) be a complete graph and Max(G) = {M1, . . . ,Mk}. Since Mi

andMi∩Mj are not joined by an edge, then [Mi∩Mj ] is not one of the vertices of
ΓE(G). Hence Mi ∩Mj = Φ(G) and so V (ΓE(G)) = {[M1], . . . , [Mk]}. Moreover,
the intersection of every pair of distinct maximal subgroups of G/Φ(G) is trivial.
Now by Theorem 3.1 we have the following cases:

(i). If G/Φ(G) ∼= Cpn , then n = 1 and G ∼= Cpm , for some integer m. Thus in
this case ΓE(G) is an empty graph.

(ii). If G/Φ(G) ∼= Cpq, then G is a cyclic group with two maximal subgroups.
Therefore G ∼= Cprqs .

(iii). If G/Φ(G) ∼= Cp × Cp, then G is nilpotent. Therefore

G ∼= S(p1)× . . .× S(pk),

where S(pi) is the Sylow pi-subgroup of G and π(G) = {p1, . . . , pk} is the set of
all prime divisors of |G|. Assume that k > 2. We know Φ(G) ∼= Φ(S(p1))× . . .×
Φ(S(pk)) and Φ(S(pi)) 6= 1. Therefore

Cp × Cp ∼=
G

Φ(G)
∼=

S(p1)

Φ(S(p1))
× . . .× S(pk)

Φ(S(pk))
,

which contradicts π(G) = π(G/Φ(G)). Hence k = 1 and so G is a p-group, where
G/Φ(G) ∼= Cp ×Cp. In particular, if G is an abelian p-group, G/Φ(G) ∼= Cp ×Cp
follows that G ∼= Cpr × Cps and so ΓE(G) ∼= Kp+1.

(iv). If G/Φ(G) = P o Q, Since Q is a non-normal maximal subgroup of G,
then G is non-nilpotent.

Conversely, If G ∼= Cpn or Cprqs , then it is clear that ΓE(G) is complete.
Now assume that G is a p-group of order pn, where G/Φ(G) ∼= Cp × Cp. Then
|Φ(G)| = pn and for allMi andMj in Max(G), |Mi∩Mj | = |Φ(G)|. ThereforeMi∩
Mj = Φ(G) for all Mi and Mj in Max(G) and so V (ΓE(G)) = {[M1], . . . , [Mk]}.
Thus ΓE(G) is a complete graph.
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For the last case there is a bijection between Max(G) and Max(G/Φ(G)) and
we may assume that G/Φ(G) ∼= P ′/Φ(G) o Q′/Φ(G), where P = P ′/Φ(G) and
Q = Q′/Φ(G). Then V (ΓE(G)) = {[P ′], [Q′], [Q′g]| g ∈ G} and so ΓE(G) is a
complete graph.

Proposition 3.3. λ(ΓE(G)) = 1 if and only if ΓE(G) is a complete graph.

Proof. Let D = {[H]} be a dominating set. It is easy to show that H is only
contained in a single maximal subgroup M and so [H] = [M ] by Lemma 2.4.
On the other hand, one can see that M ∩ N = Φ(G) for all N ∈ Max(G) \
{M}. Therefore M/Φ(G) ∩ N/Φ(G) = {Φ(G)} and so the maximal graph of
G/Φ(G), ΓM(G/Φ(G)), is nonconnected. Thanks to Theorem 1.2 in [14], G/Φ(G)
is isomorphic to one of the groups Cp×Cp, Cpq or PoQ, where P is an elementary
abelian p-group of order pn (p a prime), |Q| = q, where q is a prime di�erent from
p, and Q acts irreducibly and �xed point freely on P . Now the result follows by
Theorem 3.2.

Proposition 3.4. ΓE(G) is a regular graph if and only if ΓE(G) is a complete
graph.

Proof. Let ΓE(G) be a regular graph and let, for a contradiction, there is maximal
subgroups Mi and Mj of G such that Φ(G) ( Mi ∩Mj . Then [Mi ∩Mj ] is one
of the vertices of ΓE(G). But deg([Mi ∩Mj ]) < deg([Mi]), which contradicts the
regularity of ΓE(G). Therefore Φ(G) = Mi∩Mj and so V (ΓE(G)) = Max(G) and
the result follows.

Proposition 3.5. If G is a �nite p-group which has a maximal cyclic subgroup,
then ΓE(G) is a complete graph.

Proof. Thanks to Theorem 5.3.4 in [?], G is one of the following groups:

(i) Cpn

(ii) Cpn × Cpn−1

(iii) D2n =< x, y|x2n−1

= y2 = (xy)2 = 1 >, n > 3.

iv) Q2n =< x, y|x2n−1

= 1, y2 = x2
n−2

, xy = x−1 >, n > 3.

(v) SD2n =< x, a|x2 = 1 = a2
n−1

, ax = a2
n−2−1 >, n > 3.

(vi) Mn(p) =< x, a|xp = 1 = ap
n−1

, ax = a1+p
n−2

>, n > 3.

Now by using the parts (i) and (iii) of Theorem 3.2, ΓE(G) is a complete
graph.

Proposition 3.6. ΓE(G) ∼= K4 if and only if one of the following holds.
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(i) G is a 3-group and G/Φ(G) ∼= C3 × C3. In particular, if G is an abelian
3-group then G ∼= C3r × C3s , r, s > 1.

(ii) G/Φ(G) ∼= S3.

Proof. Assume that ΓE(G) ∼= K4. Since ΓE(G) is complete graph, then |V (ΓE(G))| =
|Max(G)| = 4. Then we have the following cases:
(i). By part (iii) of Theorem 3.2, G is a 3-group and G/Φ(G) ∼= C3 × C3. In
particular, if G is an abelian 3-group then G ∼= C3r × C3s , r, s > 1.
(ii). By part (iv) of Theorem 3.2, assume that G/Φ(G) ∼= P o Q, where P
is an elementary abelian p-group of order pn (p a prime), |Q| = q, where q is
a prime di�erent from p. One can see that the number of Sylow q-subgroups
and Sylow p-subgroup of G/Φ(G) are q + 1 = 3 and 1 respectively. Therefore
G/Φ(G) ∼= C3 o C2

∼= S3.

Proposition 3.7. ΓE(G) ∼= K5 if and only of G/Φ(G) ∼= A4.

Proof. Assume that ΓE(G) ∼= K5. Since ΓE(G) is complete graph, then |V (ΓE(G))| =
|Max(G)| = 5 and so by the last part of Theorem 3.2 the number of Sylow q-
subgroups and of G/Φ(G) are q+1 = 4 and so G/Φ(G) ∼= (C2×C2)oC3

∼= A4.

4. On the planarity of ΓE(G)

In this section, we will investigate the planarity of the equivalence graph ΓE(G).
First we recall the following well-known theorem of Kuratowski.

Theorem 4.1. [13, Theorem 4.4.6] A graph is planar if and only if it has no
subdivisions of K5 or K3,3.

In the following theorem, we characterize all cyclic groups whose equivalence
graph are planar.

Theorem 4.2. Let Cn be a cyclic group of order n. ΓE(Cn) is planar if and only
if |π(Cn)| = 2 or 3.

Proof. Since |Max(Cn)| = |π(Cn)|, then |Max(Cn)| 6 4, otherwise ΓE(G) will
have a subgraph isomorphic to K5 which is a contradiction. First we assume that
|Max(Cn)| = 4. According to Proposition 2.3 if π(Cn) = {p1, . . . , p4}, we have
ΓE(Cn) = ΓE(Cm) = ΓE(Cp1...p4). Hence the induced subgraph on vertices

{< ap1 >,< ap2 >,< ap3 >,< ap4 >,< ap1p3 >,< ap2p4 >}

contains a subgraph isomorphic to K3,3 and so ΓE(Cn) is not planar. Now, one
can check that if |π(Cn)| = 2 or 3, then ΓE(Cn) is planar.
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Theorem 4.3. Assume that G is a p-group of order pn where p is a prime and
n > 2. Then ΓE(G) is planar if and only if G/Φ(G) ∼= C2 × C2 or C3 × C3.
In particular, if G is an abelian non-cyclic p-group of order pn and n > 2, then
ΓE(G) is planar if and only if G ∼= C3r × C3s or G ∼= C2r × C2s , where r, s > 1.

Proof. Let G be a p-group of order pn and ΓE(G) be planar. Then G/Φ(G) ∼=
Cp× · · · ×Cp with rank r, |Max(G)| = (pr − 1)/(p− 1) and |Max(G)| 6 4. Hence
we must have p = 2 or p = 3 and r = 2 and so by Theorem 3.2 ΓE(G) ∼= K3 or
K4, which they are planar.

Assume that G is a group isomorphic to D2n , Q2n or SD2n , n > 3. Then
G/Φ(G) ∼= C2 × C2. Furthermore, Mn(p)/Φ(Mn(p)) ∼= Cp × Cp for p = 2 or 3.
Thanks to Theorem 4.3 we have the following result.

Corollary 4.4. Let G be a group isomorphic to one of the group D2n , Q2n , SD2n ,
n > 3 or Mn(p), p = 2 or 3. Then ΓE(G) is planar.

Theorem 4.5. Let G be a non-nilpotent group. ΓE(G) is planar if and only if
|G| = 2n3m and G/Φ(G) ∼= S3, where n,m > 1.

Proof. Assume that ΓE(G) is planar. Then |Max(G)| 6 4. On the other hand,
since G is not nilpotent by Lemma 3, in [9], we have |Max(G)| > 4. So Max(G) = 4
and by theorem 3 in [9], G is a supersolvable group of order 2n3m n,m > 1 and
G/Φ(G) ∼= S3 and the result follows.

5. On the perfection of ΓE(G)

In this section, we will study the perfection of the equivalence graph. We show
that if |Max(G)| 6 4 then ΓE(G) and Γm(G) are perfect. First, we recall the
following de�nitions and theorems.

De�nition 5.1. A graph Γ is perfect whenever ω(Γ′) = χ(Γ′), for all induced
subgraphs Γ′ of Γ.

De�nition 5.2. A graph is chordal (or triangulated) if each of its cycles of length
at least 4 has a chord, i.e., if it contains no induced cycles other than triangles.

Proposition 5.3. [13, Proposition 5.5.1] Every chordal graph is perfect. In par-
ticular, complete graphs, empty graphs and k-partite graphs are perfect.

Theorem 5.4. [?, Theorem 1.2] A graph Γ is perfect if and only if neither Γ nor
Γ contains an odd cycle of length at least 5 as an induced subgraph.

Theorem 5.5. If |Max(G)| 6 3, then ΓE(G) is chordal.

Proof. If |Max(G)| = 1, then Φ(G) is the maximal subgroup of G and so ΓE(G)
is empty. Furthermore, if |Max(G)| = {M1,M2}, then V (ΓE(G)) = {[M1], [M2]}
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and so ΓE(G) ∼= K2 . Hence by Proposition 5.3 they are perfect. Now assume
that Max(G) = {M1,M2,M3} and

[H1]− [H2]− · · · − [Hn]− [H1]

be a cycle of length n in ΓE(G). Since for all 1 6 i 6 3, deg([Mi]) = 2 or 3 and
by Remark 2.5 deg([vij ]) = 1, then n 6 3 and so ΓE(G) is chordal.

Corollary 5.6. If |Max(G)| 6 3, then ΓE(G) is perfect.

It must be noted that if |Max(G)| > 4, then there exists a �nite group like G
such that ΓE(G) is not chordal. For example, assume that G = 〈a〉 ∼= Cp1...p4 ,
where p1, . . . , p4 are primes, then

C4 : [ap1 ]− [ap2 ]− [ap1p3 ]− [ap2p4 ]− [ap1 ]

is a cycle of length 4 without a chord.

Theorem 5.7. If |Max(G)| = 4 then ΓE(G) is perfect.

Proof. We use Theorem 5.4 and show that ΓE(G) and ΓE(G) do not contain an
odd cycle of length at least 5 as an induced subgraph. For ΓE(G), by Remark 2.5
we have

V (ΓE(G)) = {[M1], [M2], [M3], [M4], [vij ], [vijk]|i, j, k ∈ {1, 2, 3, 4}}.

In the general case, we may assume that all of [vij ]'s and [vijk]'s are not empty. It
must be noted that there is not a cycle of length at least 5 which contains [vijk],
because each [vijk] has degree 1 and cannot be part of a cycle. Therefore, if n > 5
and Cn : [H1] − [H2] − · · · − [Hn] − [H1] is an odd cycle in V (ΓE(G)), then for
1 6 i 6 n, [Hi] is equal to either [Mi] or [vij ]. Without loss of generality, we may
assume that [H1] = [M1] or [H1] = [v12].
If [H1] = [M1], there are two choices for [H2].

Case 1: [H2] = [M2], [M3] or [M4]. If for example [H2] = [M2], then we can
choose just [v13] or [v14] for [H3]. If [H3] = [v13], then [H4] = [v24] and so [H1], [H4]
are adjacent. Hence n = 4, a contradiction. On the other hand, if [H3] = [v14],
then there is no choice for [H4], a contradiction too.

Case 2: [H2] = [v23] or [v24]. Then [H3] = [v14] or [v13] respectively and we
have no choice for [H4] which is a contradiction.

Now assume that [H1] = [v12]. We have two choices for [H2].
Case 1: [H2] = [M3] or [M4]. Let for example [H2] = [M3]. If [H3] = [M1]

or [M2], then [H4] = [v23] or [v13] respectively and there exists no choice for
[H5], a contradiction. Similarly, if [H3] = [v14] or [v24], then [H4] = [v23] or [v13]
respectively and there exists no choice for [H5], a contradiction too.

Case 2: [H2] = [v34]. Then [H3] = [M1] or [M2]. If for example [H3] = [M1],
then [H4] = [v23] or [v24] and so [H5] = [v14] or [v13] respectively. Now there exists
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no choice for [H6] and so this case does not hold. Consequently, ΓE(G) does not
contain an odd cycle of length at least 5 as an induced subgraph.

Now, we prove the same result for ΓE(G). First we note that since [vijk] has
degree 1 in ΓE(G), all but one vertex of the complement are neighbors of [vijk],
and so it cannot be contained in a chordless cycle of length at least 3. Let n > 5
and Cn : [H1] − [H2] − · · · − [Hn] − [H1] be an odd cycle in ΓE(G). Then for
1 6 i 6 n, [Hi] is equal to either [Mi] or [vij ].

Without loss of generality, we may assume that [H1] = [M1] or [H1] = [v12].
First assume that [H1] = [M1]. Then [H2] = [v12], [v13] or [v14]. If for example
[H2] = [v12], then [H3] = [v23], [v24] or [M2]. If [H3] = [M2], then we have no
choice for [H4]. Let [H3] = [v23] (or [H3] = [v24] ), then [H4] = [M3] or [v34]. If
[H4] = [M3], then there is no choice for [H5] and if [H4] = [v34], then [H5] = [M4]
and we have no choice for [H6]. Therefore in this case we have a contradiction.

Now assume that [H1] = [v12]. We have the following cases for [H2] :
Case 1: If [H2] = [M1] or [M2], then [H3] = [v13] or [v23] respectively and so

we have a cycle of length at most 3, a contradiction.
Case 2: [H2] = [v13], [v14], [v23] or [v24]. If for example [H2] = [v13], then

[H3] = [M3] or [v34] and �nally we have the paths [v12] − [v13] − [M3] or [v12] −
[v13]− [v34]− [M4] respectively, which they are not cycles in ΓE(G). Then we get
a contradiction in this case too.

Therefore ΓE(G) does not contain an odd cycle of length at least 5 and so
ΓE(G) is a perfect graph.

One can easily check that if Cn : H1−H2−· · ·−Hn−H1 is a cycle of length n
in Γm(G), then Cn : [H1]− [H2]−· · ·− [Hn]− [H1] is a cycle of length n in ΓE(G).
Then by Corollary 5.6 and Theorem 5.7 we have the following result for Γm(G).

Corollary 5.8. If |Max(G)| 6 4, then Γm(G) is a perfect graph.
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