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Magnifying elements of some semigroups

of partial transformations
Chadaphorn Punkumkerd and Preeyanuch Honyam

Abstract. Let X be a nonempty set and let P(X) denote the semigroup (under the compo-
sition) of partial transformations from a subset of X to X and E(X) denote the subsemigroup of
P(X) containing surjective partial transformations on X. For a fixed nonempty subset Y of X, let
PT(X,Y)={a € P(X)| (domanY)a CY}and PTixy)y={a € P(X)|(domanY)a =Y}
We give necessary and sufficient conditions for elements in semigroups PT(X,Y) and PT(x y)
to be left or right magnifying.

1. Introduction

Let S be a semigroup. An element a € S is called a left (right) magnifying element
if there exist a proper subset M of S such that S = aM (S = Ma). Such elements
are mentioned in 1963 by E. S. Ljapin [5]. M. Gutan showed in [1] that there exists
semigroups containing both strong and non-strong magnifying elements. In [2] he
proved that every semigroup containing magnifying elements is factorizable. In [3]
he proposed the method of construction of semigroups having good left magnifying
elements.

Let B(X) be the set of all binary relations on the set X. Then P(X), where
PX)={aeB(X)|a:A— B when A,B C X}, is a semigroup called the
semigroup of partial transformations on X. The semigroup of surjective partial
transformations on X is denoted by E(X), i.e. E(X)={a € P(X) |rana = X}.
The necessary and sufficient conditions for elements of P(X) to be the left or right
magnifying elements were found in [6].

T(X) ={a € P(X) | doma = X} is a semigroup called the full transforma-
tion semigroup on X. ET(X) = E(X)NT(X) is a semigroup of surjective full
transformations on X.

For a fixed nonempty subset Y of X, let

T(X,Y)={aecT(X)|YaCY} and Ty ={aeT(X)|Ya=Y},

where Yo = {ya | y € Y}. Then T(X,Y) and T{x y) are subsemigroups of T'(X).
T(x,y) is also a subsemigroup of T'(X,Y).
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The semigroups PT(X,Y’) and PTx y) are defined similarly. Namely,

PTr(X,Y)={aec P(X)|(domanY)a CY}
and
PTxy)y={a € P(X)|(domanY)a =Y},

where dom « is the domain of a and (doma N Y)a = {za | z € doma N Y}.
Then PT(X,Y) and PTx,yy are subsemigroups of P(X). PT(x,y) also is a sub-
semigroup of PT(X,Y).

The purpose of this paper is providing the necessary and sufficient conditions
for elements in semigroups PT(X,Y’) and PT x vy to be left or right magnifying.

2. Preliminaries

Throughout this paper, the cardinality of a set X is denoted by | X|and X = AU B
means X is a disjoint union of A and B. The proper subset B of a set A is denoted
by B C A.

For a, f € P(X), aff € P(X) is defined by z(af) = (za)p for all z € dom (af3).
The identity map on X, i.e. idx, is the identity element of PT(X,Y’) and PTixyy-
The empty function on X, i.e. (x is a zero element of PT(X,Y) but Ox & PT(x,y)-

For a € P(X), we write

(3
o =
a;

where the subscript ¢ belongs to some (unmentioned) index set I, the abbreviation
{ai} denotes {a; | i € I}. Then rana = {a;} and a;a™" = X;.
For o € PT(X,Y), we write

o (Ai B; Ck>
a; bj Ck

where A, NY # 0; B;,C, C X \Y; {a;} CY,{b;} CY \{a;} and {cx} C X \Y.
For a € PTx y), we write
oo (Ai Bj>
a; bj

where A;NY #0; B; CX\Y;{a;} =Y, {b;} CX\Y.

If X is finite, then Y is also finite. So we get PT(X,Y) and PT(x,y) are
finite semigroups. Since finite semigroups do not contain left and right magnifying
elements (cf. [4]), we will consider only the case when X is an infinite set.

3. Left Magnifying Elements in PT(X,Y)

Lemma 3.1. If o € PT(X,Y) is a left magnifying element in PT(X,Y), then
doma = X, a is injective and ya= ! CY for ally €Y N rana.
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Proof. Assume that a is a left magnifying element in PT(X,Y). Then there
exists a proper subset M of PT(X,Y) such that aM = PT(X,Y). Since idx €
PT(X,Y), there exists 3 € M such that a8 = idx. Thus X = domidy C dom
and hence doma = X. Since idx is injective, we also have « is injective. Since
« is not an empty function, we have Y Nrana # (). Let y € Y N rana and let
r € ya~!. Then za =y and so x = zidx = raf =yB €Y. Soya~! CY for all
y € Y Nrana. O

Lemma 3.2. If o € PT(X,Y) is a left magnifying element in PT(X,Y), then «
18 not surjective.

Proof. Assume that « is a left magnifying element inE(X ,Y) and « is surjective.
Then there exists M C PT(X,Y) such that aM = PT(X,Y). By Lemma 3.1, we
get dom o = X, « is injective and ya~! C Y for all y € Y Nrana. Then

a; bj
“ (yz— Zj)
where {a;} =Y = {y;} and {a;}U{b;} = X = {y;}U{z;}. There is

-1 _ (Y Z BT
a = (ai bj) € PT(X)Y)
such that o 'a = idx. Let § € PT(X,Y). Then off € PT(X,Y). Since
PT(X,Y) = aM, we get aff = ary for some v € M. So § = idxf = o~ '(af) =
o Hay) =idxy =y € M. Thus PT(X,Y) C M that contradicts with M is a
proper subset of PT(X,Y’). Therefore, « is not surjective. O

Theorem 3.3. o € PT(X,Y) is a left magnifying element in PT(X,Y) if and
only if the following statements hold:

1. doma = X,

2. ya~' CY forally €Y N rana and

3. « s injective but not surjective.

Proof. Assume that « is a left magnifying element in PT(X,Y). By the above
lemmas, we have doma = X, ya~! C Y for all y € Y N rana and « is injective
but not surjective.

Conversely, choose M = {§ € PT(X,Y) | dom§ # X} and assume that the
conditions 1-3 hold. Then we get M C PT(X,Y). Let 3 € PT(X,Y). If 3 = 0x,
then there is O x € M such that 8 = alx. If 8 # Ox, we let Y = {a;} U{b;} when
dompBNY ={a;} and X \'Y = {s;} U{t;} when dom, 3N (X \Y) = {sx}. Then

o= (ai bj Sk tl)
Yi Zj Up U
where {y;},{z;} CY and {us},{v;} € X \Y. Since « is not surjective, we have
rana # X. Define v : {y;} U{ur} — X by

Y u
7= <ai5 Slckﬁ> ’
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Since « is injective, v is well-defined. Since (dom~y N Y)y = {y;}y ={a:f} CY,
v € PT(X,Y). But dom~y = {y;} U{ux} Crana # X, so vy € M.

Let € dom 8 = {a;} U {sr} = dom(ay).

If = a; for some i € I, then z(ay) = a;(ay) = (a;a)y = ¥y = a;f = .

If x = si, for some k € K, then z(ay) = sp(ay) = (spa)y = upy = sk = z8.
Thus 3 = ary. Hence PT(X,Y) = aM. Therefore, « is a left magnifying element
in PT(X,Y). O

Taking ¥ = X in Theorem 3.3 we obtain

Corollary 3.4. « € P(X) is a left magnifying element in P(X) if and only if
doma = X and « is injective but not surjective.

Example 3.5. Let X =N and Y = 2N. Define

o= (uts)
n+2 neN

Then (doma NY)a = (2N)a = 2N\ {2} C Y and so a € PT(X,Y). Moreover,
we get doma =N = X, ya~! CY forally € Y Nrana and « is injective but « is
not surjective. By Theorem 3.3, « is a left magnifying element in PT(X,Y). By
the proof of Theorem 3.3, there exists M = {§ € PT(X,Y) |domé #N= X} C
PT(X,Y) such that oM = PT(X,Y).

4. Right Magnifying Elements in PT(X,Y)

Lemma 4.1. If a € PT(X,Y) is a right magnifying element in PT(X,Y), then
« s surjective.

Proof. Assume that « is a right magnifying element in PT(X,Y). Then there is a
proper subset M of PT(X,Y) such that Ma = PT(X,Y). Sinceidx € PT(X,Y),
there exists § € M such that Sa = idx. From idy is surjective, this implies « is
surjective. O

Lemma 4.2. If a € PT(X,Y) is a right magnifying element in PT(X,Y), then
ya 'NY £0 forally €Y.

Proof. Assume « is a right magnifying element in PT(X,Y’). Then there exists a
proper subset M of PT(X,Y) such that Ma = PT(X,Y). By Lemma 4.1, « is
surjective.

Suppose that yoa~ ' NY = @ for some yy € Y and define

()

Then 8 € PT(X,Y). Since Ma = PT(X,Y), there is v € M such that ya = 3.
But « is surjective and yoa ' NY =0, so yoa=! € X \ Y. Thus for each y € Y,
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vo = yB = (yy)a. So yy € yoa~! C X \ Y which is a contradiction. Therefore
ya lNnY #£QforallycY. O

Lemma 4.3. If o € PT(X,Y) is a right magnifying element in PT(X,Y), then
doma # X or « is not injective.

Proof. Assume that « is a right magnifying element in PT(X,Y’). By Lemmas 4.1
and 4.2, « is surjective and ya~ ' NY # () for all y € Y. Suppose that doma = X
and « is injective. Let X = {a;} U {b;} be such that Y = {a;}. Then

Y
Yi %5

where {y;} =Y and {z;} = X\ Y. There is a~* € PT(X,Y) such that aa™! =

idx. Let p € PT(X,Y). Then fa € PT(X,Y). Since PT(X,Y) = Ma, we

have Ba = da for some § € M. Thus 8 = (Ba)a™! = (da)a™! =5 € M.

Hence PT(X,Y) € M. That yields M = PT(X,Y) which contradicts with M C
PT(X,Y). Therefore, doma # X or « is not injective. O

Theorem 4.4. o € PT(X,Y) is a right magnifying element in PT(X,Y) if and
only if the following statements hold:

1. « is surjective,

2. ya ' NY #0 forally €Y and

3. doma # X or « is not injective.

Proof. Assume that « is a right magnifying element in PT(X,Y’). Conditions 1-3
are a consequence of Lemmas 4.1, 4.2 and 4.3.
Conversely, assume that conditions 1-3 are satisfied. We have two cases.
CASE 1: doma # X. Choose M = {§ € PT(X,Y) | § is not surjective}. Then
M c PT(X,Y). Let 8 € PT(X,Y). Then

(A B; Cy
B o (ai bj Ck> ’
where A, NY #0; B;,C, C X\ Y; {a;} CY,{b;} CY \{a;} and {cx} C X \Y.
Since « is surjective, we have ran3 C X = rana. From ya~! N'Y # () for all
y €Y, we have a;a”! NY # () # bjofl NY. Choose d,, € a;a™! N'Y and

dy; € bja_l NY. Then dy;a = a; and dy,;o = b;. Since ran 8 C rana, we have
¢, € rana and we can choose ¢}, € dom « such that ¢j.a = ¢j. Define

B (Ai B; Ck>
T \dey, dy, <)
Then v € PT(X,Y). Since rany C doma # X, v is not surjective. Thus v € M.
Let dom(ya) = (rany Ndoma)y™! = (ranvy)y™! = dom~y = dom 3 and
x € dom (.
If x € A; for some ¢ € I, then z(ya) = (vvy)a = dg,a = a; = 2.
If x € B; for some j € J, then z(ya) = (zy)a = dy,a = b; = x/3.
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If z € C}, for some k € K, then z(ya) = (z7)a = cja = ¢, = xf.
Thus ya = B and hence PT(X,Y) C Ma which implies that Ma = PT(X,Y).
CASE 2: « is not injective. Choose M = {§ € PT(X,Y) | d is not surjective}.
Then M C PT(X,Y). Let 8 € PT(X,Y). Then

5= (Ai B; Ck> .
a; bj Ck
where A; NY #0; Bj,Cr, € X\ Y; {a;},{b;} CY and {¢;} C X \Y.

Let v € PT(X,Y) be as in Case 1. Since « is not injective, there is ¢ € rana
and distinct elements x1,x2 € doma such that x1a = 9 = zsa. Note that
ran 8 C rana. If 2y € ran f, then there is exactly one (either 21 or z3) in ran+y.
If zg € ranp, then z1,zo ¢ ranvy. Thus 7 is not surjective and so v € M.
Analogously as in Case 1, we get ya = 3 and hence PT(X,Y) C Ma. This means
that Ma = PT(X,Y).

Therefore, « is a right magnifying element in PT(X,Y). O

For Y = X we obtain the following corollary.

Corollary 4.5. a € P(X) « is a right magnifying element in P(X) if and only
if a is surjective and (doma # X or a is not injective).

Example 4.6. Let X =N and Y = 2N. Define

_ (1 {23} 4 {56} n+2 (1 45 8 n+4
O‘_(l 2 3 4 no) =0 5 0 )

Then (domanNY)a = (2N)a =2N C Y and (dom SNY)5 = (2N\{2,6})8 = 2N C
Y.Soa, B € PT(X,Y). It is clear that « is surjective. Furthermore, ya=*NY # ()
for all y € Y and « is not injective but doma = N = X. We can see that 5 is a
bijection and y3~' N Y # 0 for all y € Y but dom B =N\ {2,3,6,7} # X. By
Theorem 4.4, o, 3 are right magnifying elements in PT(X,Y’). Then by the proof
of Theorem 4.4, there is M = {§ € PT(X,Y) | § is not surjective} C PT(X,Y)
such that Ma = PT(X,Y) and M3 = PT(X,Y).

5. Left Magnifying Elements in PT|x y)

Lemma 5.1. If a € Pl(xy) is a left magnifying element in PT(xy), then
doma = X and « is injective.

Proof. Assume that « is a left magnifying element in PT{x y). Then there exists
a proper subset M of PT(x y) such that aM = PT(xy). Since idx € PT(x y),
there exists § € M such that af = idx. Thus doma = X and « is injective. O

Lemma 5.2. If a € Pl xy), where Y # X, is a left magnifying element in
PT x vy, then a is not surjective.
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Proof. Given'Y # X. Assume that « is a left magnifying element in PT{x y) and
« is surjective. Then there exists M C PT(x y) such that aM = PT(xy). By
Lemma 5.1, we get doma = X and « is injective. Thus « is a bijection on X.
Since aff € PT(xyy = aM, a8 = o~y for some vy € M. So 3 =« and hence 3 € M.
Thus PT(xyy € M. So M = PT(x y) which is a contradiction. Therefore, o is
not surjective. 0

Theorem 5.3. If Y # X, then a € PT(xy) is a left magnifying element in
PT x,y) if and only if doma = X and « is injective but not surjective.

Proof. Let Y # X. Assume that a is a left magnifying element in PT{x y). By
Lemmas 5.1 and 5.2, we have doma = X and « is injective but not surjective.
Conversely, assume that dom o = X and « is injective but not surjective. Choose
M = {5 € PT(ij) | dom § 7£ X} Then M C PT(X,Y).

We prove that aM = PT(xy). Let § € PT(xy) and Y = {a;} U{b;} where
dompBNY ={a;} and X \'Y = {s;}U{t;} when dom 3N (X \Y) = {sx}. Then

a; bj Sk tl
o =
Yi zj Up U

where Y = {y;} U{z;} and {ug},{v;} C X\ Y. Define v : {y;} U {up} = X by

Yi Uk
7= (azﬂ 3kﬂ> .
Since « is injective, 7 is well-defined and (dom~y NY)y = {y;}y = {a:8} =
(domBNY)B =Y, hence v € PT(x,y). Since « is not surjective, from dom~y =
{yi} U{ug} C rana # X it follows v € M. But z(ay) = (za)y = zf for all
x € dom 8 = {a;} U {s} = dom(ay). Hence ay = §§ and so aM = PTx,y). So,
a is a left magnifying element in PT(x y. O

Theorem 5.4. E(X) has no left magnifying elements.

Proof. Suppose that « is a left magnifying element in F(X). Then « is a left
magnifying element in PT{xy) when ¥ = X. By Lemma 5.1, doma = X and
«a is injective. Since a € E(X), « is surjective. Then there is a~! € E(X) such
that o la = idy. Since « is left magnifying, there is M C E(X) such that
aM = E(X). Let § € E(X). Analogously as in the proof of Lemma 5.2, we
obtain 5 € M. Thus M = E(X). That is a contradiction. Hence, E(X) has no
left magnifying elements. O

Example 5.5. Let X =N and Y = 2N. Define
2n—1 2n
T \en+1 2m)
n+ neN
Since (domaNY)a = (2N)a = 2N =Y, a € PI(xy), doma =N = X and «a is
injective. But rana = N\ {1} # X, then « is not surjective. By Theorem 5.3, «
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is a left magnifying element in PT(x y). Let M = {0 € PT(xy) | domd # N}.
Then, analogously as in the proof of Theorem 5.3, for each 8 € PT|x y), there
exists v € M such that ay = 8. Thus PT{x y) = aM for some M C PTx y).

6. Right Magnifying Elements in PTx y,

Lemma 6.1. If o € P1x y) is a right magnifying element in PT(x y), then o is
surjective.

Proof. Assume that « is a right magnifying element in PTxy). Then Ma =
PT{x,y) for some proper subset M of PTx y). Since idx € PT(x y), there exists
B € M such that fa = idx. So, a must be surjective. O

Lemma 6.2. If a € PTxy) is a right magnifying element in PT(x y, then
doma # X or a is not injective.

Proof. Assume « is a right magnifying element in PT(x y). Then Ma = PT(x y)
for some M C PT(x,y). Suppose that doma = X and « is injective. By Lemma
6.1, « is surjective. Let 8 € PT(xy). Then Sa € PT(xy). Since PT(x y) = Ma,
we have fa = da for some § € M. Since « is a bijection on X with Ya =Y, we
get 3 =0 € M. Hence PT(x yy C M. That yields M = PTx y) which contradicts
with M C PT{x y). Therefore, doma # X or « is not injective. O

Theorem 6.3. « € PTx y) is a right magnifying element in PT x yy if and only
if « is surjective and (doma # X or « is not injective).

Proof. Assume that « is a right magnifying element in P7|x y). By Lemmas 6.1
and 6.2, « is surjective and (dom o # X or « is not injective).

Conversely, assume that « is surjective and (dom « # X or « is not injective).
We have two cases:

Casg 1: doma # X. Choose M = {§ € PI(xy) | ¢ is not surjective}. Then
M C PT(va). Let ﬂ S PT(Xy) Then

A, B,
(%)
a; bj
where A, NY #0,B; CX\Y, {¢g;} =Y and {b;} CX\Y. (domanY)a=Y

implies ya™ ' NY # 0 for all y € Y. Then a;a™* NY # () and d,,a = a;
for do, € a;a”' NY. Since ranB C rana, b; € rana and b = b; for somee

b;- € dom a. Define
_(Ai B
T \da, V)

Then v € PT(x y). Since rany C doma # X, 7 is not surjective. Thus v € M.
Consequently, z(va) = (zy)a = 8 for all x € dom 8 = dom(y«). Hence ya =
and PT(x y)y € Ma which gives Ma = PT(x y).
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CASE 2: a is not injective. Choose M = {0 € PTx y) | 0 is not surjective}.
Then M C PT(x,y). Let 3 € PTx y). Then

A, B;
B:(ai bj]).

where 4;NY # 0; B; C X\Y; {a;} =Y and {b;} C X\ Y. Let v € PT(xy)
be as in Case 1. Since « is not injective, there is 2y € ran « and distinct elements
x1, %2 € dom « such that x1a = zg = xo. Obviously ran 8 C ran«. If zg € ran 3,
then there is exactly one (either 1 or x3) in ran~y. If zy & ran 3, then 1,25 ¢
ran-y. Thus «y is not surjective and so v € M. Analogously as in Case 1, we obtain
va = 3. Hence PIxyy € Ma. This means that Ma = PTx y). Therefore, « is
a right magnifying element in PT{x y). O

Corollary 6.4. o € E(X) is a right magnifying element in E(X) if and only if
doma # X or «a is not injective.

Example 6.5. Let X =N and Y = 2N. Define

o= 2n 2n+1 and 8= 1 2 {3,4} {5,6} n+2 .
2n 2n—1 neN 1 2 3 4 n NS5

Then (domaNY)a =2N = (dom3NY)B and so o, B € PT(x y). It is clear that
« is injective. Since rana =N = X, « is surjective. but doma = N\ {1} # X, so
dom B = N = X and f is surjective but not injective. By Theorem 6.3, «, 3 are
right magnifying elements in PT(x y). Then there is M = {6 € PT(x,y) | 0 is not
surjective} C PT(x y) such that Ma = PT(x y) and M = PT(x y).

Added in proof (January 5, 2021). One of the Reviewers informed us that
the results of our Sections 3 and 4 are similar to results obtained in the paper:
R. Chinram, S. Buapradist, N. Yaqoob, P. Petchkaew, Left and right magnify-
ing elements in some generalized partial transformation semigroups, submitted to
Commun. Algebra, but the proofs are different.

References

[1] M. Gutan, Semigroups with strong and non-trong magnifying elements, Semigroup
Forum 53 (1966), no. 3, 384 — 386.

[2] M. Gutan, Semigroups which contain magnifying elements are factorizable, Com-
mun. Algebra 25 (1997), no. 12, 3953 — 3963.

[3] M. Gutan, Good and very good magnifiers, Bollettio dell’ Unione Matematica Ital-
iana 3 (2000), no. 3, 793 — 810.

[4] E.S. Ljapin, Semigroups, Amer. Math. Soc.: Providence, R. 1., USA, 1974.

[5] E. S. Ljapin, Translations of Mathematical Monographs Vol.8, Semigroups, Amer.
Math. Soc.: Providence, R. 1., USA, 1963.



132 C. Punkumkerd and P. Honyam

[6] P. Luangchaisri, T. Changpas, C. Phanlert, Left (right) magnifying elements
of a partial transformation semigroup, Asian-Eur. J. Math. 13 (2020), no. 1, 7 pp.
Received November 4, 2020

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
E-mails: Chadaphorn p@cmu.ac.th, preeyanuch.h@cmu.ac.th



