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A new design of the signature schemes

based on the hidden discrete logarithm problem

Dmitriy N. Moldovyan, Alexandr A. Moldovyan, Nikolay A. Moldovyan

Abstract. A new design of the signature scheme based on the computational complexity of the
hidden discrete logarithm problem, which meets the criterion of elimination of periodicity asso-
ciated with the value of the discrete logarithm, is introduced as a candidate for post-quantum
public-key cryptoscheme. The used design criterion is oriented to provide security to the known
and potential future quantum attacks. Three different 6-dimensional finite non-commutative
associative algebras sets over the field GF (p) are considered as the algebraic support of the
developed signature have algorithm that is characterized in using a commutative finite group
possessing 2-dimensional cyclicity as a hidden group. Besides, the following two different types
of masking operations are applied: i) operations that are mutual commutative with the expo-
nentiation operation and ii) operations that are free of this property.

1. Introduction

Development of practical post-quantum (PQ) public-key (PK) cryptosystems is
a current challenge in the area of cryptography, which attracts considerable at-
tention from the research community [15, 16]. The most widely used in practice,
PK cryptographic algorithms and protocols are not resistant to quantum attacks
(attacks on computations on a quantum computer), since they are based on the
computational difficulty of the factoring problem (FP) and the discrete logarithm
problem (DLP) each of which can be solved in polynomial time on a quantum
computer [2, 18]. Quantum algorithms for solving the FP and DLP exploit the
extremely high efficiency of quantum computers to perform a discrete Fourier
transform [3] which is used to calculate the period length of periodic functions. In
particular, to solve DLP, one constructs a periodic function containing a period
with the length depending on the value of the logarithm.

Among the computationally difficult problems used as a basic primitive of PQ
PK cryptoschemes the hidden discrete logarithm problem (HDLP) [4, 6, 8] is of
particular interest for the development of PQ signature schemes [13, 7] having high
performance and comparetively small size of the PK and signature.
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Recently [10], an enhanced design criterion has been proposed to provide the
resistance of the HDLP-based signature schemes to quantum attacks. That crite-
rion consists in the requirement to eliminate periodicities depending on the value
of the discrete logarithm when defining periodic functions on the base of public
parameters of the signature scheme. The signature scheme proposed in [10] meets
the said design criterion, however, that scheme uses a doubled verification equation
reducing the rate and increasing the signature size.

The present paper consideres another design of HDP-based signature schemes
meeting the advanced criterion of PQ resistance. The introduced new signature
scheme has significantly smaller size of signature and PK.

2. Preliminaries

2.1. Masking operations and hidden logarithm problem

Usually the HDLP is defined in finite non-commutative associative algebras
(FNAAs) [6, 7, 13]. The HDLP can be briefly described as follows. It is a selected
a random cyclic group having sufficiently large prime order, which is represented
by its generator G. Then one computes the PK in the form of the pair of vectors
Z = ψ1 (G) and Y = ψ2 (Gx) , where x is private key; ψ1 and ψ2 are masking
operations representing two different homomorphism-map (or automorphism-map)
operations which are mutually commutative with the exponentiation operation.

Due to using the masking operations ψ1 and ψ2 the vectors Z and Y are
contained in different cyclic groups. Each of the masking operations is mutually
comutative with the exponentiation operation, therefore, one can use a DLP-based
signature (for example, well-known Schnorr signature algorithm [17]) and replace
in it the signature verification procedure using the values G and Gx by a signa-
ture verification procedure using the values Z and Y . To compute a signature, a
potential forger needs to know only the value x that is a discrete logarithm value
in a hidden cyclic group, no element of which is known to the forger. The ratio-
nale of the security of the HDLP-based signature scheme is connected with the
fact that every set of periodic functions constructed using the public parameters
of the signature scheme takes on values in many different cyclic groups contained
in FNAA used as algebraic support. Therefore, the Shor quantum algorithm is
not directly applicable to compute the value x, even in the case when a periodic
function contains a period depending on the value x although.

For example, in the case of the signature scheme [13] the function F (i, j) =
Y i ◦ Zj , where ◦ denotes the multiplication operation in the FNAA, contains a
period of the length (−1, x), however one cannot select a fixed cyclic group such
that the function F (i, j) take on with sufficiently high probability the values in
the fixed cyclic group.

Thus, for the development of the HDLP-based signature schemes, one can
formulate the following design criterion:
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Criterion 1. The periodic functions constructed on the base of public parame-
ters of the signature scheme and containing a period with the length depending on
the discrete logarithm value should take on values in different finite cyclic groups
contained in the FNAA used as algebraic support. Besides, no cyclic group can be
pointed out as a preferable finite group for the values of the function F (i, j).

However, the future progress in quantum computations can lead to developing
new quantum algorithms that will allow one to compute the period length for
periodic functions that take on values in algebraic sets that are not groups. Possible
emergence of such quantum algorithms will mean breaking the known HDLP-based
signature schemes.

In the paper [10] the following strengthened criterion for ensuring the security
of the HDLP-based cryptoschemes to hypothetic quantum attacks is proposed:

Criterion 2. Based on the public parameters of the signature scheme, the
construction of a periodic function containing a period with the length depending
on the discrete logarithm value should be a computationally intractable task.

Using Criterion 2, in the present paper, a new HDLP-base signature scheme is
developed which has smaller sizes of signature and PK.

2.2. The used 6-dimensional FNAAs
Suppose a finite m-dimensional vector space is defined over the ground finite field
GF (p). Then defining additionally the vector multiplication that is distributive
at the right and at the left relatively the addition operation one gets a finite
m-dimensional algebra. Some algebra element (m-dimensional vector) A can be
denoted in the following two forms: A = (a0, a1, . . . , am−1) and A =

∑m−1
i=0 aiei,

where a0, a1, . . . , am−1 ∈ GF (p) are called coordinates; e0, e1, ... em−1 are basis
vectors.

The vector multiplication operation (◦) of two m-dimensional vectors A and B
is defined as follows:

A ◦B =

m−1∑
i=0

m−1∑
j=0

aibj(ei ◦ ej),

where every of the products ei ◦ ej is to be replaced by a single-component vector
λek, where λ ∈ GF (p), indicated in the cell at the intersection of the ith row and
jth column of so called basis vector multiplication table (BVMT) like Tables 1, 2,
and 3. To define the associative vector multiplication operation, the BVMT should
define the associative multiplication of all possible triples of the basis vectors
(ei, ej , ek) :

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) .

Three different 6-dimensional FNAAs defined by Tables 1, 2, and 3 with the
structural constant λ 6= 0 are considered as the algebraic support of the HDLP-
based signature scheme described in the next Section 3. The BVMT shown as
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Tablea 1 is constructed using a unified method [12] for setting FNAA of arbitrary
even dimensions. Other two BVMTs are presented as alternative variants of setting
the 6-dimensional FNAAs which also suit well for applying them as an algebraic
support of the proposed signature scheme.

Every of these FNAAs contains a global two-sided unit. The unit in the algebra
defined by Tables 1 and 3 represents the vector E = (1, 0, 0, 0, 0, 0). The unit in
the algebras defined by Table 2 is the vector E = (0, 0, 0, 1, 0, 0). Invertible vectors
having prime order of sufficiently large size are used as parameters of the signature
scheme. In every of the said FNAAs the maximum order of the elements is equal to
ωmax = p

(
p2 − 1

)
and the algebras are set over the field GF (p) with characteristic

equal to prime p = 2q + 1, where q is a 255-bit prime number.

It is easy to see that every of the considered FNAAs contains a large number
of different commutative groups possessing 2-dimensional cyclicity. The notion of
µ-dimensional cyclicity was proposed in [11, 14] in order to highlight the finite
groups generated by a minimum generator system including µ elements of the
same order.

Consider the vector Vd = (d, 0, 0, 0, 0, 0), where d is primitive element in GF (p).
Evidently, the vector Vd is generator of the cyclic group Γd including all vectors of
the form (i, 0, 0, 0, 0, 0), where i 6= 0, and every vector V ∈ Γd satisfies the condition
A ◦ V = V ◦A, since multiplication by V represents the scalar multiplication.

Suppose the vector J /∈ Γd has order equal to p − 1. Then the minimum
generator system < J, Vd > defines the finite commutative group possessing 2-
dimensional cyclicity and having the order Ω = (p− 1)

2. Every of the considered
6-dimensional FNAAs contains a large number of different commutative groups of
the said type and the cyclic group Γd is contained in every of these commutative
groups.

Table 1

The BVMT [12] setting the 6-dimensional FNAA used as algebraic support

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 λe0 e5 λe4 e3 λe2
e2 e2 e3 e4 e5 e0 e1
e3 e3 λe2 e1 λe0 e5 λe4
e4 e4 e5 e0 e1 e2 e3
e5 e5 λe4 e3 λe2 e1 λe0
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Table 2

The BVMT setting the first alternative 6-dimensional FNAA; λ 6= 0.

◦ e0 e1 e2 e3 e4 e5
e0 λe3 e2 λe1 e0 λe5 e4
e1 e4 e5 e0 e1 e2 e3
e2 λe5 e4 λe3 e2 λe1 e0
e3 e0 e1 e2 e3 e4 e5
e4 λe1 e0 λe5 e4 λe3 e2
e5 e2 e3 e4 e5 e0 e1

Table 3

The BVMT setting the second alternative 6-dimensional FNAA; λ 6= 0.

◦ e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 λe0 λe4 λe5 e2 e3
e2 e2 λe5 λe0 λe4 e3 e1
e3 e3 λe4 λe5 λe0 e1 e2
e4 e4 e3 e1 e2 e5 e0
e5 e5 e2 e3 e1 e0 e4

3. The proposed signature scheme

3.1. Setting the hidden commutative group

One can use different values of the structural constant λ 6= 0 in the BVMTs defining
the 6-dimensional FNAAs used as an algebraic support of the developed signature
scheme. For any fixed value λ every of the said algebras contains sufficiently
large number of commutative groups with 2-dimensional cyclicity. Computation
of the private and public parameters of the signature scheme begins with setting a
private hidden finite commutative group Γ<G,Q> that is generated by the minimum
generator system < G,Q > that includes two vectors G and Q each of which has
order equal to the prime q. Actually, the group Γ<G,Q> of the order q2 is set as
computation of the vectors G and Q of the order q, which is performed as follows:

1. Select a random invertible vector R1 and compute G1 = R
2p(p+1)
1 6= E.

2. Select a random invertible vector R2 and compute G2 = R
2p(p+1)
2 6= E.

3. If G1 ◦G2 = G2 ◦G1, then go to step 1. Otherwise, take G = G1.
4. Select a random integer r and compute b = r2 mod p 6= 1.

5. Performing scalar multiplication, compute the vector Q = bG.

One can easily see that the order of each of the vectors G and Q is equal
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to the prime q, therefore we have the minimum generator system < G,Q > of
the commutative group with 2-dimensional cyclicity, which has order equal to the
value q2.

3.2. Masking operations and computation of the public key.
Two different types of masking operations are used:

i) the automorphism map operation ψB(X) = B◦X◦B−1, where B is an invert-
ible vector (private value), which is a mutually commutative the exponentiation
operation;

ii) map operations that are not mutually commutative with the exponentiation
operation, which are defined as FAB(X) = A◦X ◦B−1 and FBA(X) = B◦X ◦A−1.

Computation of the PK in the form of the triple of vectors (U, Y, Z) is performed
as follows:

1. Generate at random the minimum generator system < G,Q > of the hidden
commutative group Γ<G,Q> possessing the 2-dimensional cyclicity.

2. Generate at random the invertible vector B of the order p2 − 1, , which
satisfies the conditions G ◦B 6= B ◦G, and compute the vector Y = B ◦G ◦B−1.

3. Generate at random the integers x (1 < x < q) and w (1 < w < q) and the
invertible vector A of the order p2−1, which satisfies the conditions A◦B 6= B ◦A
and A ◦ G 6= G ◦ A. Then compute the vectors U = A ◦ Gx ◦ Q ◦ B−1 and
Z = B ◦Qw ◦A−1.

The integers x,w and the vectors G, Q, A, and B are the private parameters
of the signature scheme. The private key represents the subset {x,w,G,Q,A} of
private elements that are used when computing a signature. The size of the PK
(U, Y, Z) is equal to 576 bytes.

3.3. Signature generation algorithm:
1. Generate at random the integers k (1 < k < q) and t (1 < t < q). Then

compute V = A ◦GkQt ◦A−1.
2. Using a specified hash function fH , compute the first signature element e:

e = fH (M,V ) , where M is a document to be signed.
3. Compute the second s and third σ signature elements as one of the two

solutions of the following system of two congruences{
es2 + xs+ xσ = k mod q;

s+ ws+ σ + wσ = t mod q.

If this system has no solution, then go to step 1.
On average, computation of one 96-byte signature (e, s, σ) requires performing

the signature generation procedure two times. On the whole, the computational
difficulty of the signature computation procedure is roughly equal to four exponen-
tiation operations in the 6-dimensional FNAA selected as the algebraic support of
the signature scheme.
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3.4. Verification and correctness of the signature scheme

Signature verification procedure includes the following steps:
1. Using the signature (e, s, σ) and the PK (U, Y, Z), compute the vector

V ′ = (U ◦ Y es ◦ Z)
s ◦ (U ◦ Z)

σ
.

2. Compute the hash function value e′ = fH (M,V ′) .
3. If e′ = e, then the signature is genuine. Otherwise, the signature is rejected.
The computational difficulty of the signature verification procedure is roughly

equal to three exponentiation operations in the 6-dimensional FNAA. Correct-
ness proof of the signature scheme consists in proving that the signature (e, s, σ)
computed correctly will pass the verification procedure as a genuine signature.

Correctness proof:

V ′1 = (U ◦ Y es ◦ Z)
s ◦ (U ◦ Z)

σ
=

=
(
A ◦Gx ◦Q ◦B−1 ◦

(
B ◦G ◦B−1

)es ◦B ◦Qw ◦A−1)s ◦
◦
(
A ◦Gx ◦Q ◦B−1 ◦B ◦Qw ◦A−1

)σ
=

=
(
A ◦Gx ◦Q ◦Ges ◦Qw ◦A−1

)s ◦A ◦Gxσ ◦Qσ ◦Qwσ ◦A−1 =

= A ◦Gxs ◦Qs ◦Ges
2

◦Qws ◦Gxσ ◦Qσ+wσ ◦A−1 =

= A ◦Ges
2+xs+xσ ◦Qs+ws+σ+wσ ◦A−1 = A ◦Gk ◦Qt ◦A−1 = V.

Since V ′ = V , the equality e′ = e holds true, i. e. the signature is accepted as
a genuine one.

4. Discussion

Consider some periodic functions composed on the base of public parameters of
the introduced signature scheme.

1. Suppose the function F1(i, j) = (Z ◦ U)
i ◦ Y j = B ◦ Gxi+j ◦ Qwi+i ◦ B−1

includes a period with the length (δi, δj) . Then, we have{
xδi + δj ≡ 0 mod q;

(w + 1)δi ≡ 0 mod q.

From the last system, one gets δi ≡ δj ≡ 0 mod q. The last means the function
F1(i, j) possesses only the periodicity connected with the value q that is the order
of cyclic groups contained in the hidden commutative group with 2-dimensional
cyclicity.

2. Suppose the function F2(i, j) = (U ◦ Y ◦ Z)
i ◦ (U ◦ Z)

j
= A ◦ Gxi+i+xj ◦

Qi+wi+j+wj ◦ A−1 contains a period with the length (δi, δj) . Then, taking into
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account that G and Q are generators of different cyclic groups of the same order
q, we have {

(x+ 1)δi + xδj ≡ 0 mod q;

(w + 1)δi + (w + 1)δj ≡ 0 mod q.

The main determinant of this system of two linear equations is not equal to zero,
therefore, δi ≡ δj ≡ 0 mod q, i. e., the function F2(i, j) also possesses only the
periodicity connected with the value q.

3. Suppose the function F3(i, j, k) = (U ◦ Z)
i◦
(
U ◦ Y j ◦ Z

)k
= B◦Gxi+xk+jk◦

Qwi+i+k+wk ◦B−1 contains a period with the length (δi, δj) . Then we have{
xδi + xδk + jδk + kδj + δjδk ≡ 0 mod q;

(w + 1)δi + (w + 1)δk ≡ 0 mod q.

When solving the last system of two linear congruencies relatively, the unknowns
δi, δj , and δk, one obtains solutions that depend on the values j and k, except the
solution (δi, δj , δk) = (0, 0, 0). This means that the function F3(i, j, k) possesses
only the periodicity with the length (q, q, q), i. e., the function F3(i, j, k) also
possesses only the periodicity connected with the order of the vectors G and Q.

Thus, the proposed signature scheme meets the advanced design criterion of
PQ resistance.

Among the nine signature algorithms developed in framework of the NIST com-
petition as candidates for PQ signature standard the algorithms Falcon [https://
falcon-sign.info/], Dilithium [https://pq-crystals.org/dilithium/index.shtml], Rain-
bow [1], and qTESLA [https://qtesla.org/] attracts attention from the view point
of the trade off between rate and size of the PK and the signature. Table 4
presents a rough comparison of the proposed signature algorithm with Falcon-512,
Dilithium-1024x768, Rainbow, and qTESLA-p-I (versions related to the 128-bit
security level).

The signature algorithm proposed in this article has a significant advantage
in the size of the signature, but it is inferior in performance than Falcon-512.
However, for potential versions of the proposed signature scheme, which will be
implemented using a 4-dimensional FNAA with two-sided global unit as the alge-
braic support, the rate can be increased by 2.25 times (with simultaneous reducing
the PK size to the value 384 bytes). Suitable 4-dimensional FNAAs are presented,
for example, in papers [5, 9]. When using a 256-bit prime integer as the value q,
one can expect the 128-bit security is provided for the both cases of the algebra di-
mension m = 6 and m = 4. However consideration of the security of the proposed
signature scheme represents a task of individual study.

5. Conclusion
This paper introduces a HDLP-based signature scheme that meets the advanced
design criterion of PQ resistance, significant merit of which is the significantly
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Table 4

Comparison with the NIST candidates for PQ signature standard

Signature signature publi-key sign. gener. sign. verific.
scheme size, bytes size, bytes rate, arb. un. rate, arb. un.

Falcon-512 657 897 50 25
Dilithium 2044 1184 15 10
Rainbow 64 150000 – –

qTESLA-p-I 2592 15000 20 40
Proposed
m = 6 96 576 30 40

Proposed
m = 4 96 384 65 90
[10] 192 768 85 65

smaller size of both the signature and the PK in comparison with the earlier
proposed analog [10]. The used design method is characterized in applying both
the masking operations that are mutually commutative with the exponentiation
operation and the masking operations that are free of such properties. Another
feature of the introduced cryptoscheme is the use of the signature verification
equation with cascade exponentiation.

In comparison with the PQ signature schemes that are currently considered as
candidates for PQ signature standards, the propose scheme is significantly more
practical. Besides, implementation of the last one on the base of one of the 4-
dimensional FNAA with two-sided global units, which are described in [5, 9], will
supposedly also provide 128-bit security, but will have 2.25 times higher perfor-
mance rate.
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