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Semigroups in which the radical

of every quasi-ideal is a subsemigroup

Jatuporn Sanborisoot and Thawhat Changphas

Abstract. For a non-empty subset A of a semigroup S,
√
A denotes the radical of A, i.e.,√

A = {x ∈ S | xn ∈ A for some positive integer n}. This paper characterizes when the radical
√
Q is a subsemigroup of S for every quasi-ideal Q of S.

1. Introduction and Preliminaries

Let S be a semigroup. For a, b ∈ S, the subsemigroup of S generated by {a, b} is
denoted by 〈a, b〉. A non-empty subset A of S is called a left (respectively, right)
ideal of S if SA ⊆ A (respectively, AS ⊆ A). And, A is called a two-sided ideal
(or ideal) of S if it is both a left and a right ideal of S. A non-empty subset Q of
S is called a quasi-ideal of S if QS ∩ SQ ⊆ Q. A subsemigroup B of S is called a
bi-ideal of S if BSB ⊆ B (cf. [2], [3]).

For a non-empty subset A of a semigroup S,
√
A denotes the radical of S, i.e.,

√
A = {a ∈ S | an ∈ A for some positive integer n}.

In [1], M. Ćirić and S. Bogdanović characterized when the radical
√
A is a subsemi-

group of S for every ideals A of S. Indeed, the authors studied when the radical
of every ideal of S is a subsemigroup of S; and when the radical of every bi-ideal
of S is a subsemigroup of S. The notion of quasi-ideals generalizes ideals, and the
notion of bi-ideals generalizes quasi-ideals, but quasi-ideals have been widely stud-
ied; see [3]. In the line of [1], this paper considers the case of quasi-ideals. Indeed,
we characterize when the radical

√
Q of every quasi-ideal Q of S is a subsemigroup

of S.
Let N = {1, 2, 3, . . .} denote the set of all positive integers. Let a, b be any
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elements of a semigroup S with identity. Define

a | b ⇐⇒ b = xay for some x, y ∈ S;
a |r b ⇐⇒ b = ax for some x ∈ S;
a |l b ⇐⇒ b = ya for some y ∈ S;
a |t b ⇐⇒ a |r b ∧ a |l b;
a→ b ⇐⇒ a | bn for some n ∈ N; and

a
h−→ b ⇐⇒ a |h bn for some n ∈ N where h is r, l or t.

2. Main results
In [3], a non-empty subset Q of a semigroup S is a quasi-ideal of S if and only if
it is an intersection of a left and a right ideal of S. We begin the section with the
following theorem.

Theorem 2.1. Let S be a semigroup with identity. Then the radical of every
quasi-ideal of S is a subsemigroup of S if and only if

∀a, b ∈ S ∀i, j ∈ N ∃n ∈ N [(ab)n ∈ {ai, bj}S ∩ S{ai, bj}].

Proof. Assume that the radical of every quasi-ideal of S is a subsemigroup of S.
Let a, b ∈ S, and let i, j ∈ N. Put

Q = {ai, bj}S ∩ S{ai, bj}.

Then Q is a quasi-ideal of S such that a, b ∈
√
Q. By assumption, ab ∈

√
Q. Hence

(ab)n ∈ {ai, bj}S ∩ S{ai, bj} for some n ∈ N.
Conversely, assume that for all a, b in S and i, j in N there exists n ∈ N such

that (ab)n ∈ {ai, bj}S ∩ S{ai, bj}. Let Q be a quasi-ideal of S, and let a, b ∈
√
Q.

Then ai ∈ Q and bj ∈ Q for some i, j ∈ N. By assumption, there exists n ∈ N
such that (ab)n ∈ {ai, bj}S ∩ S{ai, bj}. Thus ab ∈

√
Q, because

(ab)n ∈ {ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q.

Hence
√
Q is a subsemigroup of S.

Let S = {a, b, c, d, 1} be a semigroup with the multiplication:

· a b c d 1

a a a a a a
b a a a a b
c a a b a c
d a a b b d
1 a b c d 1
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The quasi-ideal of S is {{a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, S}. Observe that√
{a} = {a, b},

√
{a, b} =

√
{a, b, c} =

√
{a, b, d} =

√
{a, b, c, d} = {a, b, c, d} and√

S = S; then the radical of every quasi-ideal of S is a subsemigroup of S.
In general, the radical of quasi-ideals of a semigroup with identity need not be

subsemigroups, as the following example shows:
Let S = {a, b, c, d, f, 1} be a semigroup with the multiplication:

· a b c d f 1

a a a a a a a
b a b a d a b
c a f c c f c
d a b d d b d
f a f a c a f
1 a b c d f 1

The quasi-ideal of S is {{a},{a, b},{a, c},{a, d},{a, f},{a, b, d}, {a, c, d},
{a, b, f},{a, c, f},{a, b, c, d, f}, S}. We have

√
{a, c, d} = {a, c, d, f} which is not a

subsemigroup of S.

Theorem 2.2. Let S be a semigroup with identity. Then the radical of every right
ideal of S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
r−→ c ∨ bj

r−→ c]].

Proof. Assume that the radical of every right ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put R = {ai, bj}S; then R is a right ideal of S and a, b ∈

√
R. By

assumption,
√
R is a quasi-ideal of S. Since c = au and c = vb,

c ∈
√
RS ∩ S

√
R ⊆

√
R.

Thus cn ∈ R for some n ∈ N, whence ai
r−→ c or bj r−→ c.

Conversely, assume that for all a, b, c in S,

a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
r−→ c ∨ bj

r−→ c].

Let R be a right ideal of S. To show that
√
RS∩S

√
R ⊆

√
R, let x ∈

√
RS∩S

√
R.

Then x = au and x = vb for some u, v ∈ S and a, b ∈
√
R. Since a, b ∈

√
R, there

exist i, j ∈ N such that ai, bj ∈ R. By assumption, there exists n ∈ N such that
xn ∈ {ai, bj}S. Since

{ai, bj}S ⊆ RS ⊆ R,

then x ∈
√
R. Hence

√
R is a quasi-ideal of S.

As Theorem 2.2, we obtain the following.

Theorem 2.3. Let S be a semigroup with identity. Then the radical of every left
ideal of a semigroup S is a quasi-ideal of S if and only if
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∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai
l−→ c ∨ bj

l−→ c]].

Theorem 2.4. Let S be a semigroup with identity. Then the radical of every
quasi-ideal of S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S ∩ S{ai, bj}]].

Proof. Assume that the radical of every quasi-ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put

Q = {ai, bj}S ∩ S{ai, bj}.

Then Q is a quasi-ideal of S and a, b ∈
√
Q. By assumption,

√
Q is a quasi-ideal

of S. Since c = au and c = vb,

c ∈
√
QS ∩ S

√
Q ⊆

√
Q.

Hence cn ∈ {ai, bj}S ∩ S{ai, bj} for some n ∈ N.
Conversely, assume that for all a, b, c ∈ S,

a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S ∩ S{ai, bj}].

Let Q be a quasi-ideal of S. We need show that
√
QS ∩ S

√
Q ⊆

√
Q. Let x ∈√

QS ∩ S
√
Q. Then x = au and x = vb for some a, b ∈

√
Q and u, v ∈ S. Since

a, b ∈
√
Q, there exist i, j ∈ N such that ai, bj ∈ Q. By assumption, there exists

n ∈ N such that xn ∈ {ai, bj}S ∩ S{ai, bj}. Since

{ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q,

then x ∈
√
Q, whence

√
Q is a quasi-ideal of S.

Theorem 2.5. Let S be a semigroup with identity. The radical of every ideal of
S is a quasi-ideal of S if and only if

∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N [ai → c ∨ bj → c]].

Proof. Assume that the radical of every ideal of S is a quasi-ideal of S. Let
a, b, c ∈ S such that a |r c and b |l c. Then c = au and c = vb for some u, v ∈ S.
Let i, j ∈ N. Put A = S{ai, bj}S, then A is an ideal of S and a, b ∈

√
A. By

assumption,
√
A is a quasi-ideal of S. Since c = au and c = vb,

c ∈
√
AS ∩ S

√
A ⊆

√
A.

Then there exists n ∈ N such that cn ∈ A. Hence ai → c or bj → c. The opposite
direction can be proved similarly to the converse of Theorem 2.2.

Theorem 2.6. Let S be a semigroup with identity. The radical of every quasi-ideal
of S is a bi-ideal of S if and only if
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∀a, b, c ∈ S ∀i, j ∈ N ∃n ∈ N [(abc)n ∈ {ai, cj}S ∩ S{ai, cj}].

Proof. Assume that the radical of every quasi-ideal of S is a bi-ideal of S. Let
a, b, c ∈ S, and let i, j ∈ N. Put Q = {ai, cj}S ∩ S{ai, cj}. Observe firstly that Q
is a quasi-ideal of S and a, c ∈

√
Q. By assumption,

√
Q is a bi-ideal of S. Then

abc ∈
√
QS

√
Q ⊆

√
Q.

Hence (abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.
Conversely, assume that for any a, b, c ∈ S, and i, j ∈ N,

(abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.

Let Q be a quasi-ideal of S. Let a, c ∈
√
Q, and let b ∈ S. Then ai, cj ∈ Q for

some i, j ∈ N. By assumption, (abc)n ∈ {ai, cj}S ∩ S{ai, cj} for some n ∈ N.
Consider

(abc)n ∈ {ai, cj}S ∩ S{ai, cj} ⊆ QS ∩ SQ ⊆ Q.

Thus abc ∈
√
Q, and

√
Q is a bi-ideal of S.

Theorem 2.7. Let S be a semigroup with identity. The radical of every quasi-ideal
of a semigroup S is a right ideal of S if and only if

ak
t−→ ab for all a, b ∈ S and k ∈ N.

Proof. Assume that the radical of every quasi-ideal of S is a right ideal of S. Let
a, b ∈ S and k ∈ N. Put Q = akS∩Sak. Then Q is a quasi-ideal of S and a ∈

√
Q.

By assumption,
√
Q is a right ideal of S. Thus ab ∈

√
QS ⊆

√
Q. We then have

that there exists n ∈ N such that (ab)n ∈ Q. Hence ak
t−→ ab.

Conversely, assume that ak
t−→ ab for all a, b ∈ S and k ∈ N. Let Q be a

quasi-ideal of S, and let a ∈
√
Q and b ∈ S. Then ak ∈ Q for some k ∈ N. Since

akS ∩ Sak ⊆ QS ∩ SQ ⊆ Q,

(ab)n ∈ Q for some n ∈ N. This implies ab ∈
√
Q, and hence

√
Q is a right ideal

of S.

As Theorem 2.7, we obtain the following theorem.

Theorem 2.8. Let S be a semigroup with identity. The radical of every quasi-ideal
of S is a left ideal of S if and only if ak t−→ ba for all a, b ∈ S and k ∈ N.

Theorem 2.9. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every quasi-ideal of S is an ideal of S;

(2) ak
t−→ ab and ak

t−→ ba for all a, b ∈ S and k ∈ N.
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Proof. (1) ⇒ (2): Assume (1). Let a, b ∈ S, and let k ∈ N. Put A = akS ∩ Sak.
Clearly, A is a quasi-ideal of S and a ∈

√
A. By assumption,

√
A is an ideal of S.

Thus ab ∈
√
AS ⊆

√
A and ba ∈ S

√
A ⊆

√
A. This implies (ab)m, (ba)n ∈ A for

some m,n ∈ N. Hence ak
t−→ ab and ak

t−→ ba.
(2) ⇒ (1): Assume (2). Let Q be a quasi-ideal of S. To show that

√
Q is

an ideal of S, let a ∈
√
Q and b ∈ S. Since a ∈

√
Q, ak ∈ Q for some k ∈ N.

By assumption, there exist m,n ∈ N such that (ab)m, (ba)n ∈ akS ∩ Sak. Hence
(ab)m, (ba)n ∈ Q, because

akS ∩ Sak ⊆ QS ∩ SQ ⊆ Q.

This implies ab, ba ∈
√
Q, and thus

√
Q is an ideal of S.

Theorem 2.10. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every bi-ideal of S is a quasi-ideal of S;

(2) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ {ai, bj}S{ai, bj}]].

Proof. (1) ⇒ (2): Assume (1). Let a, b, c ∈ S such that c = au and c = vb for
some u, v ∈ S. Let i, j ∈ N. It is observed that

B = {ai, bj}S{ai, bj}

is a bi-ideal of S and a, b ∈
√
B. By assumption,

√
B is a quasi-ideal of S.

Therefore, c ∈
√
BS ∩ S

√
B ⊆

√
B. Hence cn ∈ {ai, bj}S{ai, bj} for some n ∈ N.

(2) ⇒ (1): Assume (2). Let B be a bi-ideal of S. Let x ∈
√
BS ∩ S

√
B. Then

x = au and x = vb for some a, b ∈
√
B and u, v ∈ S. Hence, there exist i, j ∈ N

such that ai, bj ∈ B. By assumption,

xn ∈ {ai, bj}S{ai, bj} ⊆ BSB ⊆ B.

Thus x ∈
√
B. Hence

√
B is a quasi-ideal of S.

Theorem 2.11. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every subsemigroup of S is a quasi-ideal of S;

(2) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀i, j ∈ N ∃n ∈ N [cn ∈ 〈ai, bj〉]].

Proof. (1) ⇒ (2): Assume (1), and let a, b, c ∈ S, such that a |r c and b |l c. Then
c = au and c = vb for some u, v ∈ S. Let i, j ∈ N. Put A = 〈ai, bj〉. By (1),

√
A

is a quasi-ideal of S. Since c = au and c = vb, c ∈
√
AS ∩ S

√
A. Then

c ∈
√
AS ∩ S

√
A ⊆

√
A.
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Hence cn ∈ 〈ai, bj〉 for some n ∈ N.
(2)⇒ (1): Assume (2), and let A be a subsemigroup of S. Let x ∈

√
AS∩S

√
A;

then x = au and x = vb for some a, b ∈
√
A and u, v ∈ S. We then have that

ai, bj ∈ A for some i, j ∈ N. By assumption, xn ∈ 〈ai, bj〉. Since 〈ai, bj〉 ⊆ A,
x ∈
√
A. Thus

√
A is a quasi-ideal of S.

Finally, we have the following result.

Theorem 2.12. Let S be a semigroup with identity. Then the following conditions
are equivalent:

(1) the radical of every quasi-ideal of S is a quasi-ideal of S;

(2) ∀a, b ∈ S [
√
{a, b}S ∩ S{a, b} is a quasi-ideal of S];

(3) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∃n ∈ N [cn ∈ {a2, b2}S ∩ S{a2, b2}]];

(4) ∀a, b, c ∈ S [a |r c ∧ b |l c =⇒ ∀k ∈ N ∃n ∈ N [cn ∈ {ak, bk}S ∩ S{ak, bk}]].

Proof. (1) ⇒ (2): Assume (1), and let a, b ∈ S. Since {a, b}S ∩ S{a, b} is a
quasi-ideal of S and (1),

√
{a, b}S ∩ S{a, b} is a quasi-ideal of S.

(2) ⇒ (3): Assume (2), and let a, b, c ∈ S such that a |r c and b |l c. Then
c = au and c = vb for some u, v ∈ S. Clearly, a, b ∈

√
{a2, b2}S ∩ S{a2, b2}.

By (2),
√
{a2, b2}S ∩ S{a2, b2} is a quasi-ideal of S. From c = au and c = vb, it

follows that

c ∈
√
{a2, b2}S ∩ S{a2, b2}S ∩ S

√
{a2, b2}S ∩ S{a2, b2}

⊆
√
{a2, b2}S ∩ S{a2, b2}.

Thus cn ∈ {a2, b2}S ∩ S{a2, b2} for some n ∈ N.
(3) ⇒ (4): Assume (3), and let a, b, c ∈ S such that a |r c and b |l c. Then

c = au and c = vb for some u, v ∈ S. By (3), cn ∈ {a2, b2}S ∩ S{a2, b2} for some
n ∈ N. It is observed that

{a2, b2}S ∩ S{a2, b2} ⊆ {a, b}S ∩ S{a, b}.

Then
cn ∈ {a, b}S ∩ S{a, b}.

Suppose that there exists m ∈ N where k ∈ N such that

cm ∈ {ak, bk}S ∩ S{ak, bk}.

By (3), there exists l ∈ N such that

(cm)l ∈ {a2k, b2k}S ∩ S{a2k, b2k}.
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Consider

(cm)l ∈ {a2k, b2k}S ∩ S{a2k, b2k}
= {ak+1ak−1, bk+1bk−1}S ∩ S{ak−1ak+1, bk−1bk+1}
⊆ {ak+1, bk+1}S ∩ S{ak+1, bk+1}.

Hence
cml = (cm)l ∈ {ak+1, bk+1}S ∩ S{ak+1, bk+1}.

Therefore (4) holds.
(4) ⇒ (1): Assume (4), and let Q be a quasi-ideal of S. Let x ∈

√
QS ∩ S

√
Q.

Then x = au and x = vb for some u, v ∈ S and a, b ∈
√
Q. Then ai, bj ∈ Q for

some i, j ∈ N. By (4), there exists n ∈ N such that

xn ∈ {ai+j , bi+j}S ∩ S{ai+j , bi+j}.

Consider

xn ∈ {ai+j , bi+j}S ∩ S{ai+j , bi+j} ⊆ {ai, bj}S ∩ S{ai, bj} ⊆ QS ∩ SQ ⊆ Q.

Thus x ∈
√
Q, and Q is a quasi-ideal of S.
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