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SS-supplemented property in the lattices

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel,
Saboura Dolati Pish Hesari and Mahsa Nikmard Rostam Alipour

Abstract. Let L be a lattice with the greatest element 1. We introduce and investigate the
latticial counterpart of the filter-theoretical concepts of ss-supplemented. The basic properties
and possible structures of such filters are studied.

1. Introduction

Since Kasch and Mares [13] have defined the notions of perfect and semiperfect
for modules, the notion of a supplemented module has been used extensively by
many authors. For submodules U and V of a module M , V is said to be a sup-
plement of U in M or U is said to have a supplement V in M if U + V = M
and U ∩ V � V . The module M is called supplemented if every submodule of M
has a supplement in M . In a series of papers, Zöschinger has obtained detailed
information about supplemented and related modules [17]. Supplemented modules
are also discussed in [14]. Recently, several authors have studied different general-
izations of supplemented modules. Rad-supplemented modules have been studied
in [15] and [3]. See [15]; these modules are called generalized supplemented mod-
ules. For submodules U and V of a module M , V is said to be a rad-supplement
of U in M or U is said to have a rad-supplement V in M if U + V = M and
U ∩ V ⊆ rad(V ). M is called a rad-supplemented module if every submodule of
M has a rad-supplement in M . We shall say that a module M is w-supplemented
if every semisimple submodule of M has a supplement in M [1]. We say that
V is an ss-supplement U in M if M = U + V and U ∩ V � V and V ∩ U is
semisimple. We call a module M is ss-supplemented if every submodule of M has
an ss-supplement in M [12]. Recently, the study of the supplemented property
in the rings, modules, and lattices has become quite popular (see for example [2,
3, 4, 10, 11, 12, 13]. Supplemented property (resp. w-supplemented property) in
the lattices have already been investigated in [7] (resp. [6]). This paper is based
on another variation of supplemented filters. In fact, in the present paper, we
are interested in investigating strongly local filters and (amply) ss-supplemented
filters in a distributive lattice with 1 to use other notions of ss-supplemented, and
associate which exist in the literature as laid forth in [12] (see Sections 2, 3, 4).
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Let us briefly review some definitions and tools that will be used later [2]. By
a lattice we mean a poset (L,6) in which every couple elements x, y has a g.l.b.
(called the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of
x and y, and written x ∨ y). A lattice L is complete when each of its subsets X
has a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we say
that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if
(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if
(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice
L is called a filter, if for a ∈ F , b ∈ L, a 6 b implies b ∈ F , and x ∧ y ∈ F for
all x, y ∈ F (so if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). A
proper filter P of L is said to be maximal if E is a filter in L with P $ E, then
E = L. If F is a filter of a lattice L, then the radical of F , denoted by rad(F ), is
the intersection of all maximal subfilters of F .

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is called
finitely generated if there is a finite subset A of F such that F = T (A). A subfilter
G of a filter F of L is called small in F , written G � F , if, for every subfilter H
of F , the equality T (G ∪H) = F implies H = F [7]. A subfilter G of F is called
essential in F , written G E F , if G ∩ H 6= {1} for any subfilter H 6= {1} of F .
Let G be a subfilter of a filter F of L. A subfilter H of F is called a supplement
of G in F if F = T (G ∪ H) and H is minimal with respect to this property, or
equivalently, F = T (G∪H) and G∩H � H. H is said to be a supplement subfilter
of F if H is a supplement of some subfilter of F . F is called a supplemented filter
if every subfilter of F has a supplemented in F . A subfilter G of a filter F of L has
ample supplements in F if, for every subfilter H of F with F = T (H ∪ G), there
is a supplement H ′ of G with H ′ ⊆ H. If every subfilter of a filter F has ample
supplements in F , then we call F amply supplemented. Let G,H be subfilters
of a filter F of L. If F = T (G ∪ H) and G ∩ H ⊆ rad(H), then H is called a
rad-supplement of G in F . If every subfilter of F has a rad-supplement in F , then
F is called a rad-supplemented filter.

A lattice L is called semisimple, if for each proper filter F of L, there exists
a filter G of L such that L = T (F ∪ G) and F ∩ G = {1}). In this case, we
say that F is a direct summand of L, and we write L = F ⊕ G. A filter F of
L is called a semisimple filter, if every subfilter of F is a direct summand. A
simple lattice (resp. filter), is a lattice (resp. filter) that has no filters besides
the {1} and itself. For a filter F , Soc(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set
of all simple filters of L contained in F . In [17], Zhou and Zhang generalized
the concept of socle a module M to that of Socg(M) by considering of all simple
submodules ofM that are small inM in place of the class of all simple submodules
of M , that is, Socg(M) =

∑
{N � M : N is simple}. For a filter F , we define

Socg(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set of all simple filters of L contained in
F and Fi � F for each i ∈ Λ. Clearly, Socg(F ) ⊆ Soc(F ) and Socg(F ) ⊆ rad(F ).
Let F be a filter of a lattice L. F is called hollow if F 6= {1} and every proper
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subfilter G of F is small in F . F is called local if it has exactly one maximal
subfilter that contains all proper subfilters.

Proposition 1.1. (cf. [9], [8]) A non-empty subset F of a lattice L is a filter if
and only if x ∨ z ∈ F and x ∧ y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since
x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all
x, y ∈ L.

Proposition 1.2. (cf. [6]) Let F be a filter of a distributive lattice L with 1.
(1) If A� F and C ⊆ A, then C � F .
(2) If A,B are subfilters of F with A� B, then A is a small subfilter in

subfilters of F that contains the subfilter of B. In particular, A� F .
(3) rad(F ) = T (∪G�FG).
(4) Every finitely generated subfilter of rad(F ) is small in rad(F ).
(5) x ∈ rad(F ) if and only if T ({x})� F .
(6) If F1, F2, . . . , Fn are small subfilters of F , then T (F1∪F2∪· · ·∪Fn) is also

small in F .

Lemma 1.3. (cf. [6])
(1) T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)} an

arbitrary non-empty subset A of L. Moreover, if F is a filter and A is a
subset of L with A ⊆ F , then T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

(2) T (T (A ∪B) ∪C) ⊆ T (A ∪ T (B ∪C)) for subfilters A,B,C of a filter F of
L. In particular, F = T (T (C ∪B) ∪A) = T (T (A ∪ C) ∪B) for all
F = T (T (A ∪B) ∪ C).

(3) (Modular law) F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)) for filters F1, F2, F3 of
L such that F2 ⊆ F1.

Proposition 1.4. (cf. [11])
(a) Let G be a semisimple subfilter of a filter F of L such that G ⊆ rad(F ).

Then G� F .
(b) Let H and G be subfilters of a filter F of L . Then the following hold:

(1) If H is semisimple, then T (H∪G)
G is a semisimple subfilter in F

G .
(2) If Soc(F ) = ∩KEFK.
(3) Soc(G) = G ∩ Soc(F ).

(c) Let U, V be subfilters of a filter F of L such that V is a direct summand of
F with U ⊆ V . Then U � F if and only if U � V .

2. Strongly Local Filters

Throughout this paper, we shall assume unless otherwise stated, that L is a dis-
tributive lattice with 1. In this section we collect some properties concerning
strongly local filters of L. Our starting point is the following lemma.
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Lemma 2.5. Let F be a filter of L. Then the following hold:
(1) If E is a simple subfilter of F , then E = T ({a}) for some 1 6= a ∈ E.
(2) If f1, f2, . . . , fn ∈ F , then T (T ({f1}) ∪ . . . ∪ T ({fn})) = T ({f1, . . . , fn}).
(3) If F is semisimple, then F is a direct sum of a finite family of simple

subfilters if and only if F is finitely generated.

Proof. (1). Since E is simple, there is an element 1 6= a ∈ E such that T ({a}) 6=
{1} is a subfilter of E; hence E = T ({a}).

(2). Since the inclusion A = T ({f1, . . . , fn}) ⊆ T (T ({f1})∪ . . .∪T ({fn})) = B
is clear we will prove the reverse inclusion. Let x ∈ B. Then a1 ∧ a2 ∧ · · · ∧ an 6 x
for some ai ∈ T ({fi}) (1 6 i 6 n). By assumption, there exist s1, s2, . . . , sn ∈ L
such that ai = fi ∨ si (1 6 i 6 n). Then (f1 ∨ s1) ∧ . . . ∧ (fn ∨ sn) 6 x. Since for
each i, fi 6 fi ∨ si and fi ∈ A, we get fi ∨ si ∈ A (1 6 i 6 n); so x ∈ A, and so
we have equality.

(3). Let F = F1 ⊕ · · · ⊕ Fn, where for each i (1 6 i 6 n), Fi is a simple
subfilter of F , so by (1), Fi = T ({fi}) for some 1 6= fi ∈ Fi. Then by (2),
F = T (T ({f1}) ∪ · · · ∪ T ({fn})) = T ({f1, . . . , fn}). Thus F is finitely generated.
Conversely, suppose that F = T (A), where A = {e1, . . . , em}. As F is semisimple,
we can write F = T (∪i∈IFi), where for each i ∈ I, Fi is simple. We can now pick
out a finite collection i1, i2, . . . , ir of elements of I such that ei ∈ T (Fi1 ∪ · · ·∪Fir )
for 1 6 i 6 m. But then F = T (Fi1 ∪ · · · ∪ Fir ), that is, F = Fi1 ⊕ · · · ⊕ Fir .

Proposition 2.6. If F is a filter of L, then Socg(F ) = rad(F ) ∩ Soc(F ).

Proof. It suffices to show that rad(F ) ∩ Soc(F ) ⊆ Socg(F ). Let a ∈ rad(F ) ∩
Soc(F ). Then T ({a}) is semisimple and so there exist simple subfilters Fi of F
such that T ({a}) = F1 ⊕ · · · ⊕ Fn by Lemma 2.5 (3). By Proposition 1.2 (5),
T ({a}) � rad(F ); hence it is small in F by Proposition 1.2 (2). Since for each i,
Fi ⊆ T ({a}), we get Fi � F by Proposition 1.2 (1). Thus a ∈ T ({a}) ⊆ Socg(F ),
and so we have equality.

A filter F is called indecomposable if F 6= {1} and F = T (G∪H) with G∩H =
{1}, then either G = {1} or H = {1}.

Lemma 2.7. Let F be an indecomposable filter of L. Then F is either simple or
Soc(F ) ⊆ rad(F ).

Proof. If F is simple, we are done. Thus we may assume that F is not simple. It
suffices to show that Soc(F )� F by Proposition 1.2 (3). Let F = T (K ∪ Soc(F ))
for some subfilter K of F . By assumption, there is a semisimple subfilter H
of Soc(F ) such that Soc(F ) = (Soc(F ) ∩ K) ⊕ H, and so by Lemma 1.3 (2),
F = T (K∪T (H∪(Soc(F )∩K))) = T (K∪H)andK∩H = H∩(Soc(F )∩K) = {1}.
Since F is indecomposable and not simple, we get H = {1}; hence F = K. Thus
Soc(F )� F , as required.
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By [6, Remark 2.19 (2)], every local filter is hollow and by [6, Remark 2.19
(1)], every hollow filter is indecomposable. Using Proposition 2.6 and Lemma 2.7
we have the following Corollary:

Corollary 2.8. Let F be a local filter of L such that it is not simple. Then
Socg(F ) = Soc(F ).

Definition 2.9. A filter F of L is called strongly local if it is local and rad(F ) is
semisimple. A filter F of L is called radical if F has no maximal subfilters, that
is, F = rad(F ).

Assume that F is a filter of L and let P (F ) be the filter generated by ∪G⊆FG,
where for each subfilter G of F , G = rad(G), that is, P (F ) = T (∪G⊆FG), where
G = rad(G). It is easy to see that P (F ) ⊆ rad(F ).

Lemma 2.10. If F is a filter of L, then P (F ) is the largest radical subfilter of F .

Proof. It suffices to show that P (F ) ⊆ rad(P (F )). If x ∈ P (F ), then there exist
radical subfilters G1, ..., Gn of F and g1 ∈ G1,.., gn ∈ Gn such that g1∧· · ·∧gn 6 x.
Since g1 ∈ G1 = rad(G1), . . . , gn ∈ Gn = rad(Gn), by Proposition 1.2 (5) we have
T ({gi}) � Gi, for each 1 6 i 6 n. By Proposition 1.2 (2), T ({gi}) � P (F ), for
each 1 6 i 6 n. Therefore gi ∈ rad(P (F )), for each 1 6 i 6 n. This implies that
x ∈ rad(P (F )).

Proposition 2.11. If a filter F of L is strongly local, then F is reduced (that is,
P (F ) = {1}).

Proof. Since rad(F ) is semisimple and P (F ) ⊆ rad(F ) ⊆ Soc(F ), we get P (F )
is semisimple and so P (F ) = rad(P (F )) = {1} by [6, Proposition 2.16 (2)] and
Lemma 2.10, as required.

Example 2.12. The collection of ideals of Z, the ring of integers, form a lattice
under set inclusion which we shall denote by L(Z) with respect to the following
definitions: mZ∨nZ = (m,n)Z andmZ∧nZ = [m,n]Z for all idealsmZ and nZ of
Z, where (m,n) and [m,n] are greatest common divisor and least common multiple
of m,n, respectively. Note that L(Z) is a distributive complete lattice with least
element the zero ideal and the greatest element Z. Then by [7, Proposition 2.1
(iii) and Theorem 3.1 (ii)], every simple filter of L(Z) is of the form F = {Z, pZ}
for some prime number p. Let P be the set of all prime numbers. For each p ∈ P,
set Fp = {Z, pZ}. Then {Fp}p∈P is the set of all simple filters of L(Z). Moreover,
by [7, Lemma 3.1], m = L(Z) \ {0} is the only maximal filter of L(Z); so L(Z)
is a local filter of L(Z) (so it is hollow). If G is a proper subfilter of L(Z) with
G 6= rad(G), then G has a maximal subfilter, say H. There exists x ∈ G such that
x /∈ H; hence T (H ∪ T ({x})) = G. By [6, Remark 2.19 (4)], G has a supplement
K in L(Z); so by Lemma 1.3,

L(Z) = T (T (H ∪ T ({x})) ∪K) = T (H ∪ T (K ∪ T ({x})));
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hence L(Z) = H which is impossible since T (K ∪ T ({x})) � L(Z). Thus
P (L(Z)) = m 6= {1}. If L(Z) = T (∪p∈PFp), then {0} = pi1Z ∧ · · · ∧ pikZ =
pi1 · · · pikZ, a contradiction. So L(Z) is not semisimple. Similarly, rad(L(Z)) = m
is not semisimple. Therefore the condition "strongly" in the Proposition 2.11 is
necessary.

3. SS-supplemented Filters
In this section, the basic properties and possible structures of ss-supplemented
filters are investigated. Our starting point is the following lemma.

Lemma 3.1. Let G and H be subfilters of a filter F of L. If G is a maximal
subfilter of F , then H is a supplement of G in F if and only if F = T (G∪H) and
H is local.

Proof. Let H be a supplement of G in F . By [6, Theorem 2.9 (4)], H is cyclic,
and G ∩ H = rad(H) is a (the unique) maximal subfilter of H; so H is local.
Conversely, let H be local (so it is hollow) and F = T (G∪H). If H ∩G = H, then
F = G which is impossible. Thus H ∩G 6= H. Now H is hollow gives H ∩G� H.
Thus H is a supplement of G in F .

Definition 3.2. Let G be any subfilter of a filter F of L. We say that H is an
ss-supplement G in F if F = T (G∪H) and G∩H � H and G∩H is semisimple.
We call a filter F ss-supplemented if every its subfilter has an ss-supplement in F .

A subfilter G of F has ample ss-supplements in F if every subfilter K of F
such that F = T (K ∪G) contains an ss-supplement of G in F . We call a filter F
amply ss-supplemented if every subfilter of F has ample ss-supplements in F .

We next give two other characterizations of ss-supplements filters.

Proposition 3.3. Let G,H be subfilters of a filter F of L. Then the following
statements are equivalent:

(1) F = T (G ∪H) and G ∩H ⊆ Socg(H);
(2) F = T (G ∪H) and G ∩H ⊆ rad(H) and G ∩H is semisimple;
(3) F = T (G ∪H) and G ∩H � H and G ∩H is semisimple.

Proof. (1) ⇒ (2). By (1) and Proposition 2.6, G ∩H is semisimple and G ∩H ⊆
rad(H) ∩ Soc(H) ⊆ rad(H).

(2)⇒ (3). It is clear by (2) and Proposition 1.4 (a).
(3)⇒ (1). It is clear by (3) and Proposition 2.6.

Analogous to that Lemma 3.1 we have the following proposition:

Proposition 3.4. Let G and H be subfilters of a filter F of L. If G is a maximal
subfilter of F , then H is a ss-supplement of G in F if and only if F = T (G ∪H)
and H is strongly local.
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Proof. Let H be an ss-supplement of G in F . By [6, Theorem 2.9 (4)], H is local
with the unique maximal subfilter G ∩H = rad(H); so H is strongly local since
G∩H is semisimple. Conversely, since H is local and F = T (G∪H), we can write
G ∩ H ⊆ rad(H). Now rad(H) is semisimple gives G ∩ H is semisimple. Hence,
H is an ss-supplement of G in F .

Lemma 3.5. Let G be a subfilter of a ss-supplemented filter F of L. If G � F ,
then G ⊆ Socg(F ). In particular, if rad(F )� F , then rad(F ) ⊆ Soc(F ).

Proof. Let H be an ss-supplement of G in F . Then F = T (G ∪H) and G � F
gives H = F and G = G ∩H is semisimple; so G ⊆ rad(F ) ∩ Soc(F ) = Socg(F )
by Proposition 2.6. The in particular statement is clear.

Let F be a local filter of L (so it is hollow). It is easy to see that F has
no supplement subfilter except for {1} and F . Thus every local filter is amply
supplemented. Analogous to that we have:

Proposition 3.6. Every strongly local filter of L is amply ss-supplemented.

Proof. Let F be a strongly local filter (so rad(F ) is semisimple). Then F is local
and so it is amply supplemented. If G is a proper subfilter of F , then F = T (F∪G)
and G = G ∩ F � F ; so G ⊆ rad(F ); hence G is semisimple. Thus F is amply
ss-supplemented.

Proposition 3.7. If F is a hollow filter of L, then F is (amply) ss-supplemented
if and only if it is strongly local.

Proof. Assume that F is ss-supplemented and let x ∈ rad(F ). By Proposition
1.2 (5), T ({x}) � rad(F ), and so it is small in F by Proposition 1.2 (2). As
F is ss-supplemented, it follows from Lemma 3.5 that x ∈ T ({x}) ⊆ Socg(F ) =
rad(F ) ∩ Soc(F ); hence x ∈ Soc(F ), and so rad(F ) ⊆ Soc(F ). Suppose that
F = rad(F ). Then F = rad(F ) = Soc(F ), and so F is semisimple. Thus F = {1}
by [6, Proposition 2.16 (2)]. This is a contradiction because F is hollow. So we
may assume that F 6= rad(F ), that is, F is local by [6, Theorem 2.21]. Hence F
is strongly local. The other implication follows from Proposition 3.6.

The following example shows in general a (amply) supplemented filter need not
be (amply) ss-supplemented.

Example 3.8. Assume that R is a local Dedekind domain with unique maximal
ideal P = Rp and let E = E(R/P ), the R-injective hull of R/P . For each positive
integer n, set An = (0 :E Pn). Then by [9, Lemma 2.6], every non-zero proper
submodule of E is equal to Am for some m with a strictly increasing sequence of
submodules A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · . The collection of submodules
of E form a complete lattice which is a chain under set inclusion which we shall
denote by L(E) with respect to the following definitions: An∨Am = An+Am and
An∧Am = An∩Am for all submodules An and Am of E. Then by [7, Example 2.3
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(b)], every proper filter of L(E) is of the form [An, E] for some n. Clearly, L(E)
is a hollow filter which is not local. As hollow filters are (amply) supplemented,
L(E) is (amply) supplemented. However, L(E) is not (amply) ss-supplemented
filter by Proposition 3.7.

Theorem 3.9. If F is a filter of L with rad(F )� F , then the following statements
are equivalent:

(1) F is ss-supplemented;
(2) F is supplemented and rad(F ) has an ss-supplement in F ;
(3) F is supplemented and rad(F ) ⊆ Soc(F ).

Proof. (1)⇒ (2). It is clear.
(2) ⇒ (3). Since rad(F ) � F and rad(F ) has ss-supplement in F , we get

F is a supplement of rad(F ); hence rad(F ) = rad(F ) ∩ F is semisimple. Thus
rad(F ) ⊆ Soc(F ).

(3)⇒ (1). Let G be a subfilter of F . By assumption, there exists a subfilter H
of F such that F = T (G∪H) and G∩H � H. Then G∩H ⊆ rad(H) ⊆ rad(F ) ⊆
Soc(F ); so G ∩H is semisimple. It means that F is ss-supplemented.

Corollary 3.10. If F is a finitely generated filter of L, then F is ss-supplemented
if and only if it is supplemented and rad(F ) ⊆ Soc(F ).

Proof. By Theorem 3.9, it suffices to show that rad(F ) � F . Assume that F =
T (A), where A = {a1, . . . , an} and let F = T (H ∪ rad(F )) for some subfilter H of
F . Since rad(F ) = T (∪G�FG), there exists a finite subfilters Fi1 � F , Fi2 � F ,
. . ., Fir � F such that ai ∈ T (T (Fi1 ∪ · · · ∪ Fir ) ∪H) for 1 6 i 6 r which implies
that F = T (T (Fi1 ∪ · · · ∪ Fir ) ∪H); hence H = F by Proposition 1.2 (6)..

Lemma 3.11. If K and H are semisimple filters of L, then T (K∪H) is semisim-
ple.

Proof. Let G be a subfilter of T (K ∪ H). There exist a subfilter K ′ of K and
a subfilter H ′ of H such that K = (G ∩ K) ⊕ K ′ (so K ′ ∩ G = {1}) and H =
(H∩G)⊕H ′ (soH ′∩G = {1}). If x ∈ G∩T (K ′∪H ′), then a∧b 6 x for some a ∈ K ′
and b ∈ H ′; so x = (x∨a)∧ (x∨ b) = 1. Thus G∩T (K ′ ∪H ′) = {1}. It enough to
show that T (H∪K) = T (G∪T (K ′∪H ′)). Since the inclusion T (G∪T (K ′∪H ′)) ⊆
T (K ∪H) is clear, we will prove the reverse inclusion. Let z ∈ T (K ∪H). Then
c ∧ d 6 z for some c ∈ K = T ((G ∩K) ∪K ′) and d ∈ H = T ((H ∩ G) ∪H ′). It
follows that there are elements c1 ∈ G∩K, c2 ∈ K ′, d1 ∈ G∩H and d2 ∈ H ′ such
that c1 ∧ c2 6 c and d1 ∧ d2 6 d; hence (c1 ∧ d1)∧ (c2 ∧ d2) 6 z, where c1 ∧ d1 ∈ G
and c2 ∧ d2 ∈ T (H ′ ∪K ′) which implies that z ∈ T (G ∪ T (K ′ ∪H ′)), and so we
have equality. Thus T (K ∪H) = G⊕ T (K ′ ∪H ′).

Proposition 3.12. Let F1 and G be subfilters of a filter F of L with F1 ss-
supplemented. If there is a ss-supplement for T (F1 ∪ G) in F , then the same is
true for G.
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Proof. Let X be an ss-supplement of T (F1 ∪G) in F and Y is an ss-supplement
T (X ∪ G) ∩ F1 in F1. Then by an argument like that in [6, Proposition 2.10],
we get F = T (G ∪ T (X ∪ Y )) and T (X ∪ Y ) ∩ G � T (X ∪ Y ). Moreover,
A = X∩T (Y ∪G) is semisimple as a subfilter of the semisimple filter X∩T (F1∪G).
Also, Y ∩ (F1 ∩ T (X ∪ G)) = Y ∩ T (X ∪ G) = B is semisimple; so T (A ∪ B) is
semisimple by Lemma 3.11. Since T (A∪B) = G∩ T (X ∪ Y ), we get T (X ∪ Y ) is
an ss-supplement of G in F .

Theorem 3.13. Let F1 and F2 be subfilters of F such that F = T (F1 ∪ F2). If
F1 and F2 are ss-supplemented, then F is ss-supplemented.

Proof. Let G be a subfilter of F . The subfilter {1} is ss-supplement of F =
T (F1 ∪ T (F2 ∪ G)) in F . Since F1 is ss-supplemented, T (F2 ∪ G) has an ss-
supplement in F by Proposition 3.12. Again applying Proposition 3.12, G has an
ss-supplement in F . This completes the proof.

Corollary 3.14. If F1, . . . , Fn are ss-supplemented filters of L, then T (Uni=1Fi)
is an ss-supplemented filter.

Proof. Apply Theorem 3.13.

Lemma 3.15. Let F be a filter of L. If every subfilter of F is ss-supplemented,
then F is amply ss-supplemented.

Proof. LetG andH be subfilters of F such that F = T (G∪H). By the assumption,
H = T ((G∩H)∪H ′), (G∩H)∩H ′ = G∩H ′ � H ′ and G∩H ′ is semisimple for
some subfilter H ′ of H. Since F = T (G ∪ T ((G ∩H) ∪H ′)) = T (G ∪H ′), we get
G has ample ss-supplements in F . Thus F is amply ss-supplemented.

Lemma 3.16. Assume that F is a amply ss-supplemented filter of L and let H
be an ss-supplement subfilter in F . Then H is amply ss-supplemented.

Proof. Let H be an ss-supplement of a subfilter G of F . Let X and Y be subfilters
of H such that H = T (X ∪ Y ). Then

F = T (H ∪G) = T (G ∪ T (X ∪ Y )) = T (Y ∪ T (G ∪X)).

As F is amply ss-supplemented, T (X ∪ G) has an ss-supplement Y ′ ⊆ Y in F ;
so F = T (Y ′ ∪ T (X ∪ G)) = T (G ∪ T (X ∪ Y ′)). Since X ∪ Y ′ ⊆ X ∪ Y , we
obtain T (X ∪ Y ′) ⊆ T (X ∪ Y ) = H. Then H is an ss-supplement of G in F gives
H = T (X ∪ Y ′) by minimality of H. Moreover, X ∩ Y ′ ⊆ T (G ∪X) ∩ Y ′ � Y ′,
and so X ∩ Y ′ � Y ′ by Proposition 1.2 (1). As T (G ∪ X) ∩ Y ′ is semisimple,
X ∩ Y ′ ⊆ T (G ∪X) ∩ Y ′ is semisimple. Thus H is amply ss-supplemented.

The next theorem gives a more explicit description of amply ss-supplemented
filters.
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Theorem 3.17. For a filter F of L, the following statements are equivalent:
(1) F is amply ss-supplemented;
(2) Every subfilter G of F is of the form G = T (X ∪ Y ), where X is ss-supp

lemented and Y ⊆ Socg(F ).

Proof. (1)⇒ (2). Assume that F is amply ss-supplemented and let G be a subfilter
of F . Since F is ss-supplemented, G has an ss-supplements H in F ; so F =
T (H ∪ G). By the assumption, there exists a subfilter X of G such that X is
an ss-supplement of H in F ; so F = T (X ∪H). Set Y = G ∩H. Since H is an
ss-supplement of G in F , we have Y = G∩H ⊆ Socg(H) ⊆ Soc(F ) by Proposition
3.3. By the modular law, G = G ∩ T (X ∪ H) = T (X ∪ (G ∩ H)) = T (X ∪ Y ),
where Y ⊆ Socg(F ) and X is ss-supplemented by Lemma 3.16.

(2)⇒ (1). By the assumption, if G is a subfilter of F , then G = T (X ∪Y ) with
X is ss-supplemented and Y ⊆ Socg(F ) ⊆ Soc(F ) (so Y is ss-supplemented). By
Theorem 3.13, G is ss-supplemented. Therefore F is amply ss-supplemented by
Lemma 3.15.

Corollary 3.18. For a filter F of L, the following statements are equivalent:
(1) F is amply ss-supplemented;
(2) Every subfilter of F is ss-supplemented;
(3) Every subfilter of F is amply ss-supplemented.

Proof. Apply Theorem 3.17.

4. SS-supplemented Quotient Filters
Quotient lattices are determined by equivalence relations rather than by ideals as
in the ring case. If F is a filter of a lattice (L,6), we define a relation on L, given
by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an
equivalence relation on L, and we denote the equivalence class of a by a ∧ F and
these collection of all equivalence classes by L

F . We set up a partial order 6Q on L
F

as follows: for each a∧F, b∧F ∈ L
F , we write a∧F 6Q b∧F if and only if a 6 b. It

is straightforward to check that (LF ,6Q) is a poset. The following notation below
will be kept in this section: Let a ∧ F, b ∧ F ∈ L

F and set X = {a ∧ F, b ∧ F}.
By definition of 6Q, (a ∨ b) ∧ F is an upper bound for the set X. If c ∧ F is any
upper bound of X, then we can easily show that (a ∨ b) ∧ F 6Q c ∧ F . Thus
(a∧F )∨Q (b∧F ) = (a∨ b)∧F . Similarly, (a∧F )∧Q (b∧F ) = (a∧ b)∧F . Thus
(LF ,6Q) is a lattice.

Remark 4.1. Let G be a subfilter of a filter F of L.
(1). If a ∈ F , then a ∧ F = F . By the definition of 6Q, it is easy to see that

1 ∧ F = F is the greatest element of L
F .

(2). If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In parti-
cular, c∧F = F if and only if c ∈ F . Also, if a ∈ F , then a∧F = F = 1∧F .

(3). By the definition 6Q, we can easily show that if L is distributive, then L
F is
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distributive.
(4). F

G = {a ∧G : a ∈ F} is a filter of L
G .

(5). If K is a filter of L
G , then K = F

G for some filter F of L.
(6). If H is a filter of L such that G ⊆ H and F

G = H
G , then F = H.

(7). If H and V are filters of L containing G, then F
G ∩

H
G = V

G if and only if
V = H ∩ F .

(8). If H is a filter of L containing G, then T (F∪H)
G = T (HG ∪

F
G ).

Proposition 4.2. Every quotient filter of a strongly local filter of L is strongly
local.

Proof. Let G be a subfilter of a strongly local filter F of L. Clearly, if H is a
subfilter of F with G ⊆ H, then H is a maximal subfilter of F if and only if HG is a
maximal subfilter of FG ; so the quotient filter F

G is local. By assumption, rad(FG ) =
rad(F )
G ⊆ Soc(F )

G =
∩KEFK

G ⊆ ∩K
G EF

G

K
G ⊆ Soc(FG ); so rad(FG ) is semisimple. Thus

F
G is strongly local.

Lemma 4.3. Let G,H,K be filters of L such that H � K. Then T (H∪G)
G �

T (K∪G)
G .

Proof. Let T (K∪G)
G = T (UG ∪

T (H∪G)
G ) = T (U∪T (H∪G))

G for some subfilter U
G of

T (K∪G)
G (so U ⊆ T (K∪G)); hence T (K∪G) = T (U∪H). As K = K∩T (U∪H) =

T (H ∪ (U ∩K)), we get U ∩K = K since H � K. It follows that T (K ∪G) ⊆ U ,
and so T (K∪G)

G = U
G .

Theorem 4.4. If F is an ss-supplemented filter, then every quotient filter of F
is ss-supplemented.

Proof. Assume that F is an ss-supplemented filter and let F
G be a quotient filter

of F . Let H
G be a subfilter of F

G . By the assumption, there exists a subfilter K
of F such that F = T (K ∪ H), K ∩ H � H and H ∩ K is semisimple. Then
F
G = T (HG ∪

T (K∪G)
G ) and

H

G
∩ T (K ∪G)

G
=
H ∩ T (K ∪G)

G
=
T ((H ∩K) ∪G)

G
� T (K ∪G)

G

by Lemma 4.3 and Lemma 1.3. Since H ∩K is semisimple, it follows from Propo-
sition 1.4 that H

G ∩
T (K∪G)

G = T ((H∩K)∪G)
G is semisimple; so T (K∪G)

G is an ss-
supplement of HG in F

G . This completes the proof.

Corollary 4.5. If F is an amply ss-supplemented filter of L, then every quotient
filter of F is amply ss-supplemented.
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Proof. Let V
X be a subfilter of F

X such that F
X = T ( VX ∪

U
X ) for some subfilter U

X

of F
X ; so F = T (V ∪ U). Since F is amply ss-supplemented, there is a subfilter

H ⊆ U such that H is a ss-supplement of V in F . By a similar argument like
that in Theorem 4.4, T (H∪X)

X ⊆ U
X is a ss-supplement V

X in F
X . Thus F

X is amply
ss-supplemented.

Lemma 4.6. Let G and H be subfilters of a filter F of L such that F = T (G∪H).
If K is a proper subfilter of F such that G $ K, then K ∩H is a proper subfilter
of H.

Proof. If H ⊆ K, then F = T (G∪H) gives F = K, a contradiction. Thus H * K
and K ∩ H 6= H. By the relations, K = K ∩ T (G ∪ H) = T (G ∪ (H ∩K)) and
K 6= G, we obtain K ∩H 6= {1}. Therefore, K ∩H is a proper subfilter of H.

Lemma 4.7. Let G and H be proper subfilters of a filter F of L. If F = T (G∪H)
and H is simple, then G is a maximal subfilter of F .

Proof. If K is a subfilter of F such that G $ K $ F , then K ∩ H is a proper
subfilter of H by Lemma 4.6 which is impossible since H is simple. This completes
the proof.

Proposition 4.8. Let G and H be subfilters of a filter F of L. Assume H to be
a supplement of G in F . Then the following hold:

(1). If K is a maximal subfilter of H, then T (G∪K) is a maximal subfilter of
F . In this case, K = T (G ∪K) ∩H.

(2). If rad(F )� F , then G is contained in a maximal subfilter of F .

Proof. (1). Since K is a maximal subfilter of H, we find K 6= H. Since H is a
supplement of G in F , we get F 6= T (G∪K). As G∩H � H and K is a maximal
subfilter of H, we conclude that H ∩ G ⊆ K; hence K = T (K ∪ (G ∩ H)) =

H ∩ T (G ∪ K). Since H
K is simple and F

K = T (HK ∪
T (G∪K)

K ), we conclude that
T (G∪K)

K is a maximal filter of F
K by Lemma 4.7 which implies that T (G ∪K) is a

maximal subfilter of F which contains G.
(2). If G ⊆ rad(F ), then the assertion is clear. If G * rad(F ), then by [6,

Theorem 2.9 (3)], rad(H) = H ∩ rad(F ) 6= H, i.e. there is a maximal subfilter K
of H. Now the assertion follows from (1).

Definition 4.9. Let F be a filter of L. F is called the internal direct sum of the
set {Fi : i ∈ I} of subfilters of F : F = ⊕i∈IFi if and only if F = T (∪i∈IFi) and
for each j ∈ I, Fj ∩ T (∪i∈Ii6=j

Fi) = {1}.

Lemma 4.10. If {Fi}i∈I is an indexed set of subfilters of a filter F of L with
F = ⊕i∈IFi, then rad(F ) = ⊕i∈Irad(Fi) and Soc(F ) = ⊕i∈ISoc(Fi).
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Proof. By the assumption, for each i ∈ I, rad(Fi) = Fi ∩ rad(F ) by [6, Theo-
rem 2.9 (3)]. It suffices to show that rad(F ) ⊆ ⊕i∈Irad(Fi). Let x ∈ rad(F ).
Then (xi1 ∧ xi2 ∧ · · · ∧ xik) 6 x, where xi1 ∈ Fi1 ⊆ rad(F ), . . . , xik ∈ Fik ⊆
rad(F ). Therefore, F = ⊕i∈IFi gives there exist subfilters Ft1 , · · · , Fts of F
such that xi1 ∈ Ft1 ∩ rad(F ) = rad(Ft1), . . . , xik ∈ Fts ∩ rad(F ) = rad(Fts);
so x ∈ T (rad(Ft1) ∪ · · · ∪ rad(Fts)) ⊆ ⊕i∈Irad(Fi), and so we have equality. Since
the inclusion ⊕i∈ISoc(Fi) ⊆ Soc(F ) is clear, we will prove the reverse inclusion.
Let z ∈ Soc(F ). Then

z = (z ∨ a1) ∧ · · · ∧ (z ∨ an)

for some a1 ∈ Fj1 ⊆ F, . . . , an ∈ Fjn ⊆ F ; hence z ∨ a1 ∈ Fj1 ∩ Soc(F ) =
Soc(Fj1), . . . , z ∨ an ∈ Fjn ∩ Soc(F ) = Soc(Fj1). It follows that z ∈ T (Soc(Fj1) ∪
· · · ∪ Soc(Fjn)) ⊆ ⊕i∈ISoc(Fi). This completes the proof.

Let L, L′ be two lattice. Then a lattice homomorphism f : L → L′ is a map
from L to L′ satisfying f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for all
x, y ∈ L. A bijective lattice homomorphism f is called a lattice isomorphism (in
this case we write L ∼= L′).

Lemma 4.11. If A and B are filters of L, then T (A∪B)
A

∼= B
A∩B .

Proof. Define f : B
A∩B →

T (A∪B)
A by f(b ∧ (A ∩ B)) = b ∧ A. It is clear that f is

well-defined. We will show f is one-to-one: Let f(b1 ∧ (A∩B)) = f(b2 ∧ (A∩B)),
where b1, b2 ∈ B. Then b1∧A = b2∧A; and so b1∧c1 = b2∧c2 for some c1, c2 ∈ A.
Hence

(b1 ∧ c1) ∨ (b1 ∧ b2) = (b2 ∧ c2) ∨ (b2 ∧ b1)

The left side is equal to [b1∨(b1∧b2)]∧[c1∨(b1∧b2)] = b1∧[c1∨(b1∧b2)]. Similarly,
the right side is equal to b1 ∧ [c1 ∨ (b1 ∧ b2)]. Thus b1 ∧ (A ∩ B) = b2 ∧ (A ∩ B).
We claim f is surjective: Let z ∧ A ∈ T (A∪B)

A , where z ∈ T (A ∪ B). Hence there
exist a ∈ A, b ∈ B such that a∧ b 6 z. Thus (z ∨ b)∧ a = (z ∧ a)∨ (b∧ a) = z ∧ a.
Therefore (z ∨ b)∧A = z ∧A. Thus f((z ∨ b)∧ (A∩B)) = (z ∨ b)∧A = z ∧A and
(z ∨ b) ∧ (A ∩ B) ∈ B

A∩B . Now, we show that f is a lattice homomorphism. Let
b1∧(A∩B), b2∧(A∩B) ∈ B

A∩B . Then f((b1∧(A∩B))∧Q (b2∧(A∩B))) = f((b1∧
b2)∧(A∩B)) = (b1∧b2)∧A = (b1∧A)∧Q(b2∧A) = f(b1∧(A∩B))∧Qf(b2∧(A∩B)).

Similarly, f((b1∧(A∩B))∨Q (b2∧(A∩B))) = f(b1∧(A∩B))∨Qf(b2∧(A∩B)).
This completes the proof.

Lemma 4.12. Assume that {Fi}i∈I is an indexed set of subfilters of a filter F of
L such that F = ⊕i∈IFi and let G be a subfilter of F . Then F

G = ⊕i∈I T (Fi∪G)
G .

Proof. For each j ∈ I, let x∧G ∈ T (Fj∪G)
G ∩T (∪i∈Ii6=j

T (Fi∪G)
G ). Then x ∈ T (Fj∪G)

gives there exist fj ∈ Fj and gj ∈ G such that x∧G = ((x∨ fj)∧ (x∨ gj))∧G =
(x∨fj)∧G; so x = fj∨x ∈ Fj . Similarly, there are subfilters Fi1 , . . . , Fis such that
x ∈ T (∪sk=1k 6=j

Fik); hence x = 1. Thus T (Fj∪G)
G ∩ T (∪i∈Ii6=j

T (Fi∪G)
G ) = {1 ∧ G}.
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It is enough to show that F
G ⊆ ⊕i∈I

T (Fi∪G)
G . Let y ∧ G ∈ F

G . Then there exist
fi1 ∈ Fi1 , . . . , fit ∈ Fit such that fi1∧· · ·∧fit 6 y; so (fi1∧G)∧Q · · ·∧Q (fit∧G) 6

y ∧G. It follows that y ∧G ∈ T (
T (Fi1

∪G)

G ∪ · · · ∪ T (Fit∪G
G ) ⊆ T (∪i∈I T (Fi∪G

G )), as
required.

Remark 4.13. Let F be a filter of F .
(1). If G is a hollow subfilter of a filter F of L that is not small in F . Then there

exists a proper subfilter K of F such that F = T (G ∪K). Since G is hollow,
we get G∩K � G. Thus G is a supplement in F . Thus rad(G) = G∩ rad(F )
by [6, Theorem 2.9 (3)].

(2). If G is a direct summand of F such that G� F , then G = {1}.
(3). A filter F of L is said to be coatomic if every proper subfilter of F is contained

in a maximal subfilter of F . It is easy to see that rad(F )� F .

Lemma 4.14. Let {Hα}α∈A be an indexed set of simple subfilters of the filter F
of a lattice L. If F = T (∪α∈AHα), then for each subfilter K of F there is a subset
B of A such that {Hα}α∈B is independent and F = K ⊕ (T (∪α∈BHα)).

Proof. Let K be a subfilter of F . Then there is a subset B of A maximal with
respect to conditions that {Hα}α∈B is independent and K ∩ (T (∪α∈BHα)) = {1}.
Let M = T (K ∪ (T (∪α∈BHα))). For each α ∈ A, we have either Hα ∩M = {1} or
Hα∩M = Hα. If Hα∩M = {1}, then we have a contradiction with the maximality
of B. Thus Hα ⊂M for each α ∈ A, hence F = K ⊕ (T (∪α∈BHα)).

Proposition 4.15. Let F = ⊕i∈IFi be a filter of L, where each Fi is a local filter.
If rad(F )� F , then F is supplemented.

Proof. By [6, Theorem 2.21] and Remark 4.13, for each i ∈ I, Fi is not small in
F (so rad(Fi) = Fi ∩ rad(F ) 6= Fi) and Fi

rad(Fi)
is simple. Let U be a subfilter of

F . By Lemma 4.11 and Lemma 4.12, we have F̄ = F
rad(F ) = ⊕i∈I T (Fi∪rad(F ))

rad(F )
∼=

⊕i∈I Fi

rad(Fi)
is a direct sum of simple filters, and so F̄ = Ū⊕(⊕i∈J Fi

rad(Fi)
) for some

J ⊆ I, where Ū = T (U∪rad(F ))
rad(F ) , by Lemma 4.15. Now we set V̄ = ⊕i∈J Fi

rad(Fi)
)

(so V = ⊕i∈JFi). Since F̄ = Ū ⊕ V̄ , we get that F = T (rad(F ) ∪ T (U ∪ V ))
which implies F = T (U ∪ V ) since rad(F ) � F . Moreover, Ū ∩ V̄ = {rad(F )}
gives U ∩ V ⊆ rad(F ); so U ∩ V � F by Proposition 1.2 (1). Since V is a direct
summand of F , U ∩ V � V by Proposition 1.4 (c). Thus F is supplemented.

Theorem 4.16. Let F = ⊕i∈IFi be a filter of L, where each Fi is a strongly local
filter. Then F is ss-supplemented and coatomic.

Proof. Since Fi is strongly local for every i ∈ I, it is local and rad(Fi) ⊆ Soc(Fi)
(i ∈ I). It then follows from Lemma 4.10 that rad(F ) = ⊕i∈Irad(Fi) ⊆ ⊕i∈ISoc(Fi)
= Soc(F ); hence rad(F )� F by Proposition 1.4 (a). As strongly local filters are
local, Proposition 4.16 gives F is supplemented. Therefore, F is ss-supplemented
by Theorem 3.9. Let H be a proper subfilter of F . By Proposition 4.8 (2), H is
contained in a maximal subfilter of F , that is, F is coatomic.
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