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An enhanced version of the hidden discrete
logarithm problem and its algebraic support

Dmitriy N. Moldovyan, Alexandr A. Moldovyan, Nikolay A. Moldovyan

Abstract. A new approach is proposed to the development of the signature schemes based on
the computational difficulty of the hidden discrete logarithm problem, which is characterized
in the adoption of the criterion of elimination of periodicity associated with the value of the
discrete logarithm in the construction of periodic functions based on the public parameters of the
signature scheme. In line with the approach, a new signature scheme is proposed as candidate for
post-quantum public-key cryptoscheme. Its algebraic support represents a 6-dimensional finite
non-commutative associative algebra set over the fieldGF (p), which contains p2 global right-sided
units. Every one of the lasts is the unit of one of p2 isomorphic finite non-commutative groups
contained in the algebra. Every of the said groups contains commutative subgroups possessing
2-dimensional cyclicity and this feature is exploited to implement the enhanced criterion of
providing security to the known and potential future quantum attacks.

1. Introduction

In the last few years the development of practical post-quantum (PQ) public-key
(PK) cryptosystems has attracted considerable attention from the cryptographic
community [11, 12]. Post-quantum are called cryptographic algorithms and pro-
tocols that run efficiently on classical computers but will resist attacks performed
with using hypothetic quantum computers (quantum attacks). Currently, the
most widely used in practice cryptographic algorithms and protocols are based on
computationally difficult problems of finding discrete logarithm and factorization,
however, in the PQ era, such cryptosystems are insecure. The latter is due to the
fact that polynomial algorithms for solving the said computational problems are
known for a quantum computer [14].

Quantum algorithms for solving both the factoring problem (FP) [1] and the
discrete logarithm problem (DLP) [14, 15] are based on the extremely high effi-
ciency of a quantum computer to perform a discrete Fourier transform [2], which
is used to calculate the period length of periodic functions. In particular, to solve
the problem of finding the value of a discrete logarithm, one constructs a peri-
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odic function whose values lie in an explicitly given cyclic group, which contains
a period with the length depending on the value of the logarithm.

Developers of the PQ PK cryptoschemes usually use difficult computational
problems that are different from the FP and DLP. An interesting approach to the
designing of the PQ PK cryptoschemes and PQ commutative ciphers relates to
using so called hidden DLP (HDLP) [3, 6, 7]. Different versions of the HDLP
are used in the design of different PK cryptosystems. In the case of development
of the signature schemes [9], the idea of that approach consists in selecting a
cyclic group having sufficiently large prime order, which is generated by some
vector N as a subset of elements of a finite non-commutative associative algebra
(FNAA) followed by computing the PK in the form of the pair of the vectors
Q = ψ1 (N) and Y = ψ2 (Nx) , where x is private key; ψ1 and ψ2 are masking
operations representing two different homomorphism-map (or automorphism-map)
operations.

Due to using the masking operations ψ1 and ψ2 the vectors Q and Y are el-
ements of two different cyclic groups each of which is different from the group
generated by the vector N. Since the masking operations defines homormorphism
maps, every one of them is mutually comutative with the exponentiation opera-
tion. Due to the last, one can use a DLP-based signature (for example, well known
Schnorr signature algorithm [13]) and replace in it the signature verification proce-
dure using the values N and Nx by the the signature verification procedure using
the values Q and Y. To compute a signature a potential forger needs to know only
the value x that is a discrete logarithm value in a hidden cyclic group, no element
of which is known to the forger. The rationale of the security of the HDLP-based
signature schemes consists in the fact that a periodic function f(i, j) constructed
as computation of product of the values Qi and Y j (for example, f(i, j) = QiY j)
take on the values contained in numerous different groups contained in the FNAA
used as algebraic support of the signature scheme. Therefore, the Shor quantum
algorithm is not directly applicable to compute the value x, the function f(i, j)
contains a period depending on the value x though.

However, the question arises about the possibility of developing new quantum
algorithms that allow us to calculate the period length for periodic functions that
take values in algebraic sets that are not groups. In future, the emergence of
such quantum algorithms will mean breaking the known HDLP-based signature
schemes.

In this paper, we propose to adopt a strengthened criterion for ensuring secu-
rity of the HDLP-based cryptoschemes to hypothetic quantum attacks based on
the said advanced quantum algorithms for computing the lenth of the periods of
periodic funcions related to a wider class of such functions. Namey, we propose
the following advanced criterion of designing the HDLP-based PK cryptosystems:
construction of the periodic functions on the base of the publicly know parameters
of the cryptoscheme, which contain a period with the length depending on the
value of the discrete logarithm in the hidden group, should be a computationally
intractable problem.
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To develop algorithms that meet this criterion, we propose to use the idea
of masking periodicity with a period length different from the value of the prime
order q of the cyclic group in which the hidden discrete logarithm problem is given.
Namely, one is to design a signature scheme with such public parameters that using
them to build periodic functions will give the period length equal to the order of
the hidden cyclic group. As a concrete way to implement this idea, we propose to
define a base cyclic group as a subgroup of a hidden commutative group having
2-dimensional cyclicity (i.e., group generated by a minimum generator system of
two elements U and N having the same order value; in our case, the order is equal
to the prime q). This makes it possible to form such a PK that the construction
of periodic functions using its elements will define the value of the period equal
to the value q. The latter is achieved by the fact that the elements of the PK are
calculated by the formulas Q = ψ1 (NU) and Y = ψ2 (Nx) .

The use of the multiplier U allows one to fix the length q of the period of
the constructed periodic functions, but the presence of such a multiplier should
be taken into account when developing the verification equation of the signature
scheme. In general, the HDLP-based cryptosystems developed taking into account
the proposed enhanced design criterion have lower performance, longer PK and
signature. However, they are significantly more attractive as candidates for PQ
signature schemes.

The rest of the paper is organized as follows. Section 2 describes the suit-
able algebraic support of the developed signature scheme, which represents the
6-dimensional FNAA defined over the ground finite field GF (p) and containing
p2 different global right-sided units and p2 finite non-commutative groups every
one of which contains commutative subgroups with 2-dimensional cyclicity. Sec-
tion 3 introduces the developed candidate for PQ signature scheme, characterized
in using a commutative group with 2-dimensional cyclicity as a hidden group.

2. The used 6-dimensional FNAA

2.1. Preliminaries

In general, the m-dimensional finite algebra represents the m-dimensional vector
space over some finite field, in which the vector multiplication operation (that is
distributive at the left and at the right) is defined. If the vector multiplication is
non-commutative and associative we have the FNAAs. The FNAA used as the
algebraic support of the developed PQ signature scheme is defined over the ground
field GF (p) the characteristic of which is equal to the prime p = 2q + 1, where q
is a 256-bit prime. The multiplication operation (denoted as ◦) in the considered
FNAA is defined using the following formula descibing the result of the multiplying
two 6-dimensional vectors A =

∑5
i=0 aiei, and B =

∑5
j=0 bjej , where e0, e1, . . . e5

are formal basis vectors, as follows:
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A ◦B =

(
5∑
i=0

aiei

)
◦

 5∑
j=0

bjej

 =

5∑
j=0

5∑
i=0

aibj (ei ◦ ej) , (1)

where coordinates a0, a1, . . . a5 of the vector A and coordinates b0, b1, . . . b5 of the
vector B are elements of the field GF (p). One assumes the product of every pair of
the basis vectors ei◦ej is to be replaced by some single-component vector λek that
is taken from the so called basis vector multiplication table (BVMT), namely, from
the cell at the intersection of the ith row and the jth column. In present paper
the BVMT shown as Table 1 is used to define the 6-dimensional FNAA with the
required properties. This algebra contains p2 isomorphic non-commutative groups
every of which contains commutative subgroups having 2-dimensional cyclicity.

Table 1. The BVMT setting the FNAA with p2 global right-sided units (λ > 2)

◦ e0 e1 e2 e3 e4 e5

e0 e0 e3 e0 e3 e0 e3

e1 λe2 e1 e2 λe1 e2 e1

e2 e2 e1 e2 e1 e2 e1

e3 λe0 e3 e0 λe3 e0 e3

e4 e4 e5 e4 e5 e4 e5

e5 λe4 e5 e4 λe5 e4 e5

2.2. Finite commutative group with 2-dimensional cyclicity
The finite 2-dimentional commutative algebra with the associative multiplication
operation defined by Table 2 was considered in the paper [10], where it had been
shown that the multiplicative group Γ of the algebra is cyclic, if the structural
coefficient λ is a quadratic non-residue inGF (p). In this case this algebra represents
a finite field GF (p2).

If the structural coefficient λ is a quadratic residue in GF (p), then the order
of the group Γ has order equal to the value Ω = (p− 1)2. Besides, Γ is generated
by the minimum generator system < G′1, G

′
2 >, including two vectors of the same

order equal to the value (p−1). In [8] it was proposed to call a commutative finite
group containg the minimum generator system of m vectors having the same order
the group having m-dimensional cyclicity. In this paper the said term is used.

For the case p = 2q+ 1, where q is a prime, one can consider the commutative
primary group of the order q2 that has 2-dimensional cyclicity and is generated by
the generator system < G1, G2 >, where each of the vectors G1 and G2 has order q:
G1 = G′1

2 and G2 = G′2
2. Independenly of the value of the structural coefficient λ

the multiplicative group of the considered 2-dimentional algebra contains the unit
equal to the vector (1, 0). The said primary group can be considered as a set of
q+1 different cyclic groups of the prime order q all possible pairs of which contain
only one common element, namely, the unit vector (1, 0). Evidently, some fixed
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pair of the integers i and j (0 < i < q; 0 < j < q) define the vector Gij = Gi1 ◦G
j
1

having order equal to q, which is a generator of some cyclic group Γc of the prime
order q. One can easily see that the following proposition holds true.

Table 2. The BVMT setting 2-dimensional commutative associative algebra over GF (p)

◦ e0 e1

e0 e0 e1

e1 e1 λe0

Proposition 1. For k = 0, 1, . . . , q − 1 each of the the formulas Gk = Gij ◦Gk1
and Gk = Gij ◦Gk2 , where i, j = 1, 2, . . . , q − 1, defines q generators of q different
cyclic groups having order q.

Arbitrary two elements N 6= (1, 0) and U 6= (1, 0) of the said primary group,
which are contained in different cyclic subgroups, represent the generator system of
the primary group. Therefore, due to the Proposition 1, for arbitrary fixed integer
i (0 < i < q) q different cyclic groups are defined by the generators Uk = Ni ◦Uk,
where k = 0, 1, . . . , q − 1. The last fact is used in the design of the proposed
HDLP-based signature scheme.

2.3. Properties of the algebraic support

The FNAA defined over the field GF (p) by Table 1, where λ 6= 1; λ 6= 0, contains
p2 global right-sided units R that can be computed from the vector equation

A ◦X = A (2)

with the unknown 6-dimensional vector X = (x0, x1, . . . , x5) . Using Table 1 the
equation (2) can be represented in the form of the following system of four linear
equations: 

a0 (x0 + x2 + x4) + a3 (λx0 + x2 + x4) = a0;

a1 (x1 + λx3 + x5) + a2 (x1 + x3 + x5) = a1;

a1 (λx0 + x2 + x4) + a2 (x0 + x2 + x4) = a2;

a0 (x1 + x3 + x5) + a3 (x1 + λx3 + x5) = a3;

a4 (x0 + x2 + x4) + a5 (λx0 + x2 + x4) = a4;

a4 (x1 + x3 + x5) + a5 (x1 + λx3 + x5) = a5.

(3)

Performing the variable substitution u1 = x0 + x2 + x4, u2 = λx0 + x2 + x4,
u3 = x1 + x3 + x5, and u4 = x1 + λx3 + x5, one can represent the system (3) in
the following form:
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a0u1 + a3u2 = a0;

a1u4 + a2u3 = a1;

a2u1 + a1u2 = a2;

a0u3 + a3u4 = a3;

a4u1 + a5u2 = a4;

a4u3 + a5u4 = a5.

The solution (u1, u2, u3, u4) = (1, 0, 0, 1) satisfies the last system for all 6-
dimensional vectors, therefore, the conditions{

u1 = x0 + x2 + x4 = 1;

u2 = λx0 + x2 + x4 = 0;
(4)

{
u3 = x1 + x3 + x5 = 0;

u4 = x1 + λx3 + x5 = 1.
(5)

define the ful set of the global right-sided units R = (r0, r1, r2, r3, r4, r5) that
satisfy the equation (2). Solving the systems of linear equations (4) and (5) one
can get the following formula describing p2 different global right-sided units:

R =

(
1

1− λ
,
h(λ− 1) + 1

1− λ
,
d(λ− 1)− λ

1− λ
,
−1

1− λ
, d, h

)
, (6)

where d, h = 0, 1, . . . , p − 1. Evidently, the considered algebra contains no global
left-sided unit nor global two-sided unit, however it contains numerous local left-
sided units L acting in some subsets of the 6-dimensional vectors. The local left-
sided unit LA corresponding to the set of the algebraic elements, which includes
all possible powers of some fixed vector A, can be computed as solution of the
vector equation

X ◦A = A. (7)

Using Table 1 one can represent (7) in the form of the following three independent
systems of two linear equations with the pairs of the unknowns (x0, x1) , (x2, x5) ,
and (x3, x4) : {

(a0 + a2 + a4)x0 + (a0 + λa2 + a4)x1 = a0;

(a1 + a3 + a5)x0 + (a1 + a3 + λa5)x1 = a1;
(8)

{
(a0 + a2 + a4)x2 + (a0 + λa2 + a4)x5 = a2;

(a1 + a3 + a5)x2 + (a1 + a3 + λa5)x5 = a5;
(9)

{
(a1 + a3 + λa5)x3 + (a1 + a3 + a5)x4 = a3;

(a0 + λa2 + a4)x3 + (a0 + a2 + a4)x4 = a4;
(10)
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The same main determinant ∆A corresponds to each of the systems (8), (9), and
(10):

∆A = (a0a5 + a4a5 − a1a2 − a2a3) (λ− 1) . (11)

If ∆A 6= 0, then every of the systems (8), (9), and (10) has unique solution, i. e.,
the vector equation (7) has unique solution as the local left-sided unit LA related
to the vector A. Solving the systems (8), (9), and (10) one gets the following
formulas describing the value LA = (l0, l1, l2, l3, l4, l5) :

l0 =
1

1− λ
; l1 =

a0a1 + a1a4 − a2a3 − a2a5

∆A
;

l2 =
λa2a3 + a2a5 − λa0a1 − a1a4

∆A
; l3 =

−1

1− λ
;

l4 =
a0a4 + λa3a4 − λa0a5 − a2a5

∆A
; l5 =

a0a5 + a2a5 − a1a4 − a3a4

∆A
.

(12)

Proposition 2. Suppose the vector A is such that ∆A 6= 0. Then the local left-
sided unit LA is simultaneously the local two-sided unit EA relating to the vector
A.

Proof. It is sufficient to show that the vector LA is contained in the set (6) of the
global right-sided units. Suppose in (6) we have d = l4 and h = l5. Then one can
compute

r1 =
h(λ− 1) + 1

1− λ
= l1; r2 =

d(λ− 1)− λ
1− λ

= l2.

Since r0 = l0 and r3 = l3, the local left-sided unit LA is equal to the global right-
sided unit corresponding to the integer values d = l4 and h = l5 in (6) and the
vector LA is the local two-sided unit EA relating to the vector A.

Due to the last proposition, one can conclude that the vector LA acts on every
vector form the set A,A2, . . . , Ai, . . . as local two-sided unit. Since ∆A 6= 0, for
the fixed value A one has unique value LA and the said sequence is periodic with
the period length equal to some integer ω. The set of all vectors included in a
fixed period compose a finite cyclic group (generated by the vector A) with the
unit element equal to EA = LA, i. e., the element LA can be computed using the
formula LA = EA = Aω. For the integer value i (0 < i < ω)the vector Aω−i is
the inverse value of the vector Ai relatively the local two-sided unit EA, therefore,
the vector A can be called a locally invertible vector. One can easily prove the
following proposition:

Proposition 3. Suppose the vector A is such that ∆A 6= 0. Then there exists some
integer ω such that Aω = EA and the local two sided-unit EA is simultaneously
the unit of the cyclic group generated by the vector A.

Proposition 4. If the vector equation A ◦X = B has solution X = S such that
∆S 6= 0, then p2 different values Xi = Ri ◦ S, where Ri takes on all values from
the set (6), also represents solutions of the given equation.
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Proof. A ◦ (Ri ◦ S) = (A ◦Ri) ◦ S = A ◦ S = B. Suppose Ri ◦ S = Rj ◦ S, then
(Ri −Rj)◦S = (0, 0, 0, 0, 0, 0) and Ri = Rj , i. e., the number of different solutions
Xi = Ri ◦ S is equal to the number of different global right-sided units, which is
equal to p2. The Proposition 4 is proven.

Proposition 5. Suppose the vector R is a global right-sided unit. Then the map
of the FNAA, which is defined by the formula ϕR(X) = R ◦ X, where the vector
X takes on all values in the considered FNAA, is a homomorphism.
Proof. For two arbitrary vectors X1 and X2 we have

ϕR (X1 ◦X2) = R ◦ (X1 ◦X2) = (R ◦X1) ◦ (R ◦X2) = ϕR (X1) ◦ ϕR (X2) ;

ϕR (X1 +X2) = R ◦ (X1 +X2) = R ◦X1 +R ◦X2 = ϕR (X1) +ϕR (X2) . �

Proposition 6. All locally invertible vectors of the considered 6-dimensional
FNAA compose p2 different groups with p2 different units

E = R =

(
1

1− λ
,
h(λ− 1) + 1

1− λ
,
d(λ− 1)− λ

1− λ
,
−1

1− λ
, d, h

)
,

where d, h = 0, 1, 2, . . . p− 1.

Proof. Suppose the set {A1, A2, . . . Ai, . . . AΩ} of locally invertible vectors includes
all vectors relating to a fixed local two-sided unit E (including the vector E) and
only such vectors. One can easily see that the said set is the group ΓE with the
unit E. Every fixed global right-sided unit R′ from the set (6) is the unit E′ of
some group ΓE′ representing a set locally invertible vectors {A′1, A′2, . . . A′i, . . . A′Ω}.
Indeed, due to the Proposition 5 we have A′i = R′ ◦ Ai for i = 1, 2, . . .Ω, and
E′ = R′ ◦ E = R′. We have p2 different global right-sided units R described by
the formula (6). Every of these units defines a unique group of the order Ω. The
Proposition 6 is proven.

Consider the order Ω of every of the said isomorphic groups. Evidently Ω =
Ω′p−2, where Ω′ is the number of all locally invertible vectors contained in the
algebra. One can compute the last value as Ω′ = p6−Ω′′, where Ω′′ is the number
of all non-invertible vectors, i. e., vectors satisfying the condition ∆A = 0. The
last condition reduces to the following equation:

a0a5 + a4a5 − a1a2 − a2a3 = 0.

If a5 6= 0, then for arbitrary values a1, a2, a3, a4 there exists unique value a0 that
satisfies the last equality (in this case we have p4(p − 1) different non-invertible
vectors). For the case a5 = 0 the equality holds true for arbitrary values a0 and
a4, if a1a2 +a2a3 = 0. Consideration of two subcases i) a2 6= 0 and ii) a2 = 0 gives
respectively p3(p− 1) and p4 different non-invertible vectors. Totally the algebra
contains Ω′′ = p4(p− 1) + p3(p− 1) + p4 = p5 + p4 − p3 non-invertible vectors.
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Proposition 7. Every one of p2 isomorphic groups, which relates to some fixed
global right-sided unit R and includes all invertible vectors relating to R, has order
Ω = p(p− 1)2(p− 1).

Proof. We have Ω′ = p6 − Ω′′ = p6 −
(
p5 + p4 − p3

)
= p3(p − 1)

(
p2 − 1

)
and

Ω = Ω′p−2 = p(p− 1)
(
p2 − 1

)
.

One can easily see that the set of all 6-dimensional vectors of the form A′ =
(a0, a1, a2, a3, 0, 0) compose the 4-dimensional non-commutative subalgebra with
the multiplication operation set by the BVMT shown as Table 3. This subalge-
bra contains one global two-sided unit E00 that is contained in the set (6) and
corresponds to the integer values d = 0 and h = 0:

E00 =

(
1

1− λ
,

1

1− λ
,
−λ

1− λ
,
−1

1− λ
, 0, 0

)
.

Actually, this subalgebra represents the 4-dimensional FNAA described in [4] and
used as algebraic support of the HDLP-based signature schemes. The multiplica-
tive group Γ00 of the subalgebra is one of the p2 isomorphic groups contained in
the considered 6-dimensional FNAA.

The group Γ00 includes a large number of commutative subgroups possessing 2-
dimensional cyclicity. Indeed, for arbitrary value α ∈ GF (p) the vector Vα = αE00

(scalar multiplication) is permutable with every vector in the group Γ00. If α is a
primitive element in GF (p), then the vector Vα generates a cyclis subgroup Γα of
the order p − 1. Suppose G /∈ Γ00 (G /∈ Γα) is a vector of the order p − 1. Then
the generator system < Vα, G > generates the commutative subgroup possessing
the order (p− 1)2 and having 2-dimensional cyclicity.

Table 3. The BVMT of the 4-dimensional subalgebra containing a global two-sided unit

◦ e0 e1 e2 e3 e4 e5

e0 e0 e3 e0 e3 − −
e1 λe2 e1 e2 λe1 − −
e2 e2 e1 e2 e1 − −
e3 λe0 e3 e0 λe3 − −
e4 − − − − − −
e5 − − − − − −

Suppose the vector A is such that ∆A 6= 0 and R is a random global right-sided
unit. One can compute the single vector B that satisfies the condition

B ◦A = R. (13)

Evidently, the main determinant of the system of linear equations, which corre-
sponds to the vector equation (13) is equal to ∆A 6= 0, therefore, the equation (13)
has unique solution.
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Proposition 8. Suppose B ◦A = R. Then the formula

ψR(X) = A ◦X ◦B,

where the vector X takes on all values in the considered 6-dimensional FNAA, sets
the homomorphism map.
Proof. For two random 6-dimensional vectors X1 and X2 one can get the following:

ψR (X1 ◦X2) = A ◦ (X1 ◦X2) ◦B = A ◦ (X1 ◦R ◦X2) ◦B
= (A ◦X1 ◦B) ◦ (A ◦X2 ◦B) = ψR (X1) ◦ ψR (X2) ;

ψR (X1 +X2) = A ◦ (X1 +X2) ◦B = (A ◦X1 ◦B) + (A ◦X2 ◦B)
= ψR (X1) + ψR (X2) . �

Proposition 9. The homomorphism-map operation ψR(X) = A ◦X ◦B and the
exponentiation operation Xk are mutually commutative, i.e., the equality A ◦Xk ◦
B = (A ◦X ◦B)k holds true.

Proof. Due to Proposition 8 we have ψR(Xk) = (ψR(X))
k
, i. e., A ◦ Xk ◦ B =

(A ◦X ◦B)k.

3. The proposed HDLP-based signature scheme

3.1. Setting the hidden commutative group
The algebraic support of the introduced signature scheme represents the 6-dimensional
FNAA described in Subsection 2.3 and defined over the field GF (p) with character-
istic p = 2q+ 1, where q is a 256-bit prime. In the BVMT defining the multiplica-
tion operation (see Table 1) it is used the structural coefficient λ > 2, for example,
λ = 2. Computation of the private and public parameters of the signature scheme
begins with setting a private hidden finite commutative group Γ<N,U>. The group
Γ<N,U> is set as computation of its generator system < N,U > that includes two
vectors N and U each of which has order equal to the prime q. The generator
system < N,U > can be computed as follows:

1. Generate at random a locally invertible vector U = (u0, u1, . . . , u5) of the
order equal to q and, using the formulas (12), compute the global left-sided unit
LU = (lU0, lU1, . . . , lU5) .

2. If the condition u0

lU0
= ui

lUi
holds true for all i = 1, 2, . . . , 5, then go to step 1

(probability of this event is equal to ≈ q−1).
3. Select at random an integer value α (1 < α < p − 1) that is a primitive

element modulo p. The primitive element α defines a locally invertible vector
G = α2LU having order equal to the prime q.

4. Generate a random integer k (1 < k < q) and compute the vectors N =
G ◦ Uk.

One can easily see that each of the vectors N and U has order equal to the
value q and the generator system < N,U > defines a commutative primary group
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Γ<N,U> the unit element of which is equal to LU . The group Γ<N,U> has structure
with the 2-dimensional cyclicity and the group order is equal to Ω = q2.

3.2. Computing parameters of the masking operations

The main contribution to the security of the developed signature scheme is intro-
duced by two exponentiation operations performed in two different cyclic groups
contained in the hidden commutative group Γ<N,U>. The vector N sets the first
of the said cyclic groups. The second cyclic group is set by the generator J that
is computed as follows:

J = N t ◦ Uw,

where t and w (1 < t < q; 1 < w < q) are two integer values selected at random.
The vectors N, J, Nx, and Jx/2, where x < q is an integer representing one of
the elements of the private key, are used for computing the vectors ψ1 (N ◦ U) ,
ψ2 (Nx) , ψ3

(
J ◦ U2

)
, and ψ4

(
Jx/2

)
that are elements of the PK. Four differ-

ent homomorphism-map operations ψ1, ψ2, ψ3, and ψ4 are used to compute four
elements of the PK, which are elements of four different commutative groups con-
tained in the algebra.

Parameters of the homomorphism-map operations ψ1(X) = A1 ◦ X ◦ B1,
ψ2(X) = A2 ◦ X ◦ B2, ψ3(X) = A1 ◦ X ◦ B3, and ψ4(X) = A4 ◦ X ◦ B4, are
computed as follows:

1. Select at random a global right-sided unit R1 (for example, using the formula
(6)), generate at random a locally invertible vector A1, and compute the vector
B1 as solution of the vector equation B1 ◦A1 = R1 (that has unique solution B1,
since ∆A1

6= 0).
2. Select at random a global right-sided unit R2, generate at random a locally

invertible vector A2, and compute the vector B2 as solution of the vector equation
B2 ◦A2 = R2.

3. Select at random a global right-sided unit R3 and compute the vector B3

as solution of the vector equation B3 ◦ A1 = R3, where the vector A1 has been
generated at step 1.

4. Select at random a global right-sided unit R4, generate at random a locally
invertible vector A4, and compute the vector B4 as solution of the vector equation
B4 ◦A4 = R4.

3.3. Computation of the public key

The PK represents a set of six 6-dimensional vectors (Z1, Y1, T1;Z2, Y2, T2) which
are computed as follows:

1. Z1 = A1 ◦N ◦ U ◦B1 and Y1 = A2 ◦Nx ◦B2.
2. T1 = R ◦A1 ◦B2, where R is a random global right-sided unit.
3. Z2 = A1 ◦ J ◦ U2 ◦B3 and Y2 = A4 ◦ Jx/2 ◦B4.
4. T2 = R′ ◦A1 ◦B4, where R′ is a random global right-sided unit.
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One can consider the private key as the set of all of secret elements that are
needed to compute the signature. With such interpretation in the developed sig-
nature scheme the private key represents the set of the values x, N, J, U, A1, B2,
and B4.

3.4. Algorithm for signature generation
Suppose one should sign an electronic documentM, using some fixed secure 256-bit
hash-function fH . The signature includes the following three elements: two 256-bit
integers e and s and a 6-dimensional vector S. The elements of the signature are
computed using the following signature generation algorithm:

1. Generate a random integer k < q and a random locally invertible 6-dimen-
sional vector K. Then compute the vectors V1 and V2:{

V1 = K ◦Nk ◦B2;

V2 = K ◦ Jk/2 ◦B4.

2. Calculate the first signature element e as the hash-function value computed
from the document M to which the vectors V1 and V2 are concatenated:

e = fH (M,V1, V2) .

3. Calculate the second signature element s as follows: s = k + xe mod q.
4. Calculate the third signature element S as solution of the following vector

equation:
S ◦A1 ◦ Us = K.

In the last vector equation every of the values Us, A1, and K is a locally
invetible vector, therefore, the equation has unique solution. At the output of the
last algorithm one gets the signature (e, s, S) to the document M.

3.5. Algorithm for signature verification
Using the PK (Y1, Z1, T1; Y2, Z2, T2) , one can verify the signature (e, s, S) to the
document M with the following signature verification algorithm:

1. Using the PK, compute the vectors V ′1 and V ′2 :{
V ′1 = S ◦ Zs1 ◦ T1Y

−e
1 ;

V ′2 = S ◦ Zs/22 ◦ T2 ◦ Y −e2 .

2. Calculate the hash-function value e′ from the document M to which the
vectors V ′1 and V ′2 are concatenated: e′ = fH (M,V ′1 , V

′
2) .

3. Using the formula (10), calculate the value ∆S corresponding to the locally
invertible vector S = (s0, s1, s2, s3) .

4. If e′ = e and ∆S 6= 0, then the signature is genuine. Otherwise the signature
is rejected as false one.
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3.6. Correctness proof
Correctness proof of the sigature scheme consists in proving that the signature
(e, s, S) computed correctly will pass the verification procedure as genuine signa-
ture. Taking into account the mutual commutativity of the ψ-map operation with
the exponentiation operation, for the vectors V ′1 and V ′2 computed at the first step
of the signature verification procedure we have the following:

V ′1 = S ◦ Zs1 ◦ T1 ◦ Y −e1

= S ◦ (A1 ◦N ◦ U ◦B1)
s ◦R ◦A1 ◦B2 ◦ (A2 ◦Nx ◦B2)

−e

= S ◦A1 ◦ Us ◦Ns ◦B1 ◦A1 ◦B2 ◦A2 ◦N−es ◦B2

= K ◦Ns ◦R1 ◦R2 ◦N−es ◦B2 = K ◦Nk+ex ◦N−ex ◦B2

= K ◦Nk ◦B2 = V1;

V ′2 = S ◦ Zs/22 ◦ T2 ◦ Y −e2

= S ◦
(
A1 ◦ J ◦ U2 ◦B3

)s/2 ◦R′ ◦A1 ◦B4 ◦
(
A4 ◦ Jx/2 ◦B4

)−e
= S ◦A1 ◦ Us ◦ Js/2 ◦B3 ◦A1 ◦B4 ◦A4 ◦ (J−ex/2) ◦B4

= K ◦ J (k+ex)/2 ◦R3 ◦R4 ◦ J−ex/2 ◦B4 = K ◦ J (k+ex)/2−ex/2 ◦B4

= K ◦ Jk/2 ◦B4 = V2.

For V ′1 = V1 and V ′2 = V2 we have fH (M,V ′1 , V
′
2) = fH (M,V1, V2) and the equality

e′ = e holds true. For the signature (e, s, S) computed correctly inequality ∆S 6= 0
is satisfied. Thus, the signature scheme performes correctly.

4. Discussion
In the known signature schemes based on the computational difficulty of the HDLP,
security to potential quantum attacks is provided by such design that sets the pub-
lic signature-scheme parameters contained in different finite groups of some FNAA
used as algebraic support of the cryptoscheme. Therefore, the use of the public
parameters of the signature scheme in constructing periodic function causes the
lasts to take values from many different groups, so the known quantum algorithms
for finding the discret logarithm cannot be applied, the functions with the pe-
riod length depending on the discrete logarithm value can be easily constructed
though. The emergence of each new quantum algorithm will require a separate
consideration of the security issue.

To obtain stronger guarantees of security to quantum attacks based on quan-
tum algorithms for finding the length of periods of periodic functions, which can be
developed in the future, it is reasonable to construct such signature schemes that
periodic functions constructed using public parameters of the signature scheme will



282 D. N. Moldovyan, A. A. Moldovyan, N. A. Moldovyan

be free of periods whose length is associated with the value of the discrete loga-
rithm. The signature scheme described in Section 3 is an attempt of implementing
this idea.

The proposed design can be considered as modification of the signature scheme
described in [9], in which the PK represents three vectors Z = ψ′ (N) , Y =
ψ′′ (Nx) , and T, where ψ′ and ψ′′, are different homomorphism-map operations
satisfying the condition Y i ◦ T ◦ Zj = W1 ◦Nxj+i ◦W2 for some fixed vectors W1

and W2 defining a map-operation of arbitrary type. Due to the last condition the
periodic function f(i, j) = Y i ◦T ◦Zj contains a period that is determined by the
value of the discrete logarithm x. Indeed, the condition Y i◦T ◦Zj = Y i−1◦T ◦Zj+x
holds true. To eliminate periodicity connected with the value x, in the present
paper for computing the vector Z it is proposed to use the formula Z = ψ′ (N ◦ U) ,
where the vectorsN and U have the same prime order and are selected from hidden
commutative group, besides these two vectors are contained in different cyclic
groups. After such modification the periodic function f(i, j) = Y i◦T ◦Zj becomes
free from periods connected with the value x, since Y i◦T◦Zj = W1◦Nxj+i◦U j◦W2,
where U cannot be represented in the form of some power of the vector N. Indeed,
if the equation Nxj+i ◦ U j = Nxj′+i′ ◦ U j′ holds true, then we have j′ ≡ j mod q
and i′ ≡ i mod q.

The said modification requires to introduce corresponding modification of the
signature verification equation and such modfication has been performed as in-
troducing the left-sided multiplication by the vector S that is the third signature
element. This modification gives the following signature verification equation:
V ′ = S ◦Zs ◦ Y −e. However, after the modification a potential attacker can easily
forge a signature using the value S as a fitting parameter, for example, using the
following algorithm:

1. Generate at random a locally invertible vector V and compute e = fH(M,V ).
2. Select at random a 256-bit number s < q.
3. Compute the vector S from the vector equation S ◦ Zs ◦ Y −e = V.
In order to prevent attacks based on using the signature element S as a fitting

parameter in the introduced signature scheme the signature verification procedure
includes two different verification equations.

Up to this point, we have focused attention on the fact that the calculation
of the value x by public parameters of the HDLP-based schemes cannot be per-
formed using known quantum algorithms for calculating the discrete logarithm.
However, suppose a forger knows the value x. In the case of the HDLP-based sig-
nature schemes described in [5, 9] one can easily compose the signature generation
algorithm using the value x and public parameters. In the case of the introduced
signature scheme, knowledge of the value of x is not sufficient to simply calculate
a genuine signature. In this connection one has an interesting research item on es-
timation of the computationally difficulty of forging a signature, when the private
value x is known to the forger.

In comparison with the known HDLP-based signature schemes [5, 9], disadvan-
tages of the proposed new signature scheme is the increased size of the signature
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(about 3 times), the increased size of the PK (about 3 times), the reduced per-
formance of the signature generation procedure (about 3 times) and signature
verification procedure (about 2 times). However, these disadvantages are offset by
the main advantage of the new scheme, which consists in the proposed significantly
higher security to future quantum attacks and a more rigorous justification of such
expectation.

5. Conclusion

This paper introduces a new approach to the design of the HDLP-based signature
schemes and describes a signature scheme that illustrates a method used to satisfy
the adopted criterion of eliminating periods having length connected with the value
of discrete logarithm in construction of the periodic functions on the base of the
public parameters of the signature scheme. The main difference of the proposed
design from the earlier known deigns of the HDLP-based signature schemes is the
use of the hidden commutative group possessing 2-dimensional cyclicity instead
of using a hidden cyclic group. The 6-dimensial FNAA used as algebraic sup-
port of the developed signature scheme contains very large number of isomorphic
commutative groups with 2-dimensional cyclicity.

One can suppose that FNAAs containing a large set of commutative groups
with 3-dimensional cyclicity provide more space in designing the HDLP-based
candidates for PQ signatures. This assumption sets the theme of a new study
in the development of the proposed approach, but it is associated with the use
of the FNAAs possessing a suitable structure. New designs in the line with the
introduced approach, which are based on using 4-dimensional FNAAs with global
two-sided unit, also represent practical interest.
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