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Computational approach for intransitive action

of ∆(2, 4, k) on PL(Fq)

Tahir Imran, Muhammad Ashiq and Muhammad Asad Zaighum

Abstract In this paper, we have investigated actions of triangle group ∆(2, 4, k) de�ned by

< r, s : r2 = s4 = (rs)k = 1 >, on projective line over the �nite �eld PL(Fq) by using the

concept of coset diagrams. We will parameterize this action and prove that actions of ∆(2, 4, 4)

is intransitive on PL(Fq), where q is such a prime that q+2 gives a perfect square. We have also

developed a useful computational technique to parameterize this action and also to draw coset

diagrams. Throughout −1 represents ∞ ,in diagrams as these are computer generated.

1. Introduction

The linear-fractional group ∆(2, 4, k) is de�ned by the transformations r : z → −1
z

and s : z → −1
2(z+1) that satis�es the relations r2 = s4 = 1. This group can be

extended by adjoining an involution t : z → 1
2z such that (rt)2 = (st)2 = 1. This

extended group is denoted by ∆∗(2, 4, k) [1, 2, 6].
Let α : PGL (2, Z) −→ PGL (2, q) be a non-degenerate homomorphism. We

know that every non-degenerate homomorphism gives rise to an action. So, this
non-degenerate homomorphism gives rise to an action of PGL (2, Z) on PL (Fq).
The action which arises from this non-degenerate homomorphism not only cor-
responds to the non-degenerate homomorphism but to a conjugacy class of the
homomorphisms [3, 5].

Since, there is one-to-one correspondence between the conjugacy classes of ele-
ments of order greater than 2 in PGL (2, q) and the non-zero elements of Fq, such
that the class corresponding to an element θ in Fq consists of all the elements
represented by matrices A [6]. It follows that we can actually parameterize the
non-degenerate homomorphisms of PGL (2, Z) into PGL (2, q), except for a few
uninteresting ones, by the elements of Fq. If α is any such non-degenerate ho-
momorphism, and R, S and T are in GL (2, q), which yield the elements r, s, t
then letting θ = m2

2/∆ (where m2 = trace(RS), 4 = det(RS)), we associate the
parameter θ with the homomorphism α. This non-zero element θ of Fq provides
a permutation representation of the action corresponding to the homomorphism
α. We draw a coset diagram corresponding to this action which is a diagram cor-
responding to not only one action but to a class of actions whose parameter is θ.
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We are looking for a condition on θ and q which ensures action of PGL (2, Z) on
PL (Fq) evolving the required coset diagrams [4, 6, 7].

2. Conjugacy classes and coset diagrams

In this section, construction of coset diagrams for the generalized triangle group
< r, s, t : r2 = s4 = t2 = (rt)2 = (st)2 = (rs)k = 1 > are considered along-with
certain observations about this case. The coset diagrams for action of ∆∗(2, 4, k)
on �nite space are de�ned as follows.

The four cycles of s are represented by squares whose vertices are permuted
anti-clock wise by S. Any two vertices which are interchanged by involution r
is represented by an edge. The action of t is represented by re�ection about a
vertical axis of symmetry. For example, action of ∆∗(2, 4, k) on PL(F31) gives us
the following permutation representations:

Figure 1: Action of ∆∗(2, 4, k) on PL(F31)

Theorem 2.1. Corresponding to each θ = m4 ∈ Fq there exists a conjugacy class

of non-degenerate homomorphism α : PGL(2, Z) → PGL(2, q) which yields the

homomorphic image of < r, s : r2 = s4 = (rs)4 = 1 > under α.

Proof. De�ne a homomorphism α : PGL(2, Z) −→ PGL(2, q) such that r = rα,
s = sα and t = tα satisfying the relations:

r2 = s4 = t
2

=
(
rt
)2

=
(
st
)2

= 1. (1)
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So, there is requirement to see for elements r, s, t ∈ PGL(2, q) satisfying the
relations 1 with r s in given conjugacy class. Let r, s and t be represented by
matrices,

R =

[
r1 kr3

r3 −r1

]
, S =

[
s1 ks3

s3 −s1 −
√

2

]
and T =

[
0 −k
1 0

]
respectively, as

de�ned in [4], where r1, r3, s1, s3, k ∈ Fq. Let det(R) = ∆ and det(S) = 1, then

det(R) = ∆ = −r2
1 − kr2

3 = r2
1 + kr2

3 6= 0 (2)

and,

det(S) = 1 = −s2
1 −
√

2s1 − ks2
3

s2
1 +
√

2s1 + ks2
3 + 1 = 0. (3)

This surely, yields such elements that satisfy the relations (1). Now the product
of matrices R and S is given by,

RS =

[
r1 kr3

re −r1

] [
s1 ks3

s3 −s1 − 1

]
=

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

]
As already supposed that tr(RS) = m2, therefore

m2 = 2r1s1 + 2kr3s3 +
√

2r1. (4)

The matrix RST is given by

RST =

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

] [
0 −k
1 0

]
=

[
kr1s3 − kr3s1 −

√
2kr3 −k(r1s1 + kr3s3)

kr3s3 + r1s1 +
√

2r1 −k(r3s1 − r1s3)

]
and so the trace of RST is given by

tr(RST ) = kr1s3 − kr3s1 −
√

2kr3 − k(r3s1 − r1s3) = 2kr1s3 − kr3

(
2s1 +

√
2
)

and as already considered, m3k = trace(RST ) so

m3k = 2kr1s3 − kr3

(
2s1 +

√
2
)

m3 = 2r1s3 − r3

(
2s1 +

√
2
)
. (5)

Now squaring equations (4) and (5) we get,

m2
2 = [2r1s1 + 2kr3s3 +

√
2r1]2 = 4r2

1s
2
1 + 4k2r2

3s
2
3 + 2r2

1 + 8kr1s1r3s3

+4
√

2r1r3s3 + 4
√

2r2
1s1
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and

m2
3 = [2r1s3 − r3(2s1 +

√
2)]2 = 4r2

1s
2
3 + r2

3(4s2
1 + 2 + 4

√
2s1)− 4r1r3s3(2s1 +

√
2))

= 4r2
1s

2
3 + 4r2

3s
2
1 + 2r2

3 + 4
√

2r2
3s1 − 8r1r3s1s3 − 4

√
2r1r3s3.

Multiplying m2
3 by k and then adding in m2

2, we get

m2
2+km2

3 =4r2
1s

2
1 + 4k2r2

3s
2
3 + 2r2

1 + 8kr1s1r3s3 + 4
√

2r1r3s3 + 4
√

2r2
1s1

+ 4kr2
1s

2
3 + 4kr2

3s
2
1 + 2kr2

3 + 4
√

2kr2
3s1 − 8kr1r3s1s3 − 4

√
2kr1r3s3

=4r2
1s

2
1+4k2r2

3s
2
3 + 2r2

1 +4
√

2r2
1s1 + 4kr2

1s
2
3+4kr2

3s
2
1 + 2kr2

3 +4
√

2kr2
3s1

= 2(r2
1 + kr2

3) + 4s2
1(r2

1 + kr2
3) + 4

√
2s1(r2

1 + kr2
3) + 4ks2

3(r2
1 + kr2

3)

= (r2
1 + kr2

3)(2 + 4s2
1 + 4

√
2s1 + 4ks2

3)

= [r2
1 + kr2

3][2 + 4(s2
1 +
√

2s1 + ks2
3)].

By using equations (3), we obtain

m2
2 + km2

3 = [r2
1 + kr2

3][2 + 4(−1)] = (−∆)(−2) = 2∆.

That is,
2∆ = m2

2 + km2
3. (6)

We have

R−1S−1 =
1

∆

[
r1s1 +

√
2r1 + kr3s3 kr1s3 − kr3s1

r3s1 +
√

2r3 − r1s3 kr3s1 + r1s1

]
.

The product RSR−1S−1 is

1

∆

[
r1s1 + kr3s3 kr1s3 − kr3s1 −

√
2kr3

r3s1 − r1s3 kr3s3 + r1s1 +
√

2r1

] [
r1s1 +

√
2r1 + kr3s3 kr1s3 − kr3s1

r3s1 +
√

2r3 − r1s3 kr3s1 + r1s1

]
.

Now further as considered in previous section trace(RSR−1S−1) = m4, then

m4 =
1

∆
[∆ − km2

2 − r2
1 − kr2

3] and consequently, m4∆ = ∆ − km2
3 − r2

1 − kr2
3 =

∆ − km2
3 − (r2

1 + kr2
3) = ∆ − km2

3 − (−∆) = 2∆ − km2
3, which together with (6)

implies m2
2 = m4∆. This together with m2

2 = ∆θ gives θ = m4 ∈ Fq. Hence θ is
the permutation representation of the action corresponding to the homomorphism
α.

Theorem 2.2. The transformation t has �xed vertices in D(θ, q) if and only if

θ(θ − 2) is a square in Fq.

Proof. Let α : Γ∗ → G∗3,4(2, q) be a non-degenerate homomorphism that satis�es
the relations rα = r, sα = s and tα = t and α′ be its dual. Choose the matrices,

R =

[
r1 kr3

r3 −r1

]
, S =

[
s1 ks3

s3 −
√

2− s1

]
and T =

[
0 −k
1 0

]
, representing r, s
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and t respectively, where r1, r3, s1, s3, k ∈ Fq and satis�es the equations (2) to (6).

As we know that, tr(RS) = 0 if and only if (r s)2 = 1. Also,
tra(RST )

k
= m3 = 0

if and only if (r st)2 = 1. Now det(RS) = 1, gives parameter of r s as m2
2 = θ.

Also tr(RST ) = km3 and det(RST ) = k [Since det(R) = 1, det(S) = 1 and
det(T ) = k ⇒ det(RST ) = k], gives parameter of r st as km2

3. Let this parameter

be denoted by φ. Therefore, θ + φ =
m2

2+km2
3

∆ . Putting values from equation (6),
θ + φ = 2. Hence, φ = θ − 2.

Since change from α to α′ interchanges both r and rt and θ and θ − 2, so rt
maps to an element ∆∗(2, 4, k) if and only if θ(θ − 2) is a square in Fq. Since
t lies in ∆∗(2, 4, k) if both of r and rt, so t belongs to G∗(2, 4, k) if and only if
θ(θ − 2) is a square in Fq. Now t has �xed points in PL(Fq) if either t belongs to
∆∗(2, 4, k) and q ≡ −1(mod4) or t does not belong to ∆∗(2, 4, k) and q ≡ 1(mod4),
which means that −1 is a square in Fq. Hence it can be concluded that t has �xed
vertices in D(θ, q) if and only if −θ(2− θ) = θ(θ − 2) is a square in Fq.

3. Action of ∆(2, 4, k) on PL(Fq) for θ = 2

Following computer coding scheme generate parameterizations and coset diagrams
for actions of ∆(2, 4, k) over PL(Fq), wherein q is a prime number q+2 gives perfect
square.

3.1. Computer program to parameterize action

m4 = Input["m4"];

delta = Input["Delta"];

m2sq = delta*m4;

While[! (Element[Sqrt[m2sq], Integers]), m2sq += q];

m2 = Sqrt[m2sq];

m3sq = ((2*delta ) - (m2sq))/k;

While[m3sq < 0, m3sq += q;];

m3 = Sqrt[m3sq];

s3sq = (-1 - s1^2 - (Sqrt[2 + q]*s1))/k;

While[s3sq < 0, s3sq += q;];

While[! (Element[Sqrt[s3sq], Integers]), s3sq += q];

s3 = Sqrt[s3sq];

{c, d} = {a, b} /.

First@Solve[{2*a* s1 + 2*k*b*s3 + (Sqrt[2 + q])*a == m2,

2*a*s3 - 2*b*s1 - (Sqrt[2 + q])*b == m3}, {a, b}];

nom = Numerator[c];

denom = Denominator[c];

While[! (Element[nom/denom, Integers]), nom += q];

r1 = nom/denom;
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nom = Numerator[d];

denom = Denominator[d];

While[! (Element[nom/denom, Integers]), nom += q];

r3 = nom/denom;

r11 = r1;

r12 = k*r3;

r13 = r3;

r14 = -r1;

s11 = s1;

s12 = k*s3;

s13 = s3;

s14 = -s1 - (Sqrt[2 + q]);

t2 = -k;

While[t2 < 0, t2 += q];

matrix_X = MatrixForm[{{r11, r12}, {r13, r14}}]

matrix_Y = MatrixForm[{{s11, s12}, {s13, s14}}]

matrix_T = MatrixForm[{{0, t2}, {1, 0}}]

3.2. Computer program to draw coset diagrams

Following coding scheme using java programming language to draw coset dia-
grams with respect to the primes q for the action of ∆(2, 4, k) has been developed.
The code given below will generate the permutations for R. Similar code is used
for generating the permutations for S and T .

List<Integer> tmp=new ArrayList<Integer>();

int count=R_values.get(0);

tmp.add(count);

while(cycle==true)

{

int permut_temp=(int) calculateFunc_R(count,a,b,c,d);

count=permut_temp;

if(!(tmp.contains(permut_temp))&& tmp.size()<2)

{

tmp.add((int) permut_temp);

}

else

{

Permutation_R.add(tmp);

cycle=false;

}

}

Following code separates the �x points from permutation of S.
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for(List<Integer> innerList : Permutation_S) {

if(innerList.size()<4)

{

fixPointS.add(innerList);

}

}

The code given below will make the nodes symmetrical basing on the permutations
of T.

for(List<Integer> innerList : Permutation_T) {

if(innerList.size()==1)

{

fix=(Integer) Permutation_T.get(Permutation_T.indexOf(innerList)).get(0);

for(List<Integer> innerSList : Permutation_S)

{

if(innerSList.contains(fix))

{

if(!PermutationS_toDrawCenter.contains(innerSList))

{

PermutationS_toDrawCenter.add(innerSList);

toremove_S.add(innerSList);

}

toremove_T.add(innerList);

}

}

}

}

The symmetrical nodes will then be drawn by using the code given below:

public Node(Point p,int n_v, int r, Color color, Kind kind,int pos) {

this.p = p;

this.r = r;

this.node_value=n_v;

this.color = color;

this.kind = kind;

this.pos=pos;

setBoundary(b);

}

public void draw(Graphics g) {

int x,y,r=5;

if(this.pos==0)

{

x=b.x;
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y=b.y-r;

}

else if(this.pos==1)

{x=b.x-r-8;

y=b.y;}

else if(this.pos==2)

{x=b.x;

y=b.y+r+15;}

else

{

x=b.x+r;

y=b.y;

}

g.setColor(this.color);

if (this.kind == Kind.Circular) {

g.fillOval(b.x, b.y, b.width, b.height);

} else if (this.kind == Kind.Rounded) {

g.fillRoundRect(b.x, b.y, b.width, b.height, r, r);

} else if (this.kind == Kind.Square) {

g.fillRect(b.x, b.y, b.width, b.height);

}

g.setColor(Color.BLACK);

g.setFont(g.getFont().deriveFont(18.0f));

g.drawString(Integer.toString(this.node_value), x, y);

}

Example 3.1. Consider q = 7. Then m2
2 = m4∆. Also, m4 = θ = 2, m2

2 = 24.
Considering 4 = k = s1 = 1, and then by using the code given in section 2.3,
corresponding matrices R,S, and T thus obtained are:

R =

[
3 5
5 4

]
, S =

[
1 3
3 3

]
, T =

[
0 6
1 0

]
.

Therefore, linear-fractional transformations are,

r : z 7→ 3z + 5

5z + 4
, s : z 7→ z + 3

3z + 3
, t : z 7→ 6

z
.

Applying r, s and t transformations on the elements of PL(F7), the permuta-
tions will be: r act as: (0 3)(1 4)(2 ∞)(5 6), s act as: (0 1 3 4)(2 6 ∞ 5), t act
as: (0 ∞)(1 6)(2 3)(4 5).

Obtained coset diagram is as follows.
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This diagram is disconnected and consisting of two diagrams each having 4
vertices. Also note that each vertex of these diagrams is �xed by (rs)4 and the
group ∆ (2, 4, 4) =< r, s : r2 = s4 = (rs)4 = 1 >. So G is is abelian and cyclic.

Example 3.2. Consider q = 23. Then m2
2 = m4∆. Also, m4 = θ = 2, m2

2 = 24.
Considering 4 = k = s1 = 1, and then by using the code given in sections 3.1 and
3.2, corresponding matrices R,S, and T thus obtained are:

R =

[
17 3
3 6

]
, S =

[
1 4
4 17

]
, T =

[
0 22
1 0

]
.

Therefore, linear-fractional transformations are r : z 7→ 17z + 3

3z + 6
, s : z 7→ z + 4

4z + 17
,

t : z 7→ 22

z
.

Applying r, s and t transformations on the elements of PL(F23), the permu-
tations will be,
r act as: (0 21)(1 3)(2 9)(4 14)(5 11)(6 7)(8 16)(10 20)(12∞)(13 19)(15 22)(17 18)
s act as: (0 7 12 19)(1 9 15 11)(2 3 5 22)(4 10 18 8)(8 13)(8 20)(10 16)(12 21)(14 18)
t act as: (0∞)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)(8 20)(10 16)(12 21)(14 18).

The coset diagram generated by using code in section 2.3 is shown in Figure 2,

Figure 2: Intransitive action of ∆(2, 4, k) on PL(F23)

This diagram is disconnected and has six diagrams each consisting of 4 vertices.
Also note that each vertex of these diagrams is �xed by (rs)4 and the group

∆ (2, 4, 4) =< r, s : r2 = s4 = (rs)4 = 1 > .

So G is an abelian and cyclic.

In Table 1, we have listed few primes and the number of diagrams corresponding
to each prime. Here it can be observed that for each prime q, the coset diagram
is disconnected. So the action of ∆(2, 4, k) is intransitive on PL(Fq).
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Table 1: Number of disconnected diagrams

Primes Diagrams of 4 Vertices
7 2
23 6
47 12
79 20
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