Characterizations of ordered k-regularities on ordered semirings

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We investigate the connections among some types of ordered k-regularities of ordered semirings and give some of their characterizations using their ordered k-ideals, prime ordered k-ideals, semiprime ordered k-ideals and pure ordered k-ideals.

1. Introduction

Regularities are important and interesting properties to research on algebraic structures, especially, semigroups and semirings. Some notable types of regularities defined by Kehayopulu [7,8] and Kehayopulu and Tsingelis [9] on semigroups and ordered semigroups are the bases of many works about regularities on semirings and ordered semirings. A semiring, a well-known generalization of a ring, is an algebraic system $(S, +, \cdot)$ such that (S, +) and (S, \cdot) are semigroups connected by a distributive law. Originally, the regular property of a semiring $(S, +, \cdot)$ is defined on (S, \cdot) as a similar way of a regular ring defined by von Neumann [11]. He called a semiring $(S, +, \cdot)$ to be regular if the semigroup (S, \cdot) is regular, i.e., for each $a \in S$, a = axa for some $x \in S$. However, in the sense of Bourne [3], a semiring $(S, +, \cdot)$ is regular if for each $a \in S$, a + axa = aya for some $x, y \in S$. Later, Adhikari, Sen and Weinert [1] renamed Bourne regular semirings to be kregular semirings. It is easy to obtain that a k-regular semiring is a generalization of a regular semiring. In 1958, Henriksen [5] defined a more restricted class of ideals in a semiring, which he called k-ideals, a considerably useful kind of ideals to characterize k-regular semirings. Afterwards, Bhuniya and Jana [2,6] defined the notions of quasi-k-ideals and k-bi-ideals of semirings and use them to characterize k-regular and intra k-regular semirings.

A notable generalization of semirings is an ordered semiring. In the sense of Gan and Jiang [4], an ordered semiring $(S, +, \cdot, \leqslant)$ is a semiring $(S, +, \cdot)$ together with a partially ordered relation \leqslant on S satisfying the compatibility property. In 2014, Mandal [10] defined an ordered semiring $(S, +, \cdot, \leqslant)$ to be regular and k-regular if for each $a \in S$, $a \leqslant axa$ and $a + axa \leqslant aya$ for some $x, y \in S$, respectively. In 2016, we gave some characterizations of regular, left regular, right regular, and intra-regular ordered semirings using many kinds of their ordered ideals in [12].

²⁰¹⁰ Mathematics Subject Classification: 16Y60, 06F25.

 $[\]label{eq:Keywords: ordered k-ideal, prime ordered k-ideal, semiprime ordered k-ideal, pure ordered k-ideal, ordered semiring, ordered k-regular semiring.}$

Later, Patchakheio and Pibaljommee [16] defined an ordered semiring $(S, +, \cdot, \leq)$ to be ordered k-regular if $a \in (aSa]$ for all $a \in S$. This notion is a generalization of k-regular ordered semirings defined by Mandal. Moreover, in [16] they gave the notions of left ordered k-regular, right ordered k-regular, left weakly ordered k-regular and right weakly ordered k-regular semirings and characterize them using their ordered k-ideals. In 2017, Senarat and Pibaljommee [18] used prime and irreducible ordered k-bi-ideals to characterize left and right weakly ordered k-regular semirings.

In our previous works [13–15, 17], we characterized ordered k-regular, left ordered k-regular, right ordered k-regular, ordered intra k-regular, completely ordered k-regular, left weakly ordered k-regular, right weakly ordered k-regular and fully ordered k-idempotent semirings in terms of many kinds of their ordered k-ideals. In this work, we recollect all types of mentioned kinds of ordered k-regularities, investigate connections among them and left generalized ordered k-regular, right generalized ordered k-regular and generalized ordered k-regular semirings and give some more their characterizations. Furthermore, we use the concepts of prime ordered k-ideals, semiprime ordered k-ideals and pure ordered k-ideals of ordered semirings to characterize some kinds of ordered k-regularities.

2. Preliminaries

An ordered semiring [4] is a system $(S, +, \cdot, \leq)$ consisting of the semiring $(S, +, \cdot)$ and the partially ordered set (S, \leq) connected by the compatibility property. If (S, +) is commutative, $(S, +, \cdot, \leq)$ is called *additively commutative* [1]. Throughout this work, we simple write S instead of an ordered semiring $(S, +, \cdot, \leq)$ and always assume that it is additively commutative.

For any $\emptyset \neq A, B \subseteq S$, we denote $A + B = \{a + b \in S \mid a \in A, b \in B\}$, $AB = \{ab \in S \mid a \in A, b \in B\}$, $(A] = \{x \in S \mid x \leq a \text{ for some } a \in A\}$ and

$$\Sigma A = \left\{ \sum_{i \in I} a_i \mid a_i \in A \text{ and } I \text{ is a finite nonempty set} \right\}.$$

The k-closure [16] of $\emptyset \neq A \subseteq S$ is denoted by $\overline{A} = \{x \in S \mid x + a \leq b \text{ for some } a, b \in A\}$. By the elementary properties of the finite sums Σ , the operator (] and the k-closure of a nonempty subset of an ordered semiring, we refer to [13–16]. Nevertheless, we give the following lemma to be useful accessories for reaching the main results.

Lemma 2.1. Let A and B be nonempty subsets of an ordered semiring S. The following statements hold:

(i)
$$\Sigma\overline{(A]} \subseteq \overline{(\Sigma A]};$$

$$(ii) \ \overline{(A]} = (\overline{(A]}];$$

- $(iii) \ A\overline{(B]} \subseteq \overline{(A]} \overline{(B]} \subseteq \overline{(\Sigma AB]} \ and \ \overline{(A]}B \subseteq \overline{(A]} \overline{(B]} \subseteq \overline{(\Sigma AB]};$
- $(iv) \ A + \overline{(B]} \subseteq \overline{(A]} + \overline{(B]} \subseteq \overline{(A+B]};$
- $(v) \ (A\overline{[B]}] \subseteq (\overline{[A]}\overline{[B]}] \subseteq \overline{(\Sigma AB]} \ and \ (\overline{[A]}B] \subseteq (\overline{[A]}\overline{[B]}] \subseteq \overline{(\Sigma AB]};$
- $(vi) \ \overline{(A + \overline{(B)}]} \subseteq \overline{(\overline{(A)} + \overline{(B)}]} \subseteq \overline{(A + B]}.$

A nonempty subset A of an ordered semiring S such that $A + A \subseteq A$ is called a *left* (resp. *right*) ordered k-ideal of S if $SA \subseteq A$ (resp. $AS \subseteq A$) and $A = \overline{A}$. If A is both a left and a right ordered k-ideal of S, then A is called an ordered k-ideal [16] of S. A nonempty subset Q of S is called an ordered quasi-k-ideal [13] of S if $(\overline{\Sigma}QS] \cap (\overline{\Sigma}SQ] \subseteq Q$ and $Q = \overline{Q}$. A nonempty subset B of S such that $B + B \subseteq B, B^2 \subseteq B$ and $B = \overline{B}$ is said to be an ordered k-bi-ideal [18] (resp. ordered k-interior ideal) [14] of S if $BSB \subseteq B$ (resp. $SBS \subseteq B$).

For $a \in S$, by the notations L(a), R(a), J(a), Q(a), B(a) and I(a), we mean the intersection of all left ordered k-ideals, right ordered k-ideals, ordered k-ideals, ordered quasi-k-ideals, ordered k-bi-ideals and ordered k-interior ideals of S containing a, respectively. Now, we recollect their constructions which occur in [13–16] as follows.

Lemma 2.2. For $\emptyset \neq A \subseteq S$, the following statements hold:

 $\begin{array}{ll} (i) \ L(a) = \overline{(\Sigma a + Sa]}; \\ (ii) \ R(a) = \overline{(\Sigma a + aS]}; \\ (iii) \ J(a) = \overline{(\Sigma a + Sa + aS + \Sigma SaS]}; \\ \end{array} \qquad (iv) \ Q(a) = \overline{(\Sigma a + (\overline{(aS]} \cap \overline{(Sa]}))}; \\ (v) \ B(a) = \overline{(\Sigma a + \Sigma a^2 + aSa]}; \\ (vi) \ I(a) = \overline{(\Sigma a + \Sigma a^2 + \Sigma SaS]}. \end{array}$

We define the relations \mathcal{L} and \mathcal{R} on an ordered semiring S by

$$\mathcal{L} := \{ (x,y) \in S \times S \mid L(x) = L(y) \} \text{ and } \mathcal{R} := \{ (x,y) \in S \times S \mid R(x) = R(y) \}.$$

3. Ordered k-regularities of Ordered Semirings

We recall the notions of some types of ordered k-regularities of ordered semirings as the following definition.

Definition 3.1. An ordered semiring S is called:

- (i) ordered k-regular if $a \in \overline{(aSa]}$ for all $a \in S$ (cf. [16]);
- (ii) left ordered k-regular if $a \in \overline{(Sa^2)}$ for all $a \in S$ (cf. [16]);
- (*iii*) right ordered k-regular if $a \in \overline{(a^2S)}$ for all $a \in S$ (cf. [16]);
- (*iv*) completely ordered k-regular if S is ordered k-regular, left ordered k-regular and right ordered k-regular (cf. [15]);
- (v) ordered intra k-regular if $a \in \overline{(\Sigma Sa^2 S)}$ for all $a \in S$ (cf. [14]);
- (vi) left weakly ordered k-regular if $a \in \overline{(\Sigma SaSa)}$ for all $a \in S$ (cf. [16]);

- (vii) right weakly ordered k-regular f $a \in (\Sigma a S a S]$ for all $a \in S$ (cf. [16]);
- (viii) fully ordered k-idempotent if $I = \overline{(\Sigma I^2)}$ for each ordered k-ideal I of S (cf. [15]).

According to Definition 3.1(viii), we note that an ordered semiring S is fully ordered k-idempotent if and only if $a \in \overline{(\Sigma SaSaS]}$ for all $a \in S$ [15].

Here, we give two lemmas which will be significantly used later.

Lemma 3.2. An ordered semiring S is ordered intra k-regular if $a \in \overline{(\Sigma a^2 + \Sigma S a^2 S)}$ for all $a \in S$.

Proof. Let $a \in S$. Assume that

$$a \in \overline{(\Sigma a^2 + \Sigma S a^2 S]}.$$
(1)

Using (1), we get

$$a^{2} = aa \in \overline{\left[\Sigma a^{2} + \Sigma S a^{2} S\right]} \overline{\left[\Sigma a^{2} + \Sigma S a^{2} S\right]} \subseteq \overline{\left[\Sigma \left(\Sigma a^{2} + \Sigma S a^{2} S\right)\left(\Sigma a^{2} + \Sigma S a^{2} S\right)\right]}$$
$$\subseteq \overline{\left[\Sigma \left(\Sigma a^{4} + \Sigma S a^{2} S\right]\right]} \subseteq \overline{\left[\Sigma \left(\Sigma S a^{2} S\right]\right]} = \overline{\left[\Sigma S a^{2} S\right]}.$$
(2)

Using (1) and (2), we obtain

$$\begin{aligned} a \in \overline{\left[\Sigma a^2 + \Sigma S a^2 S \right]} &\subseteq \left[\Sigma \overline{\left[\Sigma S a^2 S \right]} + \Sigma S a^2 S \right] \subseteq \left(\overline{\left[\Sigma S a^2 S \right]} + \overline{\left[\Sigma S a^2 S \right]} \right] \\ &\subseteq \overline{\left(\overline{\left[\Sigma S a^2 S + \Sigma S a^2 S \right]} \right]} = \overline{\left[\Sigma S a^2 S \right]}. \end{aligned}$$

Therefore, S is ordered intra k-regular.

Lemma 3.3. If an ordered semiring S is ordered intra k-regular, then $J(a) = \overline{(\Sigma SaS)}$ for all $a \in S$.

Proof. Let $a \in S$. Assume that S is ordered intra k-regular. Then

$$\begin{split} J(a) &= \overline{(\Sigma a + Sa + aS + \Sigma SaS]} \\ &\subseteq \overline{(\Sigma \overline{(\Sigma Sa^2 S]} + S \overline{(\Sigma Sa^2 S]} + \overline{(\Sigma Sa^2 S]}S + \Sigma S \overline{(\Sigma Sa^2 S]}S]} \\ &\subseteq \overline{((\overline{\Sigma Sa^2 S]} + \overline{(\Sigma Sa^2 S]} + \overline{(\Sigma Sa^2 S]} + \overline{(\Sigma Sa^2 S]})} \\ &\subseteq \overline{((\overline{\Sigma Sa^2 S} + \Sigma Sa^2 S + \Sigma Sa^2 S + \Sigma Sa^2 S)]} \\ &= \overline{((\overline{\Sigma Sa^2 S}]} = \overline{(\Sigma Sa^2 S]} \subseteq \overline{(\Sigma SaS]}. \end{split}$$

On the other hand, we show that $\overline{(\Sigma SaS]} \subseteq J(a)$. Let $s \in \Sigma SaS$ and $t \in \Sigma a + Sa + aS$. Then $s + (t+s) \leq t+s+s$ such that $t+s, t+s+s \in \Sigma a + Sa + aS + \Sigma SaS$ and so $s \in \overline{\Sigma a + Sa + aS + \Sigma SaS} \subseteq \overline{(\Sigma a + Sa + aS + \Sigma SaS]} = J(a)$. This means that $\Sigma SaS \subseteq J(a)$. It follows that $\overline{(\Sigma SaS]} \subseteq \overline{(J(a)]} = J(a)$.

Theorem 3.4. [16] An ordered semiring S is ordered k-regular if and only if $R \cap L = \overline{(RL)}$ for every right ordered k-ideal R and left ordered k-ideal L of S.

Corollary 3.5. [13] An ordered semiring S is ordered k-regular if and only if $a \in \overline{(R(a)L(a)]}$ for all $a \in S$.

Now, we give more characterizations of an ordered k-regular semiring in terms of many kinds of their ordered k-ideals.

Theorem 3.6. The following conditions are equivalent:

- (i) S is ordered k-regular;
- (ii) $B \cap L \subseteq (BL)$ for every ordered k-bi-ideal B and left ordered k-ideal L of S;
- (iii) $R \cap B \subseteq \overline{(RB)}$ for every right ordered k-ideal R and ordered k-bi-ideal B of S;
- (iv) $R \cap B \cap L \subseteq (RBL]$ for every right ordered k-ideal R, ordered k-bi-ideal B and left ordered k-ideal L of S;
- (v) $B \cap I = \overline{(BIB)}$ for every ordered k-bi-ideal B and ordered k-interior ideal I of S;
- (vi) $B \cap J = (BJB]$ for every ordered k-bi-ideal B and ordered k-ideal J of S;
- (vii) $B \cap I \cap L \subseteq \overline{(BIL)}$ for every ordered k-bi-ideal B, ordered k-interior ideal I and left ordered k-ideal L of S;
- (viii) $Q \cap I \cap L \subseteq (QIL)$ for every ordered quasi-k-ideal Q, ordered k-interior ideal I and left ordered k-ideal L of S;
- (ix) $R \cap I \cap L \subseteq \overline{(RIL)}$ for every right ordered k-ideal R, ordered k-interior ideal I and left ordered k-ideal L of S;
- (x) $B \cap J \cap L \subseteq \overline{(BJL)}$ for every ordered k-bi-ideal B, ordered k-ideal J and left ordered k-ideal L of S;
- (xi) $Q \cap J \cap L \subseteq \overline{(QJL)}$ for every ordered quasi-k-ideal Q, ordered k-ideal J and left ordered k-ideal L of S;
- (xii) $R \cap J \cap L \subseteq (RJL]$ for every right ordered k-ideal R, ordered k-ideal J and left ordered k-ideal L of S;
- (xiii) $R \cap I \cap B \subseteq \overline{(RIB)}$ for every right ordered k-ideal R, ordered k-interior ideal I and ordered k-bi-ideal B of S;
- (xiv) $R \cap I \cap Q \subseteq \overline{(RIQ)}$ for every right ordered k-ideal R, ordered k-interior ideal I and ordered quasi-k-ideal Q of S;
- (xv) $R \cap J \cap B \subseteq (RJB]$ for every right ordered k-ideal R, ordered k-ideal J and ordered k-bi-ideal B of S;
- (xvi) $R \cap J \cap Q \subseteq \overline{(RJQ)}$ for every right ordered k-ideal R, ordered k-ideal J and ordered quasi-k-ideal Q of S.

Proof. $(i) \Rightarrow (ii)$. Let B and L be an ordered k-bi-ideal and a left ordered k-ideal of S, respectively. If $x \in B \cap L$ then by $(i), x \in \overline{(xSx]} \subseteq \overline{(BSL]} \subseteq \overline{(BL]}$.

 $(ii) \Rightarrow (i)$. Let $a \in S$. By $(ii), a \in B(a) \cap L(a) \subseteq (B(\underline{a})L(\underline{a})]$. Since every right ordered k-ideal is an ordered k-bi-ideal [13], we get $a \in (B(a)L(a)] \subseteq \overline{(R(a)L(a)]}$. By Corollary 3.5, S is ordered k-regular.

 $(i) \Rightarrow (iii)$. and $(iii) \Rightarrow (i)$ can be proved in a similar way of $(i) \Rightarrow (ii)$ and $(ii) \Rightarrow (i)$, respectively.

 $(i) \Rightarrow (iv)$. Let R, B and L be a right ordered k-ideal, an ordered k-biideal and a left ordered k-ideal of S, respectively. If $x \in R \cap B \cap L$ then by (i), $x \in \overline{(xSx]} \subseteq \overline{(\overline{(xSx]Sx]}} \subseteq \overline{(xSxSx]} \subseteq \overline{(RSBSL]} \subseteq \overline{(RBL]}$.

 $(iv) \Rightarrow (i)$. Let $a \in S$. By (iv), $a \in R(a) \cap B(a) \cap L(a) \subseteq \overline{(R(a)B(a)L(a)]} \subseteq \overline{(R(a)L(a)]}$. Using Corollary 3.5, S is ordered k-regular.

 $(i) \Rightarrow (v)$. Let B and I be an ordered k-bi-ideal and an ordered k-interior ideal of S, respectively. If $x \in B \cap I$ then by $(i), x \in \overline{(xSx]} \subseteq \overline{(\overline{(xSx]}Sx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(BIB]}$. Clearly, $\overline{(BIB]} \subseteq B \cap I$. Hence, $B \cap I = \overline{(BIB]}$.

 $(v) \Rightarrow (vi)$. It follows from the fact that every ordered k-ideal is an ordered k-interior ideal [14].

 $(vi) \Rightarrow (i)$. Let $a \in S$. By (vi), $a \in B(a) \cap J(a) = (B(a)J(a)B(a)]$. Since every one-sided ordered k-ideal is an ordered k-bi-ideal [13], $a \in (B(a)J(a)B(a)] \subseteq \overline{(R(a)J(a)L(a)]} \subseteq \overline{(R(a)L(a)]}$. Using Corollary 3.5, S is ordered k-regular.

 $(i) \Rightarrow (vii)$. Let B, I and L be an ordered k-bi-ideal, an ordered k-interior ideal and a left ordered k-ideal of S, respectively. If $x \in B \cap I \cap L$ then by (i), $x \in \overline{(xSx]} \subseteq \overline{(\overline{(xSx]}Sx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(BSISL]} \subseteq \overline{(BIL]}$.

 $(vii) \Rightarrow (viii)$. It follows from the fact that every ordered quasi-k-ideal is an ordered k-bi-ideal [12].

 $(viii) \Rightarrow (ix)$. It follows from the fact that every right ordered k-ideal is an ordered quasi-k-ideal [12].

 $(ix) \Rightarrow (i)$. Let $a \in S$. By (ix), $a \in R(a) \cap I(a) \cap L(a) \subseteq \overline{(R(a)I(a)L(a)]} \subseteq \overline{(R(a)L(a)]}$. Using Corollary 3.5, S is ordered k-regular.

 $(i) \Rightarrow (x) \Rightarrow (xi) \Rightarrow (xii) \Rightarrow (i)$ can be proved in a similar way of $(i) \Rightarrow (vii) \Rightarrow (viii) \Rightarrow (ix) \Rightarrow (i)$.

 $(i) \Rightarrow (xiii)$. Let R, I and B be a right ordered ideal, an ordered k-interior ideal and an ordered k-bi-ideal of S, respectively. If $x \in R \cap I \cap B$ then by (i), $x \in \overline{(xSx]} \subseteq \overline{(\overline{(xSx]}Sx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(RSISB]} \subseteq \overline{(RIB]}$.

 $(xiii) \Rightarrow (xiv)$. It follows from the fact that every ordered quasi-k-ideal is an ordered k-bi-ideal [13].

 $\frac{(xiv) \Rightarrow (i). \text{ Let } a \in S. \text{ By } (xiv), a \in R(a) \cap I(a) \cap Q(a) \subseteq (R(a)I(a)Q(a)] \subseteq \overline{(R(a)Q(a)]}. \text{ Using the fact that every left ordered } k\text{-ideal is an ordered quasi-}k\text{-ideal } [13], a \in \overline{(R(a)Q(a)]} \subseteq \overline{(R(a)L(a)]}. \text{ By Corollary 3.5, } S \text{ is ordered } k\text{-regular.}$

 $(i) \Rightarrow (xv) \Rightarrow (xvi) \Rightarrow (i)$ can be proved in a similar way of $(i) \Rightarrow (xiii) \Rightarrow (xiv) \Rightarrow (i)$.

Definition 3.7. Let *a* be an element of an ordered semiring *S*. Then *a* is called: left generalized ordered *k*-regular (resp. right generalized ordered *k*-regular, generalized ordered *k*-regular) if $a \in \overline{(Sa]}$ (resp. $a \in \overline{(aS]}, a \in \overline{(\Sigma SaS]}$). If a is left generalized ordered k-regular (resp. right generalized ordered k-regular, generalized ordered k-regular) for all $a \in S$, then S is called *left generalized* ordered k-regular (resp. right generalized ordered k-regular, generalized ordered k-regular).

Remark 3.8. Let *a* and *b* be elements of an ordered semiring *S*. If *a* is left (resp. right) generalized ordered *k*-regular and $a\mathcal{L}b$ ($a\mathcal{R}b$), then *b* is also left (resp. right) generalized ordered *k*-regular.

Proof. Let $a, b \in S$. If a is left generalized ordered k-regular and $a\mathcal{L}b$, then

$$b \in L(a) = \overline{(\Sigma a + Sa]} \subseteq (\Sigma \overline{(Sa]} + Sa] \subseteq \overline{(Sa]} \subseteq \overline{(SL(b))}$$
$$\subseteq \overline{(S\overline{(\Sigma b + Sb]}]} \subseteq \overline{(\Sigma Sb + Sb]} = \overline{(Sb + Sb]} = \overline{(Sb]}.$$

Hence, b is also left generalized ordered k-regular.

Remark 3.9. Let a and b be elements of an ordered semiring S such that a is generalized ordered k-regular. If $a\mathcal{L}b$ or $a\mathcal{R}b$, then b is also generalized ordered k-regular.

Proof. Let $a, b \in S$. Assume that a is generalized ordered k-regular and $a\mathcal{L}b$. Then

$$b \in L(a) = \overline{(\Sigma a + Sa]} \subseteq (\overline{\Sigma [\Sigma SaS]} + S\overline{(\Sigma SaS]}] \subseteq (\overline{(\Sigma SaS]} + \overline{(\Sigma SaS]}] \subseteq \overline{(\Sigma SaS]}$$
$$\subseteq \overline{(\Sigma SL(b)S]} \subseteq \overline{(\Sigma S\overline{(\Sigma b + Sb]S]}} \subseteq \overline{(\Sigma SbS + \Sigma SbS]} = \overline{(\Sigma SbS]}.$$

Hence, b is generalized ordered k-regular. The case of $a\mathcal{R}b$ can be proved similarly. \Box

Connections among eleven types of ordered k-regularities can be summarized by the following diagram. Each arrow represents the implication between two regularities and its converse is not generally true.

Example 3.10. Let $S = \{a, b, c, d\}$. Define two binary operations + and \cdot on S by the following tables:

+	a	b	c	d		•	a	b	c	d
a	a	b	c	d		a	a	a	c	d
b	b	b	c	d	and	b	a	a	c	d
c	c	c	c	d		c	a	a	c	d
d	d	d	d	d		d	a	a	c	d

Define a binary relation \leq on S by $\leq := \{(a, a), (b, b), (c, c), (d, d), (a, d), (b, d), (c, d)\}$. Then $(S, +, \cdot, \leq)$ is an ordered semiring.

Since $x \in \overline{(\Sigma S x^2 S)} = S$ for all $x \in S$, we have that S is ordered intra k-regular and hence S is fully ordered k-idempotent and generalized ordered k-regular.

Since $x \in \overline{(\Sigma x^2 S]} = S$ for all $x \in S$, we have that S is right ordered k-regular and hence S is right weakly ordered k-regular and right generalized ordered kregular.

However, $b \notin (Sb] = \{a\}$ and so S is not left generalized ordered k-regular. Consequently, S is not left weakly ordered k-regular and also neither left ordered k-regular nor ordered k-regular.

Example 3.11. Consider the set $S = \{a, b, c, d\}$ together with the operation + and the relation \leq of Example 3.10. Define a binary operation \cdot on S by the following table:

Then $(S, +, \cdot, \leq)$ is an ordered semiring.

Since $x \in \overline{(\Sigma S x^2 S)} = S$ for all $x \in S$, we have that S is ordered intra k-regular and hence S is fully ordered k-idempotent and generalized ordered k-regular.

Since $x \in (\Sigma S x^2] = S$ for all $x \in S$, we have that S is left ordered k-regular and hence S is left weakly ordered k-regular and left generalized ordered k-regular.

However, $b \notin \overline{(bS)} = \{a\}$ and so S is not right generalized ordered k-regular. Consequently, S is not right weakly ordered k-regular and also neither right ordered k-regular nor ordered k-regular.

Example 3.12. Let $S = \{a, b, c\}$. Define two binary operations + and \cdot on S by the following tables:

+	a	b	c		•	a	b	c
a	a	b	c	and	a	a	a	a
b	b	b	c	anu	b	a	a	a
c	c	c	c		c	a	b	c

Define a binary relation \leq on S by $\leq := \{(a, a), (\underline{b}, b), (c, c), (a, b), (\underline{a}, c), (b, c)\}$. Then $(S, +, \cdot, \leq)$ is an ordered semiring. Since $a \in (Sa] = \{a\}, b \in (Sb] = \{a, b\}$ and $\underline{c} \in (Sc] = S$, we get that S is left generalized ordered k-regular. However, $b \notin (\Sigma SbS] = \{a\}$ and so S is not generalized ordered k-regular. Consequently, S is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.13. Consider the set $S = \{a, b, c\}$ together with the operation + and the relation \leq of Example 3.12. Define a binary operation \cdot on S by the following table;

Then $(S, +, \cdot, \leqslant)$ is an ordered semiring. Since $a \in \overline{(aS]} = \{a\}, b \in \overline{(bS]} = \{a, b\}$ and $c \in \overline{(cS]} = S$, we get that S is right generalized ordered k-regular. However, $b \notin \overline{(\Sigma SbS]} = \{a\}$ and so S is not generalized ordered k-regular. Consequently, S is not fully ordered k-idempotent and also not left weakly ordered k-regular.

Example 3.14. Consider the set $S = \{a, b, c\}$ together with the operation + and the relation \leq of Example 3.12. Define a binary operation \cdot on S by the following table;

$$\begin{array}{c|cccc} \cdot & a & b & c \\ \hline a & a & a & a \\ b & a & a & b \\ c & a & b & c \\ \end{array}$$

Then $(S, +, \cdot, \leq)$ is an ordered semiring. Since $a \in \overline{(\Sigma SaS]} = \{a\}, b \in \overline{(\Sigma SbS]} = \{a, b\}$ and $c \in \overline{(\Sigma ScS]} = S$, we get that S is generalized ordered k-regular. However, S is not fully ordered k-idempotent because $b \notin \overline{(\Sigma SbSbS]} = \{a\}$.

4. Prime and Semiprime Ordered k-ideals

Now, we use the concepts of prime and semiprime ordered k-ideals to characterize several kinds of ordered k-regularities on ordered semirings.

Definition 4.1. A nonempty subset T of an ordered semiring S is said to be *prime* if for any $a, b \in S$, $ab \in T$ implies $a \in T$ or $b \in T$.

Definition 4.2. A nonempty subset T of an ordered semiring S is said to be *semiprime* if for any $a \in S$, $a^2 \in T$ implies $a \in T$.

It is clear that every prime subset of an ordered semiring is semiprime but not conversely.

Example 4.3. Consider the ordered semiring $(\mathbb{N}, +, \cdot, \leq)$ such that \mathbb{N} is the set of all natural numbers, + is the usual addition, \cdot is the usual multiplication and \leq is the natural order. We easily get that $2\mathbb{N}$ is a prime subset and $6\mathbb{N}$ is a semiprime subset of $(\mathbb{N}, +, \cdot, \leq)$. However, $6\mathbb{N}$ is not prime because $2 \cdot 3 \in 6\mathbb{N}$ but $2, 3 \notin 6\mathbb{N}$.

Theorem 4.4. An ordered semiring S is left (right) ordered k-regular if and only if every left (right) ordered k-ideal of S is semiprime.

Proof. Assume that S is left ordered k-regular. Let L be a left ordered k-ideal of S and $x \in S$. If $x^2 \in L$ then by assumption, $x \in \overline{(Sx^2]} \subseteq \overline{(SL]} \subseteq \overline{(L]} = L$. Hence, L is semiprime.

Conversely, assume that every left ordered k-ideal of S is semiprime. Let $a \in S$. Since a^2 belongs to $L(a^2)$ a semiprime left ordered k-ideal, we get

$$a \in L(a^2) = \overline{(\Sigma a^2 + Sa^2]} \tag{3}$$

Using (3), we obtain

$$a^{2} = aa \in a\overline{(\Sigma a^{2} + Sa^{2}]} \subseteq \overline{(\Sigma a^{3} + Sa^{2}]} \subseteq \overline{(Sa^{2}]}$$

$$\tag{4}$$

Using (3) and (4), we obtain

$$a\in\overline{[\Sigma a^2+Sa^2]}\subseteq\overline{[\Sigma\overline{[Sa^2]}+Sa^2]}\subseteq\overline{[Sa^2]}.$$

Therefore, S is left ordered k-regular.

Theorem 4.5. [15] An ordered semiring S is completely ordered k-regular if and only if every ordered k-bi-ideal of S is semiprime.

Theorem 4.6. [15] An ordered semiring S is both left and right ordered k-regular if and only if every ordered quasi-k-ideal of S is semiprime.

Theorem 4.7. An ordered semiring S is ordered intra k-regular if and only if every ordered k-interior ideal of S is semiprime.

Proof. Assume that S is ordered intra k-regular. Let I be an ordered k-interior ideal of S and $x \in S$. If $x^2 \in I$ then by assumption, $x \in \overline{(\Sigma S x^2 S]} \subseteq \overline{(\Sigma S I S]} \subseteq \overline{(\Sigma S I S)} \subseteq \overline{(\Sigma I)} = I$. Hence, I is semiprime.

Conversely, assume that every ordered k-interior ideal I of S is semiprime. Let $a \in S$. Since a^2 belongs to $I(a^2)$ a semiprime ordered k-interior ideal, we get $a \in I(a^2) = \overline{(\Sigma a^2 + \Sigma a^4 + \Sigma S a^2 S]} \subseteq \overline{(\Sigma a^2 + \Sigma S a^2 S]}$. By Lemma 3.2, S is ordered intra k-regular.

We note that every ordered k-ideal of an ordered semiring is an ordered k-interior ideal [13, 14] and they coincide in ordered intra k-regular semirings [14]. As a consequence of Theorem 4.7 and using the above fact, we obtain the following corollary.

Corollary 4.8. An ordered semiring S is ordered intra k-regular if and only if every ordered k-ideal of S is semiprime.

Theorem 4.9. An ordered semiring S is ordered intra k-regular and the set of all ordered k-ideals of S forms a chain if and only if every ordered k-ideal of S is prime.

Proof. Let T be an ordered k-ideal of S and let $a, b \in S$ be such that $ab \in T$. Using Lemma 3.3, we have $J(a) = \overline{(\Sigma SaS]}, J(b) = \overline{(\Sigma SbS]}$ and $J(ab) = \overline{(\Sigma SabS]}$. We show that $J(a) \cap J(b) \subseteq J(ab)$. Let $z \in J(a) \cap J(b)$. Then

$$z^{2} \in J(b)J(a) = \overline{(\Sigma SbS]} \overline{(\Sigma SaS]} \subseteq \overline{(\Sigma SbSaS]}.$$
(5)

If $w \in bSa$, then $w^2 \in bSabSa \subseteq SabS \subseteq \overline{(\Sigma SabS]} = J(ab)$. By assumption and Theorem 4.7, J(ab) is semiprime and so $w \in J(ab)$. Thus, $bSa \subseteq J(ab)$. By (5), it turns out that $z^2 \in \overline{(\Sigma S(bSa)S]} \subseteq \overline{(\Sigma SJ(ab)S]} \subseteq \overline{(\Sigma J(ab)]} = J(ab)$. Since J(ab) is semiprime, $z \in J(ab)$. Hence, $J(a) \cap J(b) \subseteq J(ab)$. Since the set of all ordered k-ideals of S is a chain, $J(\underline{a}) \subseteq J(\underline{b})$ or $J(\underline{b}) \subseteq J(ab)$. If $J(\underline{a}) \subseteq J(b)$, then $a \in J(a) = J(a) \cap J(b) \subseteq J(ab) = \overline{(\Sigma SabS]} \subseteq \overline{(\Sigma STS]} \subseteq T$. If $J(b) \subseteq J(a)$, then $b \in J(b) = J(a) \cap J(b) \subseteq J(ab) = \overline{(\Sigma SabS]} \subseteq \overline{(\Sigma STS]} \subseteq T$. Therefore, T is prime.

Conversely, assume that every ordered k-ideal of S is prime. Let A and B be ordered k-ideals of S. We want to show that $A \subseteq \overline{(\Sigma AB]}$ or $B \subseteq \overline{(\Sigma AB]}$. Suppose that $B \notin \overline{(\Sigma AB]}$. There exists $b \in B$ such that $b \notin \overline{(\Sigma AB]}$. Then for any $a \in A$, we have that $ab \in AB \subseteq \overline{(\Sigma AB]}$. Since $\overline{(\Sigma AB]}$ is prime, $a \in \overline{(\Sigma AB]}$ and so $A \subseteq \overline{(\Sigma AB]}$. Hence, $A \subseteq \overline{(\Sigma AB]} \subseteq \overline{(\Sigma B]} = B$ or $B \subseteq \overline{(\Sigma AB]} \subseteq \overline{(\Sigma A]} = A$. It follows that the set of all ordered k-ideals of S forms a chain. By assumption, every ordered k-ideal of S is also semiprime. Hence, by Theorem 4.7, S is ordered intra k-regular.

Using the fact that every ordered k-ideal is an ordered k-interior ideal, together with Theorem 4.9, we directly obtain the following corollary.

Corollary 4.10. An ordered semiring S is ordered intra k-regular and the set of all ordered k-ideals of S forms a chain if and only if every ordered k-interior ideal of S is prime.

5. Pure Ordered *k*-ideals

In this section, we present the notions of left pure, right pure, quasi-pure, bi-pure, left weakly pure and right weakly pure ordered k-ideals of ordered semirings and use them to characterize ordered k-regular, left weakly ordered k-regular, right weakly ordered k-regular and fully ordered k-ideapotent semirings.

Definition 5.1. An ordered k-ideal A of an ordered semiring S is called *left pure* (resp. *right pure*) if $x \in \overline{(Ax]}$ (resp. $x \in \overline{(xA]}$) for all $x \in A$.

Theorem 5.2. Let A be an ordered k-ideal of an ordered semiring S. Then A is left pure (resp. right pure) if and only if $A \cap L = \overline{(AL]}$ for every left ordered k-ideal L (resp. $R \cap A = \overline{(RA]}$ for every right ordered k-ideal R) of S.

Proof. (i) Assume that A is left pure. Let L be a left ordered k-ideal of S. If $x \in A \cap L$, then $x \in \overline{(Ax]} \subseteq \overline{(AL]}$. Therefore, $A \cap L \subseteq \overline{(AL]}$. Clearly, $\overline{(AL]} \subseteq A \cap L$. Hence, $A \cap L = \overline{(AL]}$.

Conversely, let $x \in A$. Using assumption and Lemmas 2.1 and 2.2, we get

$$\begin{aligned} x \in A \cap L(x) &= \overline{(AL(x)]} = (A\overline{[\Sigma x + Sx]}] \subseteq (\overline{[\Sigma Ax + ASx]}] \\ &\subseteq \overline{(Ax + Ax]} \subseteq \overline{[Ax]}. \end{aligned}$$

Hence, A is a left pure ordered k-ideal of S.

(ii) It can be proved similarly.

x

Definition 5.3. An ordered k-ideal A of an ordered semiring S is called *quasi-pure* if $x \in \overline{(xA)} \cap \overline{(Ax)}$ for all $x \in A$.

It is clear that every quasi-pure ordered k-ideal of an ordered semiring is both left pure and right pure.

Theorem 5.4. An ordered k-ideal A of an ordered semiring S is quasi-pure if and only if $A \cap Q = \overline{(QA]} \cap \overline{(AQ)}$ for every ordered quasi-k-ideal Q of S.

Proof. Assume that A is quasi-pure. Let Q be an ordered quasi-k-ideal of S. If $x \in A \cap Q$, then $x \in \overline{(xA] \cap (Ax]} \subseteq \overline{(QA]} \cap \overline{(AQ]}$. Thus, $A \cap Q \subseteq \overline{(QA]} \cap \overline{(AQ]}$. Clearly, $\overline{(QA]} \cap \overline{(AQ]} \subseteq A \cap Q$. Hence, $A \cap Q = \overline{(QA]} \cap \overline{(AQ]}$.

Conversely, let $x \in A$. Using assumption and Lemmas 2.1 and 2.2, we get

$$\begin{array}{l} \displaystyle \in A \cap Q(x) = (Q(x)A] \cap (AQ(x)] \\ \displaystyle = \overline{((\Sigma x + (\overline{(xS]} \cap \overline{(Sx]}))]A]} \cap \overline{(A(\Sigma x + (\overline{(xS]} \cap \overline{(Sx]}))]]} \\ \displaystyle \subseteq \overline{((\overline{\Sigma x + \overline{(xS]}}]A]} \cap \overline{(A(\Sigma x + \overline{(Sx]})]]} \\ \displaystyle \subseteq \overline{((\overline{\Sigma x + xS]}A]} \cap \overline{(A(\overline{\Sigma x + Sx})]} \\ \displaystyle \subseteq \overline{(\Sigma xA + xSA]} \cap \overline{(\Sigma Ax + ASx)} \\ \displaystyle \subseteq \overline{(xA + xA]} \cap \overline{(Ax + Ax]} \subseteq \overline{(xA]} \cap \overline{(Ax]}. \end{array}$$

Hence, A is a quasi-pure ordered k-ideal of S.

Definition 5.5. An ordered k-ideal A of an ordered semiring S is called *bi-pure* if $x \in \overline{(xAx)}$ for all $x \in A$.

It is easy to obtain that every bi-pure ordered k-ideal of an ordered semiring is quasi-pure.

Theorem 5.6. An ordered k-ideal A of an ordered semiring S is bi-pure if and only if $A \cap B = \overline{(BAB)}$ for every ordered k-bi-ideal B of S.

Proof. Assume that A is bi-pure. Let B be an ordered k-bi-ideal of S. If $x \in A \cap B$, then $x \in \underline{[xAx]} \subseteq \overline{[BAB]}$. Thus, $A \cap B \subseteq \overline{[BAB]}$. Clearly, $\overline{[BAB]} \subseteq A \cap B$. Hence, $A \cap B = \overline{[BAB]}$.

Conversely, let $x \in A$. Using assumption and Lemmas 2.1 and 2.2, we get

$$\begin{aligned} x \in A \cap B(x) &= \overline{(B(x)AB(x)]} = (\overline{(\Sigma x + \Sigma x^2 + xSx]}A\overline{(\Sigma x + \Sigma x^2 + xSx]}] \\ &\subseteq \overline{(\Sigma xAx]} = \overline{(xAx]}. \end{aligned}$$

Hence, A is a bi-pure ordered k-ideal of S.

Definition 5.7. An ordered k-ideal A of S is called *left weakly pure* (resp. *right weakly pure*) if $A \cap I = \overline{(\Sigma AI]}$ (resp. $I \cap A = \overline{(\Sigma IA]}$) for every ordered k-ideal I of S.

We note that every left (resp. right) pure ordered k-ideal of an ordered semiring is left (resp. right) weakly pure.

Now, we characterize some kinds of ordered k-regularities by pure and weakly pure ordered k-ideals of ordered semirings.

Lemma 5.8. [17] Let S be an ordered semiring. Then the following statements hold:

- (i) if $a \in \overline{(\Sigma a^2 + aSa + Sa^2 + \Sigma SaSa]}$ for any $a \in S$, then S is left weakly ordered k-regular;
- (ii) if $a \in \overline{(\Sigma a^2 + aSa + a^2S + \Sigma aSaS]}$ for any $a \in S$, then S is right weakly ordered k-regular.

Theorem 5.9. An ordered semiring S is left (resp. right) weakly ordered k-regular if and only if every ordered k-ideal of S is left (resp. right) pure.

Proof. Assume that S is left weakly ordered k-regular. Let A be an ordered k-ideal of S and let $x \in A$. By assumption, $x \in \overline{(\Sigma S x S x]} \subseteq \overline{(\Sigma S A S x]} \subseteq \overline{(\Sigma A x]} = \overline{(A x]}$. Hence, A is left pure.

Conversely, let $a \in S$. By assumption, we obtain that J(a) is left pure. Using Lemmas 2.1 and 2.2 and Theorem 5.2, we obtain that

$$a \in J(a) \cap L(a) = \overline{(J(a)L(a)]} = (\overline{(\Sigma a + aS + Sa + \Sigma SaS]} \overline{(\Sigma a + Sa]}]$$
$$\subseteq \overline{(\Sigma a^2 + aSa + Sa^2 + \Sigma SaSa]}.$$

By Lemma 5.8(i), we get that S is left weakly ordered k-regular.

As a consequence of Theorem 5.9 and the fact that every quasi-pure ordered k-ideal is both left pure and right pure, we directly obtain the following corollary.

Corollary 5.10. An ordered semiring S is both left and right weakly ordered k-regular if and only if every ordered k-ideal of S is quasi-pure.

We note that an ordered k-ideal of an ordered semiring is bi-pure if and only if it is an ordered k-regular subsemiring. Accordingly, we obtain the following remark.

Remark 5.11. An ordered semiring S is ordered k-regular if and only if every ordered k-ideal of S is bi-pure.

Proof. Assume that S is ordered k-regular. Let A be an ordered k-ideal of S and let $x \in A$. By the ordered k-regularity of S, we have that $x \in \overline{(xSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx]} \subseteq \overline{(xSxSx)} \subseteq \overline{(xSx)} \subseteq \overline{(x$

The converse is obvious since S itself is a bi-pure ordered k-ideal and so S is ordered k-regular. $\hfill \Box$

Corollary 5.12. [15] Let S be an ordered semiring. If

 $a \in \overline{\left(\Sigma a^2 + aSa + a^2S + \Sigma aSaS + Sa^2 + \Sigma SaSa + \Sigma Sa^2S + \Sigma SaSaS\right)}$

for all $a \in S$, then S is fully ordered k-idempotent.

Theorem 5.13. Let S be an ordered semiring. Then

- (i) if S is fully ordered k-idempotent, then every ordered k-ideal of S is both left and right weakly pure;
- (ii) if every ordered k-ideal of S is left weakly pure or right weakly pure, then S is fully ordered k-idempotent.

Proof. (i). Assume that S is fully ordered k-idempotent. Let A and I be any ordered k-ideals of S. By assumption, it turns out that if $x \in A \cap I$, then

$$x \in (\Sigma SxSxS] \subseteq (\Sigma SASIS] \subseteq (\Sigma ASI] \subseteq (\Sigma AI] \text{ and} x \in \overline{(\Sigma SxSxS]} \subseteq \overline{(\Sigma SISAS]} \subseteq \overline{(\Sigma ISA]} \subseteq \overline{(\Sigma IA]}.$$

So, $A \cap I \subseteq \overline{(\Sigma AI]}$ and $A \cap I \subseteq \overline{(\Sigma IA]}$. Clearly, $\overline{(\Sigma AI]} \subseteq A \cap I$ and $\overline{(\Sigma IA]} \subseteq A \cap I$. Hence, $A \cap I = \overline{(\Sigma AI]} = \overline{(\Sigma IA]}$ and thus A is both left and right weakly pure.

(*ii*). Assume that every ordered k-ideal of S is left weakly pure. Let $a \in S$. Then J(a) is left weakly pure. It follows that $J(a) = \overline{(\Sigma J(a)J(a)]}$. By Lemmas 2.1 and 2.2, we obtain that

$$a \in J(a) = \overline{\left[\Sigma J(a)J(a)\right]} = \left[\Sigma \overline{\left[\Sigma a + Sa + aS + \Sigma SaS\right]} \overline{\left[\Sigma a + Sa + aS + \Sigma SaS\right]}\right]$$
$$= \overline{\left[\Sigma \overline{\left[\Sigma a^2 + aSa + a^2S + \Sigma aSaS + Sa^2 + \Sigma SaSa + \Sigma Sa^2S + \Sigma SaSaS\right]}\right]}$$
$$= \overline{\left[\Sigma a^2 + aSa + a^2S + \Sigma aSaS + Sa^2 + \Sigma SaSa + \Sigma Sa^2S + \Sigma SaSaS\right]}.$$

By Corollary 5.12, we obtain that S is fully ordered k-idempotent.

It can be proved analogously if every ordered k-ideal of S is right weakly pure. $\hfill \Box$

References

- M.R. Adhikari, M.K.Sen and H.J. Weinert, On k-regular semirings, Bull. Calcutta Math. Soc. 88 (1996), 141 – 144.
- [2] A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Algebra Appl. 31 (2011), no. 1, 5 – 25.
- [3] S. Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. USA 31 (1951), 163 - 170.
- [4] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition 31 (2011), no. 6, 989 – 996.
- [5] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.
- [6] K. Jana, Quasi k-ideals in k-regular and intra k-regular semirings, Pure Math. Appl. 22 (2011), no. 1, 65 – 74.
- [7] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum 46 (1993), 271 – 278.
- [8] N. Kehayopulu, On completely regular ordered semigroups, Scinetiae Math. 1 (1998), 27 - 32.
- [9] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), no. 4, 609 - 615.
- [10] D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Inf. Eng. 6 (2014), no. 1, 101 – 114.
- [11] J. von Neumann, On regular rings, Proc. Natl. Acad. Sci. USA 22 (1936),707–113.
- [12] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of regular ordered semirings by ordered quasi-ideals, Int. J. Math. Math. Sci. 2016 (2016), Article ID. 4272451.
- [13] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups and Related Systems 25 (2017), 109 – 120.
- [14] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of ordered intra k-regular semirings by ordered k-ideals, Commun. Korean Math. Soc. 33 (2018), no. 1, 1 – 12.
- [15] P. Palakawong na Ayuthaya and B. Pibaljommee, Characterizations of completely ordered k-regular semirings, Songklanakarin J. Sci. Techn. 41(2019), 501–505.
- [16] S. Patchakhieo and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered k-ideals, Asian-European J. Math. 10 (2017), Article ID. 4272451.
- [17] B. Pibaljommee and P. Palakawong na Ayuthaya, Characterizations of weakly ordered k-regular hemirings by k-ideals, Discuss. Math. Gen. Algebra Appl. 39 (2019), no. 2, 289 - 302.
- [18] P. Senarat and P. Pibaljommee, Prime ordered k-bi-ideals in ordered semirings, Quasigroups and Related Systems 25 (2017), 121 – 132.

Received July 26, 2020

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand E-mail: pakorn1702@gmail.com banpib@kku.ac.th