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Division on semigroups

that are semilattices of groups

Robert A. R. Monzo

Abstract. The binary products of right, left or double division on semigroups that are semi-
lattices of groups give interesting groupoid structures that are in one-one correspondence with
semigroups that are semilattices of groups. This work is inspired by the well-known one-one
correspondence between groups and Ward quasigroups.

1. Introduction

It appears in the literature that in 1930 M. Ward was the first to find a set of
axioms on (S, ∗) (a set S with a binary operation ∗, called here a groupoid) that
ensure the existence of a group binary operation ◦ on S such that x ∗ y = x ◦ y−1
cf. [12]. Such a groupoid was called a division groupoid by Polonijo (cf. [10]) and
it is clear that division groupoids are quasigroups.

Over the next 63 years many other sets of axioms on a groupoid were found
that make it a division groupoid, now commonly known as a Ward quasigroup
(see for example: [1, 2, 4, 6, 7, 8, 9, 10, 11]). Perhaps the most impressive of
these characterisations of Ward quasigroups is that of Higman and Neumann who
found a single law making a groupoid a Ward quasigroup (cf. [6]). It is now known
that a quasigroup is a Ward quasigroup if and only if it satisfies the law of right
transitivity, (x∗ z)∗ (y ∗ z) = x∗y (cf. [9]). It follows that a quasigroup is the dual
of a Ward quasigroup, which we will call a Ward dual quasigroup, if and only if it
satisfies the identity (z ∗ x) ∗ (z ∗ y) = x ∗ y.

Starting from any group (G, ◦) we can form a Ward quasigroup (G, ∗) by defin-
ing x ∗ y = x ◦ y−1; that is, ∗ is the operation of right division in the group (G, ◦).
Conversely, any Ward quasigroup (W, ∗) is unipotent and its only idempotent
e = e ∗ e = x ∗ x (for any x ∈ W ), is a right identity element. If we then define
(W, ◦) as x◦y = x∗ (e∗y), (W, ◦) is a group, x−1 = e∗x and x∗y = x◦y−1. These
mappings, (G, ◦) 7→ (G, ∗) and (W, ∗) 7→ (W, ◦) are inverse mappings, which im-
plies that groups are in one-to-one correspondence with Ward quasigroups. (This
is all well known.) In addition, a Ward quasigroup is an inverse groupoid, with
the unique inverse of x being x−1 = e ∗ x. That is, the inverse of an element of a
Ward quasigroup is the inverse element in the group it induces.
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In 2007 N.C. Fiala proved (cf. [5]) that a quasigroup (S, ∗) satisfies the identity
[(e ∗ e) ∗ (x ∗ z)] ∗ [(e ∗ y) ∗ z] = x ∗ y (for some e ∈ S) if and only if there is a
group (S, ◦) with identity element e such that x ∗ y = x−1 ◦ y−1. Fiala called such
groupoids double Ward quasigroups. He noted that the binary operation ◦ on a
double Ward quasigroup S defined by x ◦ y = (e ∗ x) ∗ (e ∗ y) is a group operation
and that double Ward quasigroups are in one-to-one correspondence with groups.
Double Ward quasigroups are also inverse quasigroups, with x−1 = x.

Our intention here is to explore the operations x ∗ y = x · y−1 (called right
division), x ∗ y = x−1 · y (called left division) and x ∗ y = x−1 · y−1 (called double
division) when (S, ·) is a semigroup and a semilattice of groups, where x−1 is the
inverse of x in the group to which it belongs. We will prove that each collection
of all such structures are in one-one correspondence with the collection of all
semigroups that are semilattices of groups and, in this sense, we extend the result
that Ward quasigroups are in one-to-one correspondence with groups.

2. Preliminary definitions and results

The set of all idempotent elements of a groupoid (S, ∗) is denoted by E(S, ∗), i.e.,
E(S, ∗) = {x ∈ S |x∗x = x}. Note that the set E(S, ∗) may not be closed under the
operation ∗. The groupoid (S, ∗) is called an idempotent groupoid (a semilattice
groupoid) if all of its elements are idempotent (idempotent and commute). A
semilattice groupoid (S, ∗) is called a semigroup semilattice if it is a semigroup.
A groupoid (S, ∗) is called an (idempotent) groupoid (T, ·) of groupoids (Sα, ∗|Sα )
(α ∈ T ) if S is a disjoint union of the Sα (α ∈ T ) and Sα ∗Sβ ⊆ Sα·β = Sαβ for all
α, β ∈ T. Note that this definition does not require either of the binary operations
· or ∗ to be associative.

We call the groupoid (S, ∗) right (left) solvable if for any a, b ∈ S there exists
a unique x ∈ S such that a ∗x = b (x ∗ a = b). The groupoid (S, ∗) is a quasigroup
if it is right and left solvable, in which case it is right and left cancellative. We call
the quasigroup (S, ∗) a Ward quasigroup (Ward dual quasigroup) if it satisfies the
identity (x∗z)∗(y∗z) = x∗y ((z∗x)∗(z∗y) = x∗y). The quasigroup (S, ∗) is called
a double Ward quasigroup if it satisfies the identity ((e ∗ e) ∗ (x ∗ z)) ∗ ((e ∗ y) ∗ z) =
x ∗ y for some fixed e ∈ S. A groupoid (S, ∗) is called an inverse groupoid if
for all x ∈ S there exists a unique element x−1 such that (x ∗ x−1) ∗ x = x and
(x−1 ∗ x) ∗ x−1 = x−1. The fact that (S, ∗) and (T, ◦) are isomorphic groupoids
is denoted by (S, ∗) ∼= (T, ◦). The groupoid (S, ∗̄) is dual to the groupoid (S, ∗)
if x∗̄y = y ∗ x. The collection C is the collection of all groupoids (S, ∗̄), where
(S, ∗) ∈ C. Clearly, C is in one-one correspondence with C.

Below we list a few identities that we will use later. The proofs of these
identities one can find in [2] and [9].

A Ward quasigroup (S, ∗) satisfies the following identities:

(1) x ∗ x = y ∗ y = r,
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(2) x ∗ r = x,

(3) r ∗ (x ∗ y) = y ∗ x,

(4) r ∗ (r ∗ x) = x,

(5) (x ∗ y) ∗ z = x ∗ (z ∗ (r ∗ x)).

Note that a Ward (Ward dual) quasigroup (S, ∗) has a unique right (left)
identity element r. So, we will denote this by (W, ∗, r) (resp. (WD, ∗, r)). We
will denote a double Ward quasigroup by (DW, ∗, e), although we note that the
element e may not be unique.

A double Ward quasigroup (S, ∗) satisfies the following identities:

(6) e ∗ e = e,

(7) (e ∗ (x ∗ z)) ∗ ((e ∗ y) ∗ z) = x ∗ y,

(8) (y ∗ x) ∗ y = y ∗ (x ∗ y) = x,

(9) e ∗ x = x ∗ e,

(10) x ∗ (x ∗ e) = (e ∗ x) ∗ x = e,

(11) x ∗ y = e ∗ ((e ∗ y) ∗ (e ∗ x)).

The following facts on connections of groups with various types of Ward quasi-
groups are well-known, or follow readily from [2], [5] and [9].

(F1) (W, ∗, r) is a Ward quasigroup if and only if there is a group (W, ◦, r) such
that x ∗ y = x ◦ y−1 for all x, y ∈W .

(F2) (WD, ∗, r) is a Ward dual quasigroup if and only if there is a group (WD, ◦, r)
such that x ∗ y = y ◦ x−1 for all x, y ∈WD.

(F3) (DW, ∗, e) is a double Ward quasigroup if and only if there is a group
(DW, ◦, e) such that x ∗ y = x−1 ◦ y−1 for all x, y ∈ DW .

(F4) If (W, ∗, r) is a Ward quasigroup, then (W, ◦) defined as x ◦ y = x ∗ (r ∗ y)
is a group with identity r and x−1 = r ∗ x.

(F5) If (WD, ∗, r) is a Ward dual quasigroup, then (WD, ◦) defined as x ◦ y =
(x ∗ r) ∗ y is a group with identity r and x−1 = x ∗ r.

(F6) If (DW, ∗, e) is a double Ward quasigroup, then (DW, ◦) defined as x ◦ y =
(e ∗ x) ∗ (e ∗ y) is a group with identity e and x−1 = e ∗ x.
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The fact (F6) was noted in [5] without proof. Below we give a short proof.

By definition we have

(x ◦ y) ◦ z = (e ∗ ((e ∗ x) ∗ (e ∗ y)) ∗ (e ∗ z) (11)
= (y ∗ x) ∗ (e ∗ z)

and
x ◦ (y ◦ z) = (e ∗ x) ∗ (e ∗ ((e ∗ y) ∗ (e ∗ z))) (11)

= (e ∗ x) ∗ (z ∗ y).

Since, by (8) and (9), x = (y ∗ x) ∗ y and z = e ∗ (e ∗ z), we have

x ◦ (y ◦ z) = (e ∗ x) ∗ (z ∗ y) = (e ∗ ((y ∗ x) ∗ y)) ∗ ((e ∗ (e ∗ z)) ∗ y)
(7)
= (y ∗ x) ∗ (e ∗ z) = (x ◦ y) ◦ z.

So, (DW, ∗) is a semigroup.
Now suppose that a, b ∈ DW . Since (DW, ∗, e) is a quasigroup, there exists a

unique x ∈ DW such that x ∗ a = e ∗ b. So

a ◦ x = (e ∗ a) ∗ (e ∗ x)
(8,9,11)

= e ∗ (x ∗ a) = e ∗ (e ∗ b) (8,9)
= b.

If a ◦ y = b, then b = (e ∗ a) ∗ (e ∗ y)
(8,9,11)

= e ∗ (y ∗ a) and so, by (8) and (9),
e ∗ b = b ∗ e = (e ∗ (y ∗ a)) ∗ e = y ∗ a. But x was unique, so x = y. Similarly, there
exists a unique element z ∈ DW such that z ◦ a = b. So, (DW, ◦) is a group. The
facts that e is the identity and x−1 = e ∗ x follow from (8) and (10).

As a consequence of (F1)− (F6), we have the following corollaries:

Corollary 2.1. (cf. [2] and [9]) The collection of all Ward quasigroups is in one-
to-one correspondence with the collection of all groups.

Corollary 2.2. The collection of all Ward dual quasigroups is in one-to-one cor-
respondence with the collection of all groups.

Corollary 2.3. (cf. [5]) The collection of all double Ward quasigroups is in one-
to-one correspondence with the collection of all groups.

The following two facts follow readily from (F1) and (F3) and proofs are
omitted.

(F10) If (W, ∗, r) is a Ward quasigroup, then (W, ·, r), where x · y = (r ∗ x) ∗ y, is
a double Ward quasigroup.

(F11) If (DW, ∗, e) is a double Ward quasigroup, then (DW, ·, e), where x · y =
(e ∗ x) ∗ y, is a Ward quasigroup.

Also the following fact is true.
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(F12) If (S, ∗) is a semigroup semilattice V of Ward quasigroups (Wα, ∗|Wα , eα)
(α ∈ V ) and satisfies the identity (x∗y)∗ (z ∗w) = (x∗ (w−1 ∗y−1))∗z, then
E(S, ∗) = {eα |α ∈ V }, eα ∗ eβ = eαβ and the mapping Ψ(eα) = α restricted
to E(S, ∗) is an isomorphism between (E(S, ∗), ∗|E(S,∗)) and V.

Proof. First, we note that each (Wα, ∗|Wα , eα) is an inverse groupoid, with x−1α =
eα ∗ xα. Since a semigroup semilattice groupoid of inverse groupoids is an inverse
groupoid, (S, ∗) is an inverse groupoid. Hence, the identity (x ∗ y) ∗ (z ∗ w) =
(x ∗ (w−1 ∗ y−1)) ∗ z has a clear meaning. We call this identity (?).

Now, by definition, eα ∗ eβ ∈ Wαβ . Therefore, eαβ
(1)
= (eα ∗ eβ) ∗ (eα ∗ eβ)

(?)
=

(eα ∗ eβ) ∗ eα. Then, (eα ∗ eβ) ∗ eβ
(?)
= (eα ∗ (eβ ∗ eα)) ∗ eβ

(?)
= (eα ∗ eα) ∗ (eβ ∗ eβ) =

eα ∗ eβ = (eα ∗ eβ)∗ eαβ = (eα ∗ eβ)∗ ((eα ∗ eβ)∗ eα)
(?)
= (eα ∗ (eα ∗ eβ))∗ (eα ∗ eβ)

(?)
=

((eα ∗ (eβ ∗ eα)) ∗ eα) ∗ (eα ∗ eβ)
(?)
= ((eα ∗ eβ) ∗ eα) ∗ (eα ∗ eβ) = eαβ ∗ (eα ∗ eβ).

So, (eα ∗ eβ) ∗ eβ = eα ∗ eβ = eαβ ∗ (eα ∗ eβ) = ((eα ∗ eβ) ∗ eα) ∗ ((eα ∗ eβ) ∗ eβ)
(?)
=

((eα ∗ eβ) ∗ (eβ ∗ eα)) ∗ (eα ∗ eβ). But, since (eα ∗ eβ) ∗ (eβ ∗ eα) ∈ Wαβ , Wαβ

is a Ward quasigroup and eαβ ∗ (eα ∗ eβ) = ((eα ∗ eβ) ∗ (eβ ∗ eα)) ∗ (eα ∗ eβ),

eαβ = (eα∗eβ)∗(eβ∗eα)
(1)
= (eα∗eβ)∗(eα∗eβ) and eα∗eβ = eβ∗eα. But this implies

eα∗(eβ∗eσ)=eα∗(eσ∗eβ)=(eα∗eα)∗(eσ∗eβ)
(?)
= (eα ∗ (eβ ∗ eα)) ∗ eσ

(?)
= (eα∗eβ)∗eσ.

Then, eαβ = (eα ∗ eβ) ∗ (eα ∗ eβ)
(?)
= (eα ∗ eβ) ∗ eα = eα ∗ (eβ ∗ eα) = eα ∗ (eα ∗ eβ) =

(eα ∗ eα) ∗ eβ = eα ∗ eβ . It follows that the mapping eα 7→ α is an isomorphism
between E(S, ∗) and V.

Dually, we have

(F13) If (S, ∗) is a semigroup semilattice V of Ward dual quasigroups (Wα, ∗|Wα , eα)
(α ∈ V ) and satisfies the identity (x∗y)∗ (z ∗w) = y ∗ ((z−1 ∗x−1)∗w), then
E(S, ∗) = {eα |α ∈ V }, eα ∗ eβ = eαβ and the mapping Ψ(eα) = α restricted
to E(S, ∗) is an isomorphism between (E(S, ∗), ∗|E(S,∗)) and V.

(F10) and (F11) are easily proved using (F1) and (F3). For example, if
(W, ∗, r) is a Ward quasigroup then by (F1) x · y = (r ∗ x) ∗ y = (r ◦ x−1) ◦ y−1 =
x−1 ◦ y−1 and so (W, ·, r) is a double Ward quasigroup.

Proposition 2.4. If (S, ∗) is a semigroup semilattice V of double Ward quasi-
groups (DWα, ∗|DWα , eα), (α ∈ V ), then the following conditions are equivalent

(i) {eα |α ∈ V } ∼= V,

(ii) for all α, β, γ, σ ∈ V , (eα ∗ eβ) ∗ (eγ ∗ eσ)= eβ ∗ ((eγ ∗ eσ) ∗ eα),

(iii) the mapping eα 7→ α is an isomorphism from ({eα |α ∈ V }, ∗|{eα |α∈V }) to V.
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Proof. (i)⇒ (ii): Let Ψ: ({eα |α ∈ V }, ∗|{eα |α∈V })→V be an isomorphism. Then
Ψ((eα ∗ eβ) ∗ (eγ ∗ eσ)) = Ψ(eα)Ψ(eβ)Ψ(eγ)Ψ(eσ) = Ψ(eβ)[[Ψ(eσ)Ψ(eγ)]Ψ(eα)] =
Ψ(eβ ∗ ((eσ ∗ eγ) ∗ eα)), because V is a semigroup semilatice. Since Ψ is one-one,
the last implies (ii).

(ii)⇒ (iii): First, we prove that eα ∗ eβ = eβ ∗ eα. By hypothesis, we have

(12) (eα ∗ eβ) ∗ (eγ ∗ eσ) = eβ ∗ ((eσ ∗ eγ) ∗ eα).

From this we obtain

(13) (eα ∗ eβ) ∗ eσ = eβ ∗ (eσ ∗ eα),

which implies

(14) (eβ ∗ eα) ∗ eβ = eα ∗ eβ = eα ∗ (eβ ∗ eα).

Now, eαβ
(8)
= ((eα ∗ eβ) ∗ eαβ) ∗ (eα ∗ eβ)

(13)
= (eβ ∗ (eαβ ∗ eα)) ∗ (eα ∗ eβ)

(12)
=

(eβ ∗ ((eα ∗ eαβ) ∗ eβ)) ∗ (eα ∗ eβ)
(13)
= (eβ ∗ (eαβ ∗ (eβ ∗ eα))) ∗ (eα ∗ eβ)

(12)
= (eβ ∗

(eαβ ∗ (eβ ∗ eα))) ∗ (eα ∗ eβ))
(12)
= (eβ ∗ ((eαβ ∗ (eα ∗ eβ)) ∗ eαβ)) ∗ (eα ∗ eβ)

(8)
=

(eβ ∗ (eα ∗ eβ)) ∗ (eα ∗ eβ)
(14)
= (eβ ∗ eα) ∗ (eα ∗ eβ)

(12)
= eα ∗ ((eβ ∗ eα) ∗ eβ)

(14)
=

eα ∗ (eα ∗ eβ)
(12)
= eα ∗ ((eβ ∗ eα) ∗ eα)

(14)
= eα ∗ (eα ∗ (eα ∗ eβ)) = eα ∗ eαβ .

Then,

(15) eαβ ∗ eα
(14)
= eαβ ∗ (eα ∗ eαβ) = eαβ ∗ eαβ = eαβ = eα ∗ (eα ∗ eβ).

Since we have proved above that eαβ = (eβ ∗ eα) ∗ (eα ∗ eβ), it follows from (8)

that (eα ∗ eβ) ∗ eαβ = eβ ∗ eα. So, eβ ∗ eα = (eα ∗ eβ) ∗ eαβ
(14)
= eβ ∗ (eαβ ∗ eα)

(15)
=

eβ ∗ eαβ
(15)
= eβ ∗ (eα ∗ (eα ∗ eβ))

(14)
= eβ ∗ ((eβ ∗ eα) ∗ eα)

(12)
= (eα ∗ eβ) ∗ (eα ∗ eβ),

which means that (eα ∗ eβ) ∗ (eα ∗ eβ) = (eα ∗ eβ) ∗ eαβ . Since (DWαβ , ∗|DWαβ , eαβ)

is a quasigroup, eβα = eαβ = eα ∗ eβ = eβ ∗ eα. Also, (eα ∗ eβ) ∗ eγ = eαβ ∗ eγ =
e(αβ)γ = eα(βγ) = eα ∗ (eβ ∗ eγ). Finally, the mapping Ψ: ({eα |α ∈ V }, ∗) → V

defined as Ψ(eα) = α satisfies Ψ(eα ∗ eβ) = Ψ(eαβ) = αβ = Ψ(α)Ψ(β) and so,
since it is clearly one-one and onto V, Ψ is an isomorphism.

(iii)⇒ (i): This is obvious.

3. Semigroup semilattices of groups
We have seen that Ward quasigroups, Ward dual quasigroups and double Ward
quasigroups are in one-to-one correspondence with groups. In this section, we
extend these results to semigroups that are semilattices of groups. Note that in
semigroup theory a semilattice, a union of groups and a semilattice of groups are,
by definition, semigroups. However, the definition of a semilattice (or idempotent
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groupoid) (S, ·) of groupoids (Sα, ∗|Sα ) (α ∈ T ) results in structures that are not
necessarily associative, even when the Sα (α ∈ T ) are all groups. Therefore, we
use the terms semigroup semilattice, semigroup union of groups and semigroup
semilattice of groups, terms that are redundant for semigroup theorists. The idea
is a straightforward one. We simply “extend” the binary product that gives the
bijection between groups and Ward quasigroups, for example, to the semigroup
semilattice of groups and to the resultant structure(s). So, we are working with
structures that result from defining binary operations on a semigroup semilattice
of groups (S, ·) as follows: x ∗ y = x · y−1 (called right division), x ∗ y = x−1 · y
(called left division) and x ∗ y = x−1 · y−1 (called double division). This is possible
because a semigroup semilattice of groups is an inverse semigroup; that is, each
element x ∈ S has a unique inverse x−1 that is the inverse of the element x in the
group to which it belongs [3, Theorem 4.11].

On the resultant structures (S, ∗) we define binary operations as follows, re-
spectively:

xα ⊗ yβ = xα ∗ (eαβ ∗ yβ),

xα ⊗ yβ = (xα ∗ eαβ) ∗ yβ ,
xα ⊗ yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ).

These structures (S,⊗) turn out to be semigroup semilattices of groups. In each
of these three cases, the mappings (S, ·) → (S, ∗) and (S, ∗) → (S,⊗) are inverse
mappings. Hence, we find three different collections of structures, each of which is
in one-to-one correspondence with the collection SLG of all semigroup semilattices
of groups.

Lemma 3.1. (cf. [3, Theorem 4.11]) A semigroup (S, ·) is a semigroup semilattice
V of groups (Gα, ·|Gα , eα) (α ∈ V ) if and only if (S, ·) is a semigroup union of
groups and has commuting idempotents if and only if (S, ·) is an inverse semigroup
that is a semigroup union of groups if and only if (S, ·) is a semigroup and a
semigroup semilattice V ∼= E(S, ·) of groups.

Note that the following identity holds in inverse semigroups:

(16) (x · y)−1 = y−1 · x−1.

If (S, ·) is a semigroup and a semilattice V of groups then it follows from Lemma
3.1 that

(17) eα · eβ = eαβ = eβα = eβ · eα

for all α, β ∈ V.

Lemma 3.2. Suppose that (S, ·) is a semigroup semilattice V of groups (Gα, eα)
(α ∈ V ) and that xα ∗ yβ = xα · y−1 for all xα ∈ Gα, yβ ∈ Gβ and α, β ∈ V . Then

(18) (S, ∗) is an inverse groupoid with x−1α = eα ∗ xα (α ∈ V ),
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(19) E(S, ∗) ∼= E(S, ·) ∼= V,

(20) (S, ∗) is a semigroup semilattice Vof Ward quasigroups (Gα, ∗|Gα,eα) (α∈V ),

(21) (xα ∗ yβ) ∗ (zσ ∗ wγ) = [xα ∗ (w−1γ ∗ y−1β )] ∗ zσ,

(22) xα ∗ (eαβ ∗ yβ) = xα ∗ y−1β ,

(23) xα ∗ yβ = (yβ ∗ xα)−1.

Proof. (18): It is straightforward to calculate that x−1α , the inverse of xα in the
group to which it belongs, is the unique inverse of xα in (S, ∗). That is, x−1α =
eα ∗ xα.

(19): xα = xα ∗ xα if and only if xα = xα · x−1α = eα, the identity of the group

to which xα belongs. Then, eα ∗ eβ = eα · e−1β = eα · eβ
(17)
= eαβ . Since, by Lemma

3.1, in (S, ·) we have E(S, ·) ∼= V, E(S, ∗) ∼= E(S, ·) ∼= V.

(20): Since xα ∗ yβ = xα · y−1β ∈ Gα · Gβ ⊆ Gαβ . Since xα ∗ yα = xα · y−1α
in each (Gα, ∗|Gα , eα), by fact (F1), (Gα, ∗|Gα , eα) is a Ward quasigroup for all
α ∈ V. By definition then, (S, ∗) is a semigroup semilattice V of Ward quasigroups
(Gα, ∗|Gα , eα) (α ∈ V ).

(21): Using the facts that xα ∗ yβ = xα · y−1β and (xα · yβ)−1
(16)
= y−1β · x−1α it

is straightforward to calculate that (xα ∗ yβ) ∗ (zσ ∗ wγ) = xα · y−1β · wγ · z−1σ =

[xα ∗ (w−1γ ∗ y−1β )] ∗ zσ.

(22): xα ∗ (eαβ ∗ yβ) = xα · (eαβ · y
−1
β )−1

(16)
= xα · (yβ · e

−1
αβ) = (xα · yβ) · eαβ =

xα · yβ = xα ∗ y−1β .

(23): (xα ∗ yβ)−1 = (xα · y−1β )−1
(16)
= yβ · x−1α = yβ ∗ xα.

Definition 3.3. If (S, ·) is a semigroup semilattice V of groups (Gα, eα) (α ∈ V )
and x ∗ y = x · y−1, then we denote (S, ∗) by SLWQ(S, ·). We define SLWQ as
the collection of all semigroup semilattices V of Ward quasigroups (Gα, ∗|Gα , eα)
(α ∈ V ) that satisfy (21). In particular, SLWQ(S, ·) ∈ SLWQ.

Note once again that a semigroup semilattice of inverse groupoids is an inverse
groupoid. So, conditions (21), (22) and (23) have a clear meaning.

Lemma 3.4. Suppose that (S, ∗) is a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ) and satisfies (21). Define xα · yβ = xα ∗ (eαβ ∗ yβ). Then
(S, ·) is a semigroup and a semigroup semilattice V of groups (Wα, ∗|Wα, eα) (α∈V )
with V ∼= E(S, ·) ∼= E(S, ∗).
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Proof. As previously noted in the proof of (F12), since each (Wα, ∗|Wα , eα) is an
inverse groupoid, with x−1α = eα ∗ xαand since a semigroup semilattice of inverse
groupoids is an inverse groupoid, (S, ∗) is an inverse groupoid.

We prove that (21) implies (22). We have

xα∗(eαβ∗yβ) = (xα∗eα)∗(eαβ∗yβ)
(21)
= [xα∗(y−1β ∗e−1α )]∗eαβ = [xα∗(y−1β ∗eα)] =

(xα ∗ eα) ∗ (y−1β ∗ eα)
(21)
= [xα ∗ (eα ∗ eα)] ∗ y−1β = (xα ∗ eα) ∗ y−1β = xα ∗ y−1β ,

so, (22) is valid.

Next, we prove that (21) implies (23). Since we have xα∗yβ = xα∗(y−1β )−1
(22)
=

xα ∗ (eαβ ∗ y
−1
β ), then xα ∗ yβ = xα ∗ (eαβ ∗ y

−1
β )

(5)
= [eα ∗ (eα ∗xα)] ∗ (eαβ ∗ y

−1
β )

(21)
=

[eα∗(yβ ∗xα)]∗eαβ = [eα∗(yβ ∗xα)]∗(eαβ ∗eαβ)
(21)
= (eα∗[eαβ ∗(yβ ∗xα)−1])∗eαβ =

eα ∗ (yβ ∗ xα) = (eα ∗ eα) ∗ [(yβ ∗ xα) ∗ eαβ ]
(21)
= [eα ∗ (eαβ ∗ eα)] ∗ (yβ ∗ xα)

(F12)
=

eαβ ∗ (yβ ∗ xα) = (yβ ∗ xα)−1, so, (23) is valid.
Now xα = xα · xα if and only if xα = xα ∗ (eα ∗ xα) = xα ∗ eα if and only if

eα = eα∗xα = xα∗xα if and only if xα = eα. Also, eα∗eβ = [eα∗(eα∗eα)]∗eβ)
(21)
=

eα ∗ (eβ ∗ eα). Then, eα · eβ = eα ∗ (eαβ ∗ eβ) = (eα ∗ eα) ∗ (eαβ ∗ eβ)
(21)
=

[eα ∗ (eβ ∗ eα)] ∗ eαβ = eα ∗ (eβ ∗ eα)
(21)
= eα ∗ eβ . So, the operations · and ∗ coincide

on E(S, ∗). Thus, E(S, ·) ∼= E(S, ∗). Using (F12), E(S, ·) ∼= E(S, ∗) ∼= V is a
semigroup semilattice. Since, for each (Wα, ∗|Wα , eα), xα · yα = xα ∗ (eα ∗ yα),
by (F4), each (Wα, ·|Wα , eα) is a group. Since xα ·yβ = xα∗(eαβ ∗ yβ) ∈ Wαβ ,
Wα ·Wβ ⊆Wαβ , and so (S, ·) is a semigroup semilattice V of groups. So, we only
need to prove that (S, ·) is a semigroup.

We have (xα ·yβ)·zγ = [xα∗(eαβ ∗yβ)]∗(eαβγ ∗zγ)
(22)
= (xα∗y−1β )∗(eαβγ ∗zγ)

(21)
=

[xα ∗ (z−1γ ∗ yβ)] ∗ eαβγ = [xα ∗ (z−1γ ∗ yβ)]
(23)
= xα ∗ (yβ ∗ z−1γ )−1

(22)
= xα ∗ [eαβγ ∗

(yβ ∗ z−1γ )]
(22)
= xα ∗ [eαβγ ∗ [yβ ∗ (eβγ ∗ zγ)]) = xα · (yβ · zγ).

Corollary 3.5. Let (S, ∗) be a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ). If (S, ∗) satisfies (21), then

(i) it satisfies (22) and (23),

(ii) there exists (S, ·) ∈ SLG such that x ∗ y = x · y−1 for all x, y ∈ S.

Proof. Part (i) was proved in Lemma 3.4. For part (ii), let (S, ·) be as in our
Lemma 3.4. Then, as proved in Lemma 3.4, (S, ·) ∈ SLG. Also, xα · y−1β =

(xα∗eα)∗(eαβ ∗y
−1
β )

(21)
= [xα∗(yβ ∗eα)]∗eαβ = [xα∗(yβ ∗eα)] = [(xα∗eα)∗(yβ ∗eα)]

(21)
= (xα ∗ eα) ∗ yβ = xα ∗ yβ .
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Definition 3.6. Let (S, ∗) be a semigroup semilattice V of Ward quasigroups
(Wα, ∗|Wα , eα) (α ∈ V ) that satisfies (21), and if we define xα ·yβ = xα ∗ (eαβ ∗yβ),
then we denote the semigroup semilattice V of groups (S, ·) as SLG(S.∗).

Theorem 3.7. For all (S, ∗) ∈ SLWQ, SLWQ(SLG(S, ∗)) = (S, ∗) and for all
(S, ·) ∈ SLG, SLG(SLWQ(S, ·)) = (S, ·).

Proof. In SLG(S, ∗) the product is xα · yβ = xα ∗ (eαβ ∗ yβ). The product ⊗ in

SLWQ(SLG(S, ∗)) is xα ⊗ yβ = xα · y−1β . So, xα ∗ yβ = (xα ∗ yβ) ∗ (eαβ ∗ eαβ)
(22)
=

(xα ∗ (e−1αβ ∗ y
−1
β )) ∗ eαβ = xα ∗ (eαβ ∗ y

−1
β ) = xα · y−1β = xα ⊗ yβ and consequently,

SLWQ(SLG(S, ∗)) = (S, ∗).
In SLWQ(S, ·) the product is x∗y = x·y−1. The product⊕ in SLG(SLWQ(S, ·))

is xα ⊕ yβ = xα ∗ (eαβ ∗ yβ) = xα · (eαβ · y
−1
β )−1

(12)
= xα · yβ · e

−1
αβ = xα · yβ . Hence,

SLG(SLWQ(S, ·)) = (S, ·).

The second part of the following Corollary can be viewed as an “extension” of
(F1).

Corollary 3.8. There is a one-to-one correspondence between semigroup semi-
lattices of groups SLG and groupoids (S, ∗) that are semigroup semilattices V of
Ward quasigroups (Wα, ∗|Wα , eα) and that satisfy (21). Also, (S, ∗) ∈ SLWQ if
and only if there exists (S, ·) ∈ SLG such that x ∗ y = x · y−1 for all x, y ∈ S.

Corollary 3.9. There is a one-to-one correspondence between semigroup semilat-
tices of abelian groups and groupoids (S, ∗) that are semigroup semilattices V of
medial Ward quasigroups (Wα, ∗|Wα , eα) (α ∈ V ) and that satisfy (21).

Proof. The proof here follows that of Lemmas 3.2, 3.4 and Theorem 3.7, using the
additional fact that a groupoid is a medial Ward quasigroup if and only if it is
induced by an abelian group.

Lemma 3.10. Let (S, ·) be a semigroup semilattice V of groups (Gα, ∗|Gα , eα)
(α ∈ V ) and let x ∗ y = x−1 · y. Then

(24) (S, ∗) an inverse groupoid with x−1α = xα ∗ eα, (α ∈ V ),

(25) E(S, ∗) ∼= E(S, ·) ∼= V,

(26) (S, ∗) is a semigroup semilattice V of Ward dual quasigroups (Sα, ∗|Sα , eα)
(α ∈ V ),

(27) (xα ∗ yβ) ∗ (zγ ∗ wσ) = yβ ∗ ((z−1γ ∗ x−1α ) ∗ wσ),

(28) (xα ∗ eαβ) ∗ yβ = x−1α ∗ yβ,

(29) xα ∗ yβ = (yβ ∗ xα)−1.
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Proof. Note that it follows from Lemma 3.1 that SLG = SLG. Since x∗̄y =
y ∗x = y−1 ·x = x̄·y−1 and (S, ·̄) ∈ SLG, (S, ∗̄) satisfies (18) to (23). Hence, (S, ∗)
satisfies (24) to (29).

Definition 3.11. SLWD(S, ·) will denote (S, ∗) in Lemma 3.10 above. We denote
the collection of all groupoids (S, ∗) that are semigroup semilattices V of Ward
dual quasigroups (WDα, ∗|WDα

, eα) (α ∈ V ) that satisfy (27) as SLWDQ. So,
SLWD(S, ·) = (S, ∗) ∈ SLWDQ.

Lemma 3.12. Suppose that (S, ∗) is a semigroup semilattice V of Ward dual
quasigroups (WDα, ∗|WDα , eα) (α ∈ V ) and satisfies (27). Then (S, ·) with the
operation xα · yβ = (xα ∗ eαβ) ∗ yβ , is a semigroup and a semigroup semilattice V
of groups.

Proof. It is clear that (S, ∗̄) is a semigroup semilattice V of Ward quasigroups
(WDα, ∗|WDα , eα) (α ∈ V ) and satisfies (21). Also, xα ·̄ yβ = (yβ ∗ eαβ) ∗ xα =
xα∗̄ (eαβ ∗̄ yβ). By Lemma 3.4, (S, ·̄) is a semigroup and a semigroup semilattice V
of groups with V ∼= E(S, ·̄) ∼= E(S, ∗̄). Hence, (S, ·) is a semigroup and a semigroup
semilattice V of groups with V ∼= E(S, ·) ∼= E(S, ∗).

Definition 3.13. SLG(S, ∗) will denote (S, ·) in Lemma 3.12 above.

Theorem 3.14. For all (S, ·) ∈ SLG, SLG(SLWD(S, ·)) = (S, ·) and for all
(S, ∗) ∈ SLWDQ, SLWD(SLG(S, ∗)) = (S, ∗).

Proof. Observe that the product in SLWD(S, ·) is x ∗ y = x−1 · y. The product in
SLG(SLWD(S, ·)) is

xα ⊗ yβ = (xα ∗ eαβ) ∗ yβ = (x−1α · eαβ) ∗ yβ
(12)
= eαβ · xα · yβ = xα · yβ .

Hence, SLG(SLWD(S, ·)) = (S, ·).
The product in SLG(S, ∗) is xα · yβ = (xα ∗ eαβ) ∗ yβ . Hence, the product in

SLWD(SLG(S, ∗)) is xα ⊕ yβ = x−1 · y = ((xα ∗ eα) ∗ eαβ) ∗ yβ
(27)
= xα ∗ yβ and

so SLWD(SLG(S, ∗)) = (S, ∗) .

Corollary 3.15. There is a one-to-one correspondence between semigroup semi-
lattices of groups SLG and groupoids (S, ∗) that are semigroup semilattices V of
Ward dual quasigroups (WDα, ∗|WDα , eα) (α ∈ V ) and that satisfy (24), (26) and
(27). Also, (S, ∗) ∈ SLWDQ if and only if there exists (S, ·) ∈ SLG such that
x ∗ y = x−1 · y for all x, y ∈ S.

Corollary 3.16. There is a one-to-one correspondence between semigroup semi-
lattices of abelian groups and groupoids (S, ∗) that are semigroup semilattices V of
unipotent, left-unital right modular quasigroups (Qα, ∗|α , eα) satisfying (27).
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Proof. A Ward dual quasigroup is a unipotent, left-unital right modular quasi-
group if and only if it is medial if and only if it is induced by an abelian group.
Using this fact, the proof of Corollary 3.16 exactly follows those of Lemmas 3.10,
3.12 and Theorem 3.14.

Lemma 3.17. Let (S, ·) be a semigroup semilattice V of groups (Gα, ∗|Gα , eα)

(α ∈ V ) such that xα ∗ yβ = x−1 · y−1β . Then

(30) ({eα |α ∈ V }, ∗) ∼= ({eα |α ∈ V }, ·) ∼= V is a semigroup semilattice,

(31) (S, ∗) is a semigroup semilattice V of double Ward quasigroups (Gα, ∗|Gα , eα)
(α ∈ V ),

(32) (S, ∗) satisfies the identity

(eαβγ∗((eαβ∗xα)∗(eαβ∗yβ)))∗(eαβγ∗zγ)=(eαβγ∗xα)∗(eαβγ∗((eβγ∗yβ)∗(eβγ∗zγ))),

(33) (S, ∗) satisfies the identity xα ∗ yβ = (eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)).

Proof. (30): For any eα, eβ ∈ V, eα ∗ eβ = e−1α · e−1β = eα · eβ . Then, eα ∗ eβ =
eα · eβ = eβ · eα = eαβ , by Lemma 3.1. Hence, (eα ∗ eβ) ∗ eγ = eαβ ∗ eγ = e(αβ)γ =

eα(βγ) = eα ∗ (eβ ∗ eγ). By Lemma 3.1, ({eα |α ∈ V }, ∗) ∼= V is a semigroup
semilattice and so (30) is valid.

(31): Each (Gα, ∗|Gα , eα) has product xα∗yα = x−1α ·y−1α and therefore, by (F3),
each (Gα, ∗|Gα , eα) is a double Ward quasigroup. Since xα ∗yβ = x−1α ·y−1β ∈ Gαβ ,
(31) is valid.

(32): We have

(eαβγ ∗ ((eαβ ∗ xα) ∗ (eαβ ∗ yβ))) ∗ (eαβγ ∗ zγ) =

(eαβγ ∗ ((e−1αβ · x−1α ) ∗ (e−1αβ · y
−1
β ))) ∗ (e−1αβγ · z−1γ ) =

(eαβγ ∗ (xα · yβ)) ∗ (e−1αβγ · z−1γ ) = (e−1αβγ · y
−1
β · x−1α )−1 · zγ · eαβγ =

(xα · yβ) · (eαβγ · (zγ · eαβγ)) = (xα · yβ) · (zγ · eαβγ) =

(xα · yβ · zγ) · eαβγ = xα · yβ · zγ .

Also,

(eαβγ ∗ xα) ∗ (eαβγ ∗ ((eβγ ∗ yβ) ∗ (eβγ ∗ zγ))) =

(e−1αβγ · x−1α )−1 ∗ (e−1αβγ · ((e
−1
βγ · y

−1
β )−1)−1)−1 =

(xα · eαβγ) · eαβγ · (yβ · eβγ) · (zγ · eβγ) =

xα · (eα · eβγ) · (yβ · (eβγ · (zγ · eβγ))) =

(xα · eα) · (eβγ · ((yβ · zγ) · eβγ)) = xα · yβ · zγ .

This proves (32).

(33): By the definition of the operation ∗,
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(eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)) =

(e−1αβ · (e−1α · x−1α )−1) ∗ (e−1αβ · (e
−1
β · y

−1
β )−1) =

eα · x−1α · (eαβ · (eβ · y
−1
β · eαβ)) = eα · x−1α · eβ · y

−1
β · eαβ =

eα · x−1α · eβ · y
−1
β = x−1α · y−1β = xα ∗ yβ .

This proves (33) and completes the proof of Lemma 3.17.

Definition 3.18. SLDWQ(S, ·) denotes (S, ∗) of Lemma 3.17. The collection of
all semilattices of double Ward quasigroups that satisfy (30)− (34) is denoted by
SLDWQ.

Lemma 3.19. Suppose that (S, ∗) is a semigroup semilattice V of double Ward
quasigroups (DWα, ∗|DWα , eα) (α ∈ V ), that ({eα |α ∈ V }, ∗) ∼= V and that (S, ∗)
satisfies (32) and (33). Define xα · yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ). Then

(34) ({eα |α ∈ V }, ·) ∼= ({eα |α ∈ V }, ∗) is a semigroup semilattice,

(35) (S, ·) is a semigroup and a semigroup semilattice of groups (DWα, ∗|DWα , eα)

(α ∈ V ),

(36) for all α, β ∈ V and all xα ∈ DWα, yβ ∈ DWβ, xα ∗ yβ = x−1α · y−1β .

Proof. We have

eα · eβ = (eαβ ∗ eα) ∗ (eαβ ∗ eβ) = (eαβ ∗ (eα ∗ eα)) ∗ (eαβ ∗ (eβ ∗ eβ))
(33)
= eα ∗ eβ

and so, (34) is valid.
For each (DWα, ∗|DWα , eα) the product is xα ·yβ = (eα∗xα)∗(eα∗yα), by (F6)

each (DWα, ∗|DWα , eα) is a group. By (32), (S, ·) is a semigroup and, by Lemma
3.1, (35) is valid. Finally, by (F6), x−1α = eα ∗ xα in (S, ·). Then, by (33),

x−1α · y−1β = (eα ∗ xα) · (eβ ∗ yβ) = (eαβ ∗ (eα ∗ xα)) ∗ (eαβ ∗ (eβ ∗ yβ)) = xα ∗ yβ ,

which completes the proof.

Definition 3.20. SLG(S, ∗) denotes (S, ·) of Lemma 3.19.

Theorem 3.21. For all (S, ·) ∈ SLG, SLG(SLDWQ(S, ·)) = (S, ·) and for all
(S, ∗) ∈ SLDWQ, SLDWQ(SLG(S, ∗)) = (S, ∗).

Proof. The product in SLDWQ(S, ·) is xα ∗ yβ = x−1α · y−1β . So, the product in
SLG(SLDWQ(S, ·)) is xα⊗yβ = (eαβ∗xα)∗(eαβ∗yβ) = (e−1αβ ·x−1α )−1 ·(e−1αβ ·y

−1
β )−1

= xα · (eαβ · (yβ · eαβ)) = (xα · yβ) · eαβ = xα · yβ . Hence, SLG(SLDWQ(S, ·)) =
(S, ·).

The product in SLG(S, ∗) is xα · yβ = (eαβ ∗ xα) ∗ (eαβ ∗ yβ). The product in

SLDWQ(SLG(S, ∗)) is xα⊕yβ = x−1α ·y−1β = (eαβ∗(eα∗xα))∗(eαβ∗(eβ∗eyβ))
(33)
=

xα ∗ yβ . So, SLDWQ(SLG(S, ∗)) = (S, ∗).
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Corollary 3.22. There is a one-to-one correspondence between elements of SLG
and SLDWQ.

Note that since SLG is in one-one correspondence with SLWQ, SLWDQ
and SLDWQ, SLWQ and SLWDQ are in one-one correspondence with each
other, as are SLDWQ and SLWQ. The next results give the explicit forms of
these bijective mappings.

Theorem 3.23. SLG = SLG.

Proof. The dual groupoid of a semigroup union of groups with commuting idempo-
tents is a semigroup union of groups with commuting idempotents. As previously
noted, the required result then follows from Lemma 3.1.

Theorem 3.24. . SLWQ = SLWDQ.

Proof. If (S, ∗) ∈ SLWQ, then x ∗ y = x · y−1 for some (S, ·) ∈ SLG. So, if
(T, ◦̄)∈ SLWQ, then, using Theorem 3.23, x◦̄y = x−1 ·̄ y for some (T, ·̄) from
SLG. As in the proof of Lemma 3.10, (T, ◦̄) satisfies (24) − (27). Therefore,
(T, ◦̄) ∈ SLWDQ. Hence, SLWQ ⊆ SLWDQ.

If (S, ∗) ∈ SLWDQ, then x ∗ y = x−1 · y for some (S, ·) ∈ SLG. So, using
Theorem 3.23, x∗̄y = x ·̄ y−1 for some (S, ·̄) ∈ SLG. Therefore, as in the proof of
Lemma 3.2, (S, ∗̄) satisfies (17). Hence, (S, ∗̄) ∈ SLWQ and (S, ∗) ∈ SLWQ. So,
SLWDQ ⊆ SLWQ.

Corollary 3.25. (S, ∗) ∈ SLWDQ if and only if (S, ∗) is a semilattice of Ward
dual quasigroups and satisfies the identity (x ∗ y) ∗ (z ∗w) = y ∗ ((z−1 ∗ x−1) ∗w).

Theorem 3.26. SLDWQ = SLDWQ.

Proof. If (S, ∗) ∈ SLDWQ, then x ∗ y = y∗̄x for some (S, ∗̄) ∈ SLDWQ. So,
x ∗ y = y∗̄x = x−1̄·y−1 for some (S, ·̄) ∈ SLG. Therefore, by the proof of Lemma
3.17, (S, ∗) ∈ SLDWQ. Hence, SLDWQ ⊆ SLDWQ ⊆ SLDWQ.

Theorem 3.27. SLDWQ and SLWQ are in one-one correspondence.

Proof. For (S, ∗) ∈ SLDWQ we define SLWQ(S, ∗) = (S, ◦), where xα ◦ yβ =
(eαβ ∗ xα) ∗ yβ . If (S,⊗) ∈ SLWQ, we define SLDWQ(S,⊗) = (S,⊕), where
xα ⊕ yβ = (eαβ ⊗ xα)⊗ yβ . Note that, since (S, ∗) ∈ SLDWQ, x ∗ y = x−1 · y−1

for some (S, ·) ∈ SLG. Therefore, xα ◦ yβ = (eαβ ∗xα)∗ yβ = (e−1αβ ·x−1α )−1 · y−1β =

xα · eαβ ·y
−1
β = xα · eα · eβ ·y−1β = xα ·y−1β . By Lemma 3.2, SLWQ(S, ∗) = (S, ◦) is

in SLWQ. Therefore, SLDWQ(S, ◦) = (S,⊕), where xα⊕ yβ = (eαβ ◦ xα) ◦ yβ =

(eαβ · x−1α ) · y−1β = x−1α · y−1β and so (S,⊕) ∈ SLDWQ.
Then, the product in SLDWQ(SLWQ(S, ∗)) is xα ⊕ yβ = (eαβ ◦ xα) ◦ yβ =

(eαβ ∗ (eαβ ◦ xα)) ∗ yβ = (e−1αβ · (e
−1
αβ · x−1α )−1)−1 · y−1β = ((e−1αβ · x−1α )−1)−1 · y−1β =

(e−1αβ ·x−1α ) ·y−1β = x−1α ·y−1β = xα∗yβ . Therefore, SLDWQ(SLWQ(S, ∗)) = (S, ∗).

Similarly, SLWQ(SLDWQ(S,⊗)) = (S,⊗).
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Questions. Suppose that (S, ∗) is a semigroup semilattice V of double Ward
quasigroups (DWα, ∗|DWα , eα) (α ∈ V ) and that (S, ∗) satisfies (32) and (33).
Then, is ({eα |α ∈ V }, ∗) ∼= V.

1. Can groupoids in SLDWQ be described by a single identity, in place of (32)
and (33)?

2. Is there a structure theorem for groupoids in SLWQ, SLWDQ and SLDWQ
analogous to the structure theorem for semigroups that are semigroup semi-
lattices of groups [3, Theorem 4.11]?

A remaining area for investigation is right, left and double division on completely
simple semigroups, where x−1 is the inverse of x in the group to which it belongs.
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