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Characterizations of ordered k-regularities

on ordered semirings

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We investigate the connections among some types of ordered k-regularities of ordered
semirings and give some of their characterizations using their ordered k-ideals, prime ordered k-
ideals, semiprime ordered k-ideals and pure ordered k-ideals.

1. Introduction
Regularities are important and interesting properties to research on algebraic
structures, especially, semigroups and semirings. Some notable types of regulari-
ties defined by Kehayopulu [7,8] and Kehayopulu and Tsingelis [9] on semigroups
and ordered semigroups are the bases of many works about regularities on semir-
ings and ordered semirings. A semiring, a well-known generalization of a ring, is
an algebraic system (S,+, ·) such that (S,+) and (S, ·) are semigroups connected
by a distributive law. Originally, the regular property of a semiring (S,+, ·) is
defined on (S, ·) as a similar way of a regular ring defined by von Neumann [11].
He called a semiring (S,+, ·) to be regular if the semigroup (S, ·) is regular, i.e.,
for each a ∈ S, a = axa for some x ∈ S. However, in the sense of Bourne [3], a
semiring (S,+, ·) is regular if for each a ∈ S, a + axa = aya for some x, y ∈ S.
Later, Adhikari, Sen and Weinert [1] renamed Bourne regular semirings to be k-
regular semirings. It is easy to obtain that a k-regular semiring is a generalization
of a regular semiring. In 1958, Henriksen [5] defined a more restricted class of ide-
als in a semiring, which he called k-ideals, a considerably useful kind of ideals to
characterize k-regular semirings. Afterwards, Bhuniya and Jana [2, 6] defined the
notions of quasi-k-ideals and k-bi-ideals of semirings and use them to characterize
k-regular and intra k-regular semirings.

A notable generalization of semirings is an ordered semiring. In the sense of
Gan and Jiang [4], an ordered semiring (S,+, ·,6) is a semiring (S,+, ·) together
with a partially ordered relation 6 on S satisfying the compatibility property.
In 2014, Mandal [10] defined an ordered semiring (S,+, ·,6) to be regular and k-
regular if for each a ∈ S, a 6 axa and a+axa 6 aya for some x, y ∈ S, respectively.
In 2016, we gave some characterizations of regular, left regular, right regular, and
intra-regular ordered semirings using many kinds of their ordered ideals in [12].
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Later, Patchakheio and Pibaljommee [16] defined an ordered semiring (S,+, ·,6)
to be ordered k-regular if a ∈ (aSa] for all a ∈ S. This notion is a generalization
of k-regular ordered semirings defined by Mandal. Moreover, in [16] they gave the
notions of left ordered k-regular, right ordered k-regular, left weakly ordered k-
regular and right weakly ordered k-regular semirings and characterize them using
their ordered k-ideals. In 2017, Senarat and Pibaljommee [18] used prime and
irreducible ordered k-bi-ideals to characterize left and right weakly ordered k-
regular semirings.

In our previous works [13–15, 17], we characterized ordered k-regular, left or-
dered k-regular, right ordered k-regular, ordered intra k-regular, completely or-
dered k-regular, left weakly ordered k-regular, right weakly ordered k-regular
and fully ordered k-idempotent semirings in terms of many kinds of their or-
dered k-ideals. In this work, we recollect all types of mentioned kinds of ordered
k-regularities, investigate connections among them and left generalized ordered
k-regular, right generalized ordered k-regular and generalized ordered k-regular
semirings and give some more their characterizations. Furthermore, we use the
concepts of prime ordered k-ideals, semiprime ordered k-ideals and pure ordered
k-ideals of ordered semirings to characterize some kinds of ordered k-regularities.

2. Preliminaries

An ordered semiring [4] is a system (S,+, ·,6) consisting of the semiring (S,+, ·)
and the partially ordered set (S,6) connected by the compatibility property. If
(S,+) is commutative, (S,+, ·,6) is called additively commutative [1]. Throughout
this work, we simple write S instead of an ordered semiring (S,+, ·,6) and always
assume that it is additively commutative.

For any ∅ 6= A,B ⊆ S, we denote A + B = {a + b ∈ S | a ∈ A, b ∈ B},
AB = {ab ∈ S | a ∈ A, b ∈ B}, (A] = {x ∈ S | x 6 a for some a ∈ A} and

ΣA =

{∑
i∈I

ai | ai ∈ A and I is a finite nonempty set

}
.

The k-closure [16] of ∅ 6= A ⊆ S is denoted by A = {x ∈ S | x+ a 6 b for some
a, b ∈ A}. By the elementary properties of the finite sums Σ, the operator ( ] and
the k-closure of a nonempty subset of an ordered semiring, we refer to [13–16].
Nevertheless, we give the following lemma to be useful accessories for reaching the
main results.

Lemma 2.1. Let A and B be nonempty subsets of an ordered semiring S. The
following statements hold:

(i) Σ(A] ⊆ (ΣA];

(ii) (A] = ((A]];
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(iii) A(B] ⊆ (A] (B] ⊆ (ΣAB] and (A]B ⊆ (A] (B] ⊆ (ΣAB];
(iv) A + (B] ⊆ (A] + (B] ⊆ (A + B];

(v) (A(B]] ⊆ ((A] (B]] ⊆ (ΣAB] and ((A]B] ⊆ ((A] (B]] ⊆ (ΣAB];

(vi) (A + (B]] ⊆ ((A] + (B]] ⊆ (A + B].

A nonempty subset A of an ordered semiring S such that A + A ⊆ A is called
a left (resp. right) ordered k-ideal of S if SA ⊆ A (resp. AS ⊆ A) and A = A.
If A is both a left and a right ordered k-ideal of S, then A is called an ordered
k-ideal [16] of S. A nonempty subset Q of S is called an ordered quasi-k-ideal [13]
of S if (ΣQS] ∩ (ΣSQ] ⊆ Q and Q = Q. A nonempty subset B of S such that
B + B ⊆ B, B2 ⊆ B and B = B is said to be an ordered k-bi-ideal [18] (resp.
ordered k-interior ideal) [14] of S if BSB ⊆ B (resp. SBS ⊆ B).

For a ∈ S, by the notations L(a), R(a), J(a), Q(a), B(a) and I(a), we mean
the intersection of all left ordered k-ideals, right ordered k-ideals, ordered k-ideals,
ordered quasi-k-ideals, ordered k-bi-ideals and ordered k-interior ideals of S con-
taining a, respectively. Now, we recollect their constructions which occur in [13–16]
as follows.

Lemma 2.2. For ∅ 6= A ⊆ S, the following statements hold:

(i) L(a) = (Σa + Sa];
(ii) R(a) = (Σa + aS];

(iii) J(a) = (Σa + Sa + aS + ΣSaS];

(iv) Q(a) = (Σa + ((aS] ∩ (Sa])];
(v) B(a) = (Σa + Σa2 + aSa];

(vi) I(a) = (Σa + Σa2 + ΣSaS].

We define the relations L and R on an ordered semiring S by

L := {(x, y) ∈ S × S | L(x) = L(y)} and R := {(x, y) ∈ S × S | R(x) = R(y)}.

3. Ordered k-regularities of Ordered Semirings
We recall the notions of some types of ordered k-regularities of ordered semirings
as the following definition.

Definition 3.1. An ordered semiring S is called:

(i) ordered k-regular if a ∈ (aSa] for all a ∈ S (cf. [16]);
(ii) left ordered k-regular if a ∈ (Sa2] for all a ∈ S (cf. [16]);

(iii) right ordered k-regular if a ∈ (a2S] for all a ∈ S (cf. [16]);
(iv) completely ordered k-regular if S is ordered k-regular, left ordered k-regular

and right ordered k-regular (cf. [15]);
(v) ordered intra k-regular if a ∈ (ΣSa2S] for all a ∈ S (cf. [14]);

(vi) left weakly ordered k-regular if a ∈ (ΣSaSa] for all a ∈ S (cf. [16]);
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(vii) right weakly ordered k-regular f a ∈ (ΣaSaS] for all a ∈ S (cf. [16]);
(viii) fully ordered k-idempotent if I = (ΣI2] for each ordered k-ideal I of S (cf.

[15]).

According to Definition 3.1(viii), we note that an ordered semiring S is fully
ordered k-idempotent if and only if a ∈ (ΣSaSaS] for all a ∈ S [15].

Here, we give two lemmas which will be significantly used later.

Lemma 3.2. An ordered semiring S is ordered intra k-regular if a ∈ (Σa2 + ΣSa2S]
for all a ∈ S.

Proof. Let a ∈ S. Assume that

a ∈ (Σa2 + ΣSa2S]. (1)

Using (1), we get

a2 = aa ∈ (Σa2 + ΣSa2S] (Σa2 + ΣSa2S] ⊆ (Σ(Σa2 + ΣSa2S)(Σa2 + ΣSa2S)]

⊆ (Σ(Σa4 + ΣSa2S]] ⊆ (Σ(ΣSa2S]] = (ΣSa2S]. (2)

Using (1) and (2), we obtain

a ∈ (Σa2 + ΣSa2S] ⊆ (Σ(ΣSa2S] + ΣSa2S] ⊆ ((ΣSa2S] + (ΣSa2S]]

⊆ ((ΣSa2S + ΣSa2S]] = (ΣSa2S].

Therefore, S is ordered intra k-regular.

Lemma 3.3. If an ordered semiring S is ordered intra k-regular, then J(a) =
(ΣSaS] for all a ∈ S.

Proof. Let a ∈ S. Assume that S is ordered intra k-regular. Then

J(a) = (Σa + Sa + aS + ΣSaS]

⊆ (Σ(ΣSa2S] + S(ΣSa2S] + (ΣSa2S]S + ΣS(ΣSa2S]S]

⊆ ((ΣSa2S] + (ΣSa2S] + (ΣSa2S] + (ΣSa2S]]

⊆ ((ΣSa2S + ΣSa2S + ΣSa2S + ΣSa2S]]

= ((ΣSa2S]] = (ΣSa2S] ⊆ (ΣSaS].

On the other hand, we show that (ΣSaS] ⊆ J(a). Let s ∈ ΣSaS and t ∈ Σa +
Sa+aS. Then s+(t+s) 6 t+s+s such that t+s, t+s+s ∈ Σa+Sa+aS+ΣSaS
and so s ∈ Σa + Sa + aS + ΣSaS ⊆ (Σa + Sa + aS + ΣSaS] = J(a). This means
that ΣSaS ⊆ J(a). It follows that (ΣSaS] ⊆ (J(a)] = J(a).
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Theorem 3.4. [16] An ordered semiring S is ordered k-regular if and only if
R ∩ L = (RL] for every right ordered k-ideal R and left ordered k-ideal L of S.

Corollary 3.5. [13] An ordered semiring S is ordered k-regular if and only if
a ∈ (R(a)L(a)] for all a ∈ S.

Now, we give more characterizations of an ordered k-regular semiring in terms
of many kinds of their ordered k-ideals.

Theorem 3.6. The following conditions are equivalent:

(i) S is ordered k-regular;
(ii) B ∩L ⊆ (BL] for every ordered k-bi-ideal B and left ordered k-ideal L of S;

(iii) R ∩B ⊆ (RB] for every right ordered k-ideal R and ordered k-bi-ideal B of
S;

(iv) R ∩ B ∩ L ⊆ (RBL] for every right ordered k-ideal R, ordered k-bi-ideal B
and left ordered k-ideal L of S;

(v) B ∩ I = (BIB] for every ordered k-bi-ideal B and ordered k-interior ideal I
of S;

(vi) B ∩ J = (BJB] for every ordered k-bi-ideal B and ordered k-ideal J of S;
(vii) B ∩ I ∩ L ⊆ (BIL] for every ordered k-bi-ideal B, ordered k-interior ideal I

and left ordered k-ideal L of S;
(viii) Q∩ I ∩L ⊆ (QIL] for every ordered quasi-k-ideal Q, ordered k-interior ideal

I and left ordered k-ideal L of S;
(ix) R∩ I ∩L ⊆ (RIL] for every right ordered k-ideal R, ordered k-interior ideal

I and left ordered k-ideal L of S;
(x) B ∩ J ∩L ⊆ (BJL] for every ordered k-bi-ideal B, ordered k-ideal J and left

ordered k-ideal L of S;
(xi) Q ∩ J ∩L ⊆ (QJL] for every ordered quasi-k-ideal Q, ordered k-ideal J and

left ordered k-ideal L of S;
(xii) R ∩ J ∩ L ⊆ (RJL] for every right ordered k-ideal R, ordered k-ideal J and

left ordered k-ideal L of S;
(xiii) R∩ I ∩B ⊆ (RIB] for every right ordered k-ideal R, ordered k-interior ideal

I and ordered k-bi-ideal B of S;
(xiv) R∩ I ∩Q ⊆ (RIQ] for every right ordered k-ideal R, ordered k-interior ideal

I and ordered quasi-k-ideal Q of S;
(xv) R ∩ J ∩B ⊆ (RJB] for every right ordered k-ideal R, ordered k-ideal J and

ordered k-bi-ideal B of S;
(xvi) R ∩ J ∩Q ⊆ (RJQ] for every right ordered k-ideal R, ordered k-ideal J and

ordered quasi-k-ideal Q of S.

Proof. (i)⇒ (ii). Let B and L be an ordered k-bi-ideal and a left ordered k-ideal
of S, respectively. If x ∈ B ∩ L then by (i), x ∈ (xSx] ⊆ (BSL] ⊆ (BL].



112 P. Palakawong na Ayutthaya and B. Pibaljommee

(ii)⇒ (i). Let a ∈ S. By (ii), a ∈ B(a)∩L(a) ⊆ (B(a)L(a)]. Since every right
ordered k-ideal is an ordered k-bi-ideal [13], we get a ∈ (B(a)L(a)] ⊆ (R(a)L(a)].
By Corollary 3.5, S is ordered k-regular.

(i) ⇒ (iii). and (iii) ⇒ (i) can be proved in a similar way of (i) ⇒ (ii) and
(ii)⇒ (i), respectively.

(i) ⇒ (iv). Let R, B and L be a right ordered k-ideal, an ordered k-bi-
ideal and a left ordered k-ideal of S, respectively. If x ∈ R ∩ B ∩ L then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSBSL] ⊆ (RBL].

(iv) ⇒ (i). Let a ∈ S. By (iv), a ∈ R(a) ∩ B(a) ∩ L(a) ⊆ (R(a)B(a)L(a)] ⊆
(R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i)⇒ (v). Let B and I be an ordered k-bi-ideal and an ordered k-interior ideal
of S, respectively. If x ∈ B ∩ I then by (i), x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆
(BSISB] ⊆ (BIB]. Clearly, (BIB] ⊆ B ∩ I. Hence, B ∩ I = (BIB].

(v) ⇒ (vi). It follows from the fact that every ordered k-ideal is an ordered
k-interior ideal [14].

(vi) ⇒ (i). Let a ∈ S. By (vi), a ∈ B(a) ∩ J(a) = (B(a)J(a)B(a)]. Since
every one-sided ordered k-ideal is an ordered k-bi-ideal [13], a ∈ (B(a)J(a)B(a)] ⊆
(R(a)J(a)L(a)] ⊆ (R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i) ⇒ (vii). Let B, I and L be an ordered k-bi-ideal, an ordered k-interior
ideal and a left ordered k-ideal of S, respectively. If x ∈ B ∩ I ∩ L then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (BSISL] ⊆ (BIL].

(vii) ⇒ (viii). It follows from the fact that every ordered quasi-k-ideal is an
ordered k-bi-ideal [12].

(viii) ⇒ (ix). It follows from the fact that every right ordered k-ideal is an
ordered quasi-k-ideal [12].

(ix) ⇒ (i). Let a ∈ S. By (ix), a ∈ R(a) ∩ I(a) ∩ L(a) ⊆ (R(a)I(a)L(a)] ⊆
(R(a)L(a)]. Using Corollary 3.5, S is ordered k-regular.

(i)⇒ (x)⇒ (xi)⇒ (xii)⇒ (i) can be proved in a similar way of (i)⇒ (vii)⇒
(viii)⇒ (ix)⇒ (i).

(i) ⇒ (xiii). Let R, I and B be a right ordered ideal, an ordered k-interior
ideal and an ordered k-bi-ideal of S, respectively. If x ∈ R ∩ I ∩ B then by (i),
x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSISB] ⊆ (RIB].

(xiii) ⇒ (xiv). It follows from the fact that every ordered quasi-k-ideal is an
ordered k-bi-ideal [13].

(xiv)⇒ (i). Let a ∈ S. By (xiv), a ∈ R(a) ∩ I(a) ∩Q(a) ⊆ (R(a)I(a)Q(a)] ⊆
(R(a)Q(a)]. Using the fact that every left ordered k-ideal is an ordered quasi-k-
ideal [13], a ∈ (R(a)Q(a)] ⊆ (R(a)L(a)]. By Corollary 3.5, S is ordered k-regular.

(i) ⇒ (xv) ⇒ (xvi) ⇒ (i) can be proved in a similar way of (i) ⇒ (xiii) ⇒
(xiv)⇒ (i).

Definition 3.7. Let a be an element of an ordered semiring S. Then a is called:
left generalized ordered k-regular (resp. right generalized ordered k-regular, gener-
alized ordered k-regular) if a ∈ (Sa] (resp. a ∈ (aS], a ∈ (ΣSaS]).



Characterizations of ordered k-regularities 113

If a is left generalized ordered k-regular (resp. right generalized ordered k-
regular, generalized ordered k-regular) for all a ∈ S, then S is called left generalized
ordered k-regular (resp. right generalized ordered k-regular, generalized ordered k-
regular).

Remark 3.8. Let a and b be elements of an ordered semiring S. If a is left (resp.
right) generalized ordered k-regular and aLb (aRb), then b is also left (resp. right)
generalized ordered k-regular.

Proof. Let a, b ∈ S. If a is left generalized ordered k-regular and aLb, then

b ∈ L(a) = (Σa + Sa] ⊆ (Σ(Sa] + Sa] ⊆ (Sa] ⊆ (SL(b)]

⊆ (S(Σb + Sb]] ⊆ (ΣSb + Sb] = (Sb + Sb] = (Sb].

Hence, b is also left generalized ordered k-regular.

Remark 3.9. Let a and b be elements of an ordered semiring S such that a is
generalized ordered k-regular. If aLb or aRb, then b is also generalized ordered
k-regular.

Proof. Let a, b ∈ S. Assume that a is generalized ordered k-regular and aLb. Then

b ∈ L(a) = (Σa + Sa] ⊆ (Σ(ΣSaS] + S(ΣSaS]] ⊆ ((ΣSaS] + (ΣSaS]] ⊆ (ΣSaS]

⊆ (ΣSL(b)S] ⊆ (ΣS(Σb + Sb]S] ⊆ (ΣSbS + ΣSbS] = (ΣSbS].

Hence, b is generalized ordered k-regular. The case of aRb can be proved similarly.

Connections among eleven types of ordered k-regularities can be summarized
by the following diagram. Each arrow represents the implication between two
regularities and its converse is not generally true.
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Example 3.10. Let S = {a, b, c, d}. Define two binary operations + and · on S
by the following tables:

+ a b c d
a a b c d
b b b c d
c c c c d
d d d d d

and

· a b c d
a a a c d
b a a c d
c a a c d
d a a c d

Define a binary relation6 on S by6:= {(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)}.
Then (S,+, ·,6) is an ordered semiring.
Since x ∈ (ΣSx2S] = S for all x ∈ S, we have that S is ordered intra k-regular

and hence S is fully ordered k-idempotent and generalized ordered k-regular.
Since x ∈ (Σx2S] = S for all x ∈ S, we have that S is right ordered k-regular

and hence S is right weakly ordered k-regular and right generalized ordered k-
regular.

However, b /∈ (Sb] = {a} and so S is not left generalized ordered k-regular.
Consequently, S is not left weakly ordered k-regular and also neither left ordered
k-regular nor ordered k-regular.

Example 3.11. Consider the set S = {a, b, c, d} together with the operation +
and the relation 6 of Example 3.10. Define a binary operation · on S by the
following table:

· a b c d
a a a a a
b a a a a
c c c c c
d d d d d

Then (S,+, ·,6) is an ordered semiring.
Since x ∈ (ΣSx2S] = S for all x ∈ S, we have that S is ordered intra k-regular

and hence S is fully ordered k-idempotent and generalized ordered k-regular.
Since x ∈ (ΣSx2] = S for all x ∈ S, we have that S is left ordered k-regular

and hence S is left weakly ordered k-regular and left generalized ordered k-regular.
However, b /∈ (bS] = {a} and so S is not right generalized ordered k-regular.

Consequently, S is not right weakly ordered k-regular and also neither right ordered
k-regular nor ordered k-regular.

Example 3.12. Let S = {a, b, c}. Define two binary operations + and · on S by
the following tables:

+ a b c
a a b c
b b b c
c c c c

and

· a b c
a a a a
b a a a
c a b c
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Define a binary relation 6 on S by 6:= {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}.
Then (S,+, ·,6) is an ordered semiring. Since a ∈ (Sa] = {a}, b ∈ (Sb] = {a, b}
and c ∈ (Sc] = S, we get that S is left generalized ordered k-regular. However,
b /∈ (ΣSbS] = {a} and so S is not generalized ordered k-regular. Consequently, S
is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.13. Consider the set S = {a, b, c} together with the operation + and
the relation 6 of Example 3.12. Define a binary operation · on S by the following
table;

· a b c
a a a a
b a a b
c a a c

Then (S,+, ·,6) is an ordered semiring. Since a ∈ (aS] = {a}, b ∈ (bS] = {a, b}
and c ∈ (cS] = S, we get that S is right generalized ordered k-regular. However,
b /∈ (ΣSbS] = {a} and so S is not generalized ordered k-regular. Consequently, S
is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.14. Consider the set S = {a, b, c} together with the operation + and
the relation 6 of Example 3.12. Define a binary operation · on S by the following
table;

· a b c
a a a a
b a a b
c a b c

Then (S,+, ·,6) is an ordered semiring. Since a ∈ (ΣSaS] = {a}, b ∈ (ΣSbS] =
{a, b} and c ∈ (ΣScS] = S, we get that S is generalized ordered k-regular. How-
ever, S is not fully ordered k-idempotent because b /∈ (ΣSbSbS] = {a}.

4. Prime and Semiprime Ordered k-ideals
Now, we use the concepts of prime and semiprime ordered k-ideals to characterize
several kinds of ordered k-regularities on ordered semirings.

Definition 4.1. A nonempty subset T of an ordered semiring S is said to be
prime if for any a, b ∈ S, ab ∈ T implies a ∈ T or b ∈ T .

Definition 4.2. A nonempty subset T of an ordered semiring S is said to be
semiprime if for any a ∈ S, a2 ∈ T implies a ∈ T .

It is clear that every prime subset of an ordered semiring is semiprime but not
conversely.
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Example 4.3. Consider the ordered semiring (N,+, ·,6) such that N is the set of
all natural numbers, + is the usual addition, · is the usual multiplication and 6 is
the natural order. We easily get that 2N is a prime subset and 6N is a semiprime
subset of (N,+, ·,6). However, 6N is not prime because 2 · 3 ∈ 6N but 2, 3 /∈ 6N.

Theorem 4.4. An ordered semiring S is left (right) ordered k-regular if and only
if every left (right) ordered k-ideal of S is semiprime.

Proof. Assume that S is left ordered k-regular. Let L be a left ordered k-ideal of
S and x ∈ S. If x2 ∈ L then by assumption, x ∈ (Sx2] ⊆ (SL] ⊆ (L] = L. Hence,
L is semiprime.

Conversely, assume that every left ordered k-ideal of S is semiprime. Let a ∈ S.
Since a2 belongs to L(a2) a semiprime left ordered k-ideal, we get

a ∈ L(a2) = (Σa2 + Sa2] (3)

Using (3), we obtain

a2 = aa ∈ a(Σa2 + Sa2] ⊆ (Σa3 + Sa2] ⊆ (Sa2] (4)

Using (3) and (4), we obtain

a ∈ (Σa2 + Sa2] ⊆ (Σ(Sa2] + Sa2] ⊆ (Sa2].

Therefore, S is left ordered k-regular.

Theorem 4.5. [15] An ordered semiring S is completely ordered k-regular if and
only if every ordered k-bi-ideal of S is semiprime.

Theorem 4.6. [15] An ordered semiring S is both left and right ordered k-regular
if and only if every ordered quasi-k-ideal of S is semiprime.

Theorem 4.7. An ordered semiring S is ordered intra k-regular if and only if
every ordered k-interior ideal of S is semiprime.

Proof. Assume that S is ordered intra k-regular. Let I be an ordered k-interior
ideal of S and x ∈ S. If x2 ∈ I then by assumption, x ∈ (ΣSx2S] ⊆ (ΣSIS] ⊆
(ΣI] = I. Hence, I is semiprime.

Conversely, assume that every ordered k-interior ideal I of S is semiprime.
Let a ∈ S. Since a2 belongs to I(a2) a semiprime ordered k-interior ideal, we get
a ∈ I(a2) = (Σa2 + Σa4 + ΣSa2S] ⊆ (Σa2 + ΣSa2S]. By Lemma 3.2, S is ordered
intra k-regular.

We note that every ordered k-ideal of an ordered semiring is an ordered k-
interior ideal [13, 14] and they coincide in ordered intra k-regular semirings [14].
As a consequence of Theorem 4.7 and using the above fact, we obtain the following
corollary.
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Corollary 4.8. An ordered semiring S is ordered intra k-regular if and only if
every ordered k-ideal of S is semiprime.

Theorem 4.9. An ordered semiring S is ordered intra k-regular and the set of
all ordered k-ideals of S forms a chain if and only if every ordered k-ideal of S is
prime.

Proof. Let T be an ordered k-ideal of S and let a, b ∈ S be such that ab ∈ T .
Using Lemma 3.3, we have J(a) = (ΣSaS], J(b) = (ΣSbS] and J(ab) = (ΣSabS].
We show that J(a) ∩ J(b) ⊆ J(ab). Let z ∈ J(a) ∩ J(b). Then

z2 ∈ J(b)J(a) = (ΣSbS] (ΣSaS] ⊆ (ΣSbSaS]. (5)

If w ∈ bSa, then w2 ∈ bSabSa ⊆ SabS ⊆ (ΣSabS] = J(ab). By assumption
and Theorem 4.7, J(ab) is semiprime and so w ∈ J(ab). Thus, bSa ⊆ J(ab). By
(5), it turns out that z2 ∈ (ΣS(bSa)S] ⊆ (ΣSJ(ab)S] ⊆ (ΣJ(ab)] = J(ab). Since
J(ab) is semiprime, z ∈ J(ab). Hence, J(a) ∩ J(b) ⊆ J(ab). Since the set of all
ordered k-ideals of S is a chain, J(a) ⊆ J(b) or J(b) ⊆ J(a). If J(a) ⊆ J(b), then
a ∈ J(a) = J(a) ∩ J(b) ⊆ J(ab) = (ΣSabS] ⊆ (ΣSTS] ⊆ T . If J(b) ⊆ J(a), then
b ∈ J(b) = J(a)∩ J(b) ⊆ J(ab) = (ΣSabS] ⊆ (ΣSTS] ⊆ T . Therefore, T is prime.

Conversely, assume that every ordered k-ideal of S is prime. Let A and B
be ordered k-ideals of S. We want to show that A ⊆ (ΣAB] or B ⊆ (ΣAB].
Suppose that B * (ΣAB]. There exists b ∈ B such that b /∈ (ΣAB]. Then for
any a ∈ A, we have that ab ∈ AB ⊆ (ΣAB]. Since (ΣAB] is prime, a ∈ (ΣAB]
and so A ⊆ (ΣAB]. Hence, A ⊆ (ΣAB] ⊆ (ΣB] = B or B ⊆ (ΣAB] ⊆ (ΣA] = A.
It follows that the set of all ordered k-ideals of S forms a chain. By assumption,
every ordered k-ideal of S is also semiprime. Hence, by Theorem 4.7, S is ordered
intra k-regular.

Using the fact that every ordered k-ideal is an ordered k-interior ideal, together
with Theorem 4.9, we directly obtain the following corollary.

Corollary 4.10. An ordered semiring S is ordered intra k-regular and the set of
all ordered k-ideals of S forms a chain if and only if every ordered k-interior ideal
of S is prime.

5. Pure Ordered k-ideals
In this section, we present the notions of left pure, right pure, quasi-pure, bi-pure,
left weakly pure and right weakly pure ordered k-ideals of ordered semirings and
use them to characterize ordered k-regular, left weakly ordered k-regular, right
weakly ordered k-regular and fully ordered k-idempotent semirings.

Definition 5.1. An ordered k-ideal A of an ordered semiring S is called left pure
(resp. right pure) if x ∈ (Ax] (resp. x ∈ (xA]) for all x ∈ A.
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Theorem 5.2. Let A be an ordered k-ideal of an ordered semiring S. Then A
is left pure (resp. right pure) if and only if A ∩ L = (AL] for every left ordered
k-ideal L (resp. R ∩A = (RA] for every right ordered k-ideal R) of S.

Proof. (i) Assume that A is left pure. Let L be a left ordered k-ideal of S. If
x ∈ A∩L, then x ∈ (Ax] ⊆ (AL]. Therefore, A∩L ⊆ (AL]. Clearly, (AL] ⊆ A∩L.
Hence, A ∩ L = (AL].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩ L(x) = (AL(x)] = (A(Σx + Sx]] ⊆ ((ΣAx + ASx]]

⊆ (Ax + Ax] ⊆ (Ax].

Hence, A is a left pure ordered k-ideal of S.
(ii) It can be proved similarly.

Definition 5.3. An ordered k-ideal A of an ordered semiring S is called quasi-pure
if x ∈ (xA] ∩ (Ax] for all x ∈ A.

It is clear that every quasi-pure ordered k-ideal of an ordered semiring is both
left pure and right pure.

Theorem 5.4. An ordered k-ideal A of an ordered semiring S is quasi-pure if and
only if A ∩Q = (QA] ∩ (AQ] for every ordered quasi-k-ideal Q of S.

Proof. Assume that A is quasi-pure. Let Q be an ordered quasi-k-ideal of S. If
x ∈ A ∩ Q, then x ∈ (xA] ∩ (Ax] ⊆ (QA] ∩ (AQ]. Thus, A ∩ Q ⊆ (QA] ∩ (AQ].
Clearly, (QA] ∩ (AQ] ⊆ A ∩Q. Hence, A ∩Q = (QA] ∩ (AQ].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩Q(x) = (Q(x)A] ∩ (AQ(x)]

= ((Σx + ((xS] ∩ (Sx])]A] ∩ (A(Σx + ((xS] ∩ (Sx])]]

⊆ ((Σx + (xS]]A] ∩ (A(Σx + (Sx]]]

⊆ ((Σx + xS]A] ∩ (A(Σx + Sx]]

⊆ (ΣxA + xSA] ∩ (ΣAx + ASx]

⊆ (xA + xA] ∩ (Ax + Ax] ⊆ (xA] ∩ (Ax].

Hence, A is a quasi-pure ordered k-ideal of S.

Definition 5.5. An ordered k-ideal A of an ordered semiring S is called bi-pure
if x ∈ (xAx] for all x ∈ A.

It is easy to obtain that every bi-pure ordered k-ideal of an ordered semiring
is quasi-pure.
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Theorem 5.6. An ordered k-ideal A of an ordered semiring S is bi-pure if and
only if A ∩B = (BAB] for every ordered k-bi-ideal B of S.

Proof. Assume that A is bi-pure. Let B be an ordered k-bi-ideal of S. If x ∈ A∩B,
then x ∈ (xAx] ⊆ (BAB]. Thus, A∩B ⊆ (BAB]. Clearly, (BAB] ⊆ A∩B. Hence,
A ∩B = (BAB].

Conversely, let x ∈ A. Using assumption and Lemmas 2.1 and 2.2, we get

x ∈ A ∩B(x) = (B(x)AB(x)] = ((Σx + Σx2 + xSx]A(Σx + Σx2 + xSx]]

⊆ (ΣxAx] = (xAx].

Hence, A is a bi-pure ordered k-ideal of S.

Definition 5.7. An ordered k-ideal A of S is called left weakly pure (resp. right
weakly pure) if A∩ I = (ΣAI] (resp. I ∩A = (ΣIA]) for every ordered k-ideal I of
S.

We note that every left (resp. right) pure ordered k-ideal of an ordered semiring
is left (resp. right) weakly pure.

Now, we characterize some kinds of ordered k-regularities by pure and weakly
pure ordered k-ideals of ordered semirings.

Lemma 5.8. [17] Let S be an ordered semiring. Then the following statements
hold:

(i) if a ∈ (Σa2 + aSa + Sa2 + ΣSaSa] for any a ∈ S, then S is left weakly
ordered k-regular;

(ii) if a ∈ (Σa2 + aSa + a2S + ΣaSaS] for any a ∈ S, then S is right weakly
ordered k-regular.

Theorem 5.9. An ordered semiring S is left (resp. right) weakly ordered k-regular
if and only if every ordered k-ideal of S is left (resp. right) pure.

Proof. Assume that S is left weakly ordered k-regular. Let A be an ordered k-ideal
of S and let x ∈ A. By assumption, x ∈ (ΣSxSx] ⊆ (ΣSASx] ⊆ (ΣAx] = (Ax].
Hence, A is left pure.

Conversely, let a ∈ S. By assumption, we obtain that J(a) is left pure. Using
Lemmas 2.1 and 2.2 and Theorem 5.2, we obtain that

a ∈ J(a) ∩ L(a) = (J(a)L(a)] = ((Σa + aS + Sa + ΣSaS] (Σa + Sa]]

⊆ (Σa2 + aSa + Sa2 + ΣSaSa].

By Lemma 5.8(i), we get that S is left weakly ordered k-regular.

As a consequence of Theorem 5.9 and the fact that every quasi-pure ordered
k-ideal is both left pure and right pure, we directly obtain the following corollary.



120 P. Palakawong na Ayutthaya and B. Pibaljommee

Corollary 5.10. An ordered semiring S is both left and right weakly ordered k-
regular if and only if every ordered k-ideal of S is quasi-pure.

We note that an ordered k-ideal of an ordered semiring is bi-pure if and only
if it is an ordered k-regular subsemiring. Accordingly, we obtain the following
remark.

Remark 5.11. An ordered semiring S is ordered k-regular if and only if every
ordered k-ideal of S is bi-pure.

Proof. Assume that S is ordered k-regular. Let A be an ordered k-ideal of S and
let x ∈ A. By the ordered k-regularity of S, we have that x ∈ (xSx] ⊆ (xSxSx] ⊆
(xSASx] ⊆ (xSAx] ⊆ (xAx]. Hence, A is bi-pure.

The converse is obvious since S itself is a bi-pure ordered k-ideal and so S is
ordered k-regular.

Corollary 5.12. [15] Let S be an ordered semiring. If

a ∈ (Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]

for all a ∈ S, then S is fully ordered k-idempotent.

Theorem 5.13. Let S be an ordered semiring. Then

(i) if S is fully ordered k-idempotent, then every ordered k-ideal of S is both left
and right weakly pure;

(ii) if every ordered k-ideal of S is left weakly pure or right weakly pure, then S
is fully ordered k-idempotent.

Proof. (i). Assume that S is fully ordered k-idempotent. Let A and I be any
ordered k-ideals of S. By assumption, it turns out that if x ∈ A ∩ I, then

x ∈ (ΣSxSxS] ⊆ (ΣSASIS] ⊆ (ΣASI] ⊆ (ΣAI] and

x ∈ (ΣSxSxS] ⊆ (ΣSISAS] ⊆ (ΣISA] ⊆ (ΣIA].

So, A∩ I ⊆ (ΣAI] and A∩ I ⊆ (ΣIA]. Clearly, (ΣAI] ⊆ A∩ I and (ΣIA] ⊆ A∩ I.
Hence, A ∩ I = (ΣAI] = (ΣIA] and thus A is both left and right weakly pure.

(ii). Assume that every ordered k-ideal of S is left weakly pure. Let a ∈ S.
Then J(a) is left weakly pure. It follows that J(a) = (ΣJ(a)J(a)]. By Lemmas
2.1 and 2.2, we obtain that

a ∈ J(a) = (ΣJ(a)J(a)] = (Σ(Σa + Sa + aS + ΣSaS] (Σa + Sa + aS + ΣSaS]]

= (Σ(Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS]]

= (Σa2 + aSa + a2S + ΣaSaS + Sa2 + ΣSaSa + ΣSa2S + ΣSaSaS].

By Corollary 5.12, we obtain that S is fully ordered k-idempotent.
It can be proved analogously if every ordered k-ideal of S is right weakly

pure.
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