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Half-isomorphisms whose inverses are also

half-isomorphisms

Giliard Souza dos Anjos

Abstract. Let (G, ∗) and (G′, ·) be groupoids. A bijection f : G → G′ is called a half-
isomorphism if f(x ∗ y) ∈ {f(x) · f(y), f(y) · f(x)}, for any x, y ∈ G. A half-isomorphism of a
groupoid onto itself is a half-automorphism. A half-isomorphism f is called special if f−1 is also
a half-isomorphism. In this paper, necessary and sufficient conditions for the existence of special
half-isomorphisms on groupoids and quasigroups are obtained. Furthermore, some examples of
non-special half-automorphisms for loops of infinite order are provided.

1. Introduction

A groupoid consists of a nonempty set with a binary operation. A groupoid (Q, ∗)
is called a quasigroup if for each a, b ∈ Q the equations a ∗ x = b and y ∗ a = b
have unique solutions for x, y ∈ Q. A quasigroup (L, ∗) is a loop if there exists
an identity element 1 ∈ L such that 1 ∗ x = x = x ∗ 1, for any x ∈ L. The
fundamental definitions and facts from groupoids, quasigroups, and loops can be
found in [1, 14].

Let (G, ∗) and (G′, ·) be groupoids. A bijection f : G → G′ is called a
half-isomorphism if f(x ∗ y) ∈ {f(x) · f(y), f(y) · f(x)}, for any x, y ∈ G. A half-
isomorphism of a groupoid onto itself is a half-automorphism. We say that a half-
isomorphism is trivial when it is either an isomorphism or an anti-isomorphism.

In 1957, Scott [15] showed that every half-isomorphism on groups is trivial. In
the same paper, the author provided an example of a loop of order 8 that has a
nontrivial half-automorphism, then the result for groups can not be generalized
to all loops. Recently, a similar version of Scott’s result was proved for some
subclasses of Moufang loops [3, 6, 8] and automorphic loops [10]. A Moufang loop
is a loop that satisfies the identity x(y(xz)) = ((xy)x)z, and an automorphic loop
is a loop in which every inner mapping is an automorphism [2]. We note that there
are Moufang loops and automorphic loops that have nontrivial half-automorphisms
[4, 9, 11].

In [10], the authors defined the concept of special half-isomorphism. A half-
isomorphism f : G → G′ is called special if the inverse mapping f−1 : G′ → G is
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also a half-isomorphism. It is easy to construct an example of a half-isomorphism
that is not special, as we can see below.

Example 1.1. Let G = {1, 2, . . . , 6} and consider the following Cayley tables of
(G, ∗) and (G, ·):

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 1 5 6 4 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 4 2 3 1 5

Note that (G, ∗) is isomorphic to C6, the cyclic group of order 6, and (G, ·) = L
is a nonassociative loop. Consider the mapping f : C6 → L defined by f(x) = x, for
all x ∈ G. For x, y ∈ G such that x 6 y and (x, y) 6= (3, 5), we have y ∗x = x∗ y =
x·y. Furthermore, 3∗5 = 5∗3 = 5·3. Thus, f is a half-isomorphism. From 3·5 = 4
and 3∗5 = 5∗3 = 1, it follows that f−1(3 ·5) 6∈ {f−1(3)∗f−1(5), f−1(5)∗f−1(3)},
and hence f−1 is not a half-isomorphism.

We note that providing some examples for the case of non-special half-automor-
phisms can be very complicated. For finite loops, every half-automorphism is
special [10, Corollary 2.7], and in section 3 we show that the same is valid for
finite groupoids.

As we can see in Example 1.1, in general, a half-isomorphism does not preserve
the structure of the loop. For instance, C6 is associative and commutative and
has a subgroup H = {1, 3, 5}, while L is nonassociative and noncommutative, and
f(H) is not a subloop of L. However, the inverse mapping of a half-isomorphism
can preserve some structure, like the commutative property and subloops [10,
Proposition 2.2]. The same naturally holds for special half-isomorphisms.

This paper is organized as follows: Section 2 presents the definitions and ba-
sic results about half-isomorphisms. In Section 3, some presented results in [10]
on half-isomorphisms in loops are generalized to groupoids. In Section 4, the
concept of principal h-groupoid of a groupoid is defined, and then a necessary
and sufficient condition for the existence of special half-isomorphisms between
groupoids is obtained. Furthermore, equations related to the number of special
half-automorphisms, automorphisms and anti-automorphisms of a groupoid are
obtained. In Section 5, the concept of principal h-quasigroup of a quasigroup is
defined, and then the set of these quasigroups is described. Some examples of
non-special half-automorphisms in loops are provided in Section 6.

2. Preliminaries
Here, the required definitions and basic results on half-isomorphisms are stated.
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Definition 2.1. Let G and G′ be groupoids. We will say that G is half-isomorphic

to G′, denoted by G
H∼= G′, if there exists a special half-isomorphism between G

and G′. Note that
H∼= is an equivalence relation. If G is isomorphic to G′, we write

G ∼= G′.

The next proposition assures that quasigroups half-isomorphic to loops are also
loops.

Proposition 2.2. Let (G, ∗) and (G′, ·) be groupoids and f : G → G′ be a half-
isomorphism. If G′ has an identity element 1, then f−1(1) is the identity element
of G.

Proof. Let x = f−1(1) ∈ G. For y ∈ G, we have that {f(x ∗ y), f(y ∗ x)} ⊂
{1 · f(y), f(y) · 1} = {f(y)}. Since f is a bijection, we have x ∗ y = y ∗ x = y.
Therefore, x is an identity element of G.

Now, let (G, ∗), (G′, ·), (G′′, •) be groupoids, and f : G→ G′ and g : G′ → G′′

be half-isomorphisms. For x, y ∈ G, we have

gf(x ∗ y) ∈ {g(f(x) · f(y)), g(f(y) · f(x))} = {gf(x) • gf(y), gf(y) • gf(x))}.

Thus, gf is a half-isomorphism. If f and g are special half-isomorphisms, then
(gf)−1 = f−1g−1 is also a special half-isomorphism.

We denote the sets of the half-automorphisms, special half-automorphisms, and
trivial half-automorphisms of a groupoid G by Half (G), Half S(G), and HalfT (G),
respectively. Note that automorphisms and anti-automorphisms are always special
half-automorphisms, and consequently HalfT (G) ⊂ Half S(G) ⊂ Half (G).

For f, g ∈ Half (G), we already see that fg ∈ Half (G). The identity mapping
Id of G is the identity element of Half (G). Thus, Half (G) is a group if and only
if it is closed under inverses, which is equivalent to Half (G) = Half S(G). In
particular, Half S(G) is always a group.

A composition of two automorphisms or two anti-automorphisms is an auto-
morphism, and if f is an automorphism and g is an anti-automorphism, then fg
and gf are anti-automorphisms and g−1fg is an automorphism. Thus, HalfT (G)
is a group and the automorphism group of G, denoted by Aut(G), is a normal
subgroup of HalfT (G).

The following result summarizes the discussion above.

Proposition 2.3. Let G be a groupoid. Then:
(a) Half S(G) is a group and Half T (G) is a subgroup of Half S(G).
(b) Half (G) is a group if and only if Half (G) = Half S(G).
(c) Aut(G) /Half T (G).

Remark 2.4. It is shown in Section 6 that in general Half (G) is not a group.
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3. Special Half-isomorphisms on Groupoids

Considering (G, ∗) and (G′, ·) as groupoids, define the following set:

K(G) = {(x, y) ∈ G×G | xy = yx}

The next two results are respectively extensions of Proposition 2.3 and Theorem
2.5 of [10] to groupoids. We note that the proofs are similar to the ones for
corresponding results given in [10].

Lemma 3.1. Let f : G→ G′ be a half-isomorphism. Then

ψ(G,G′) : K(G′) →K(G)

(x, y) 7→ (f−1(x), f−1(y))

is injective.

Proof. For (x, y) ∈ K(G′), we have

{f(f−1(x) ∗ f−1(y)), f(f−1(y) ∗ f−1(x))} ⊆ {x · y, y · x} = {x · y}.

Then, f(f−1(x)∗f−1(y))=f(f−1(y)∗f−1(x)), so f−1(x)∗f−1(y)=f−1(y)∗f−1(x).
Thus, (f−1(x), f−1(y)) ∈ K(Q) and the mapping ψ(G,G′) is well-defined.

Now, let (x, y), (x′, y′) ∈ K(G′) such that ψ(G,G′)((x, y)) = ψ(G,G′)((x
′, y′)).

Then, f−1(x) = f−1(x′) and f−1(y) = f−1(y′). Since f is a bijection, the mapping
ψ(G,G′) is injective.

Theorem 3.2. Let f : G→ G′ be a half-isomorphism. Then, the following state-
ments are equivalent:

(a) f is special.
(b) {f(x ∗ y), f(y ∗ x)} = {f(x) · f(y), f(y) · f(x)} for any x, y ∈ G.
(c) For all x, y ∈ G such that x ∗ y = y ∗ x, we have f(x) · f(y) = f(y) · f(x).
(d) ψ(G,G′) is a bijection.

Proof. (a)⇒ (b). Let x, y ∈ G. Since, by the assumption, f is a half-isomorphism,
we have {f(x ∗ y), f(y ∗ x)} ⊆ {f(x) · f(y), f(y) · f(x)}. Since f−1 is a half-isomor-
phism, we have {f−1(f(x) · f(y)), f−1(f(y) · f(x))} ⊆ {x ∗ y, y ∗ x}, and hence
{f(x) · f(y), f(y) · f(x)} ⊆ {f(x ∗ y), f(y ∗ x)}.

(b)⇒ (c). Let x, y ∈ G such that x∗y = y ∗x. Then, f(x∗y) = f(y ∗x). Using
the hypothesis, we get {f(x) · f(y), f(y) · f(x)} = {f(x ∗ y), f(y ∗x)} = {f(x ∗ y)},
and therefore f(x) · f(y) = f(y) · f(x).

(c) ⇒ (d). From Lemma 3.1, we know that ψ(G,G′) is injective. Let (x, y) ∈
K(G). By hypothesis, we have f(x) · f(y) = f(y) · f(x), and then (f(x), f(y)) ∈
K(G′). It is clear that ψ(G,G′)((f(x), f(y))) = (x, y), and hence ψ(G,G′) is a
bijection.
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(d) ⇒ (a). Let x, y ∈ G′. If (x, y) ∈ K(G′), then (f−1(x), f−1(y)) ∈ K(G)
since ψ(G,G′) is a bijection. Thus, f(f−1(x) ∗ f−1(y)) = x · y, and therefore
f−1(x · y) = f−1(x) ∗ f−1(y). If (x, y) 6∈ K(G′), then (f−1(x), f−1(y)) 6∈ K(G)
since ψ(G,G′) is a bijection. Consequently, we have

{f(f−1(x) ∗ f−1(y)), f(f−1(y) ∗ f−1(x))} = {x · y, y · x},

and hence f−1(x · y) ∈ {f−1(x) ∗ f−1(y), f−1(y) ∗ f−1(x)}.

As direct consequences of Lemma 3.1 and Theorem 3.2, we have the following
corollaries.

Corollary 3.3. Let f : G→ G′ be a half-isomorphism. If |K(G)| = |K(G′)| <∞,
then f is special.

Corollary 3.4. Let G be a groupoid such that |K(G)| < ∞. Then, Half (G) is a
group.

Corollary 3.5. Let G be a finite groupoid. Then, Half (G) is a group.

A loop is diassociative if any two of its elements generate an associative subloop.
Moufang loops and groups are examples of diassociative loops. In [8, Lemma 2.1],
the authors showed that the item (c) of Theorem 3.2 holds for any half-isomorphism
on diassociative loops. Therefore, we have the next result.

Corollary 3.6. Let (L, ∗) and (L′, ·) be diassociative loops. Then, every half-
isomorphism between L and L′ is special.

Remark 3.7. The Corollary 3.6 cannot be extended for some important classes
of loops. In Example 6.1, a non-special half-isomorphism between a right Bol loop
and a group is introduced. A loop is called right Bol loop if it satisfies the identity
((xy)z)y = x((yz)y).

This section is finished with a property of half-isomorphic groupoids.

Proposition 3.8. If G
H∼= G′, then:

(a) Half (G) ∼= Half (G′)

(b) Half S(G)
∼= Half S(G

′).

Proof. Let φ : G→ G′ be a special half-isomorphism and ϕ : Half (G)→ Half (G′)
by ϕ(f) = φfφ−1. It is clear that ϕ is a bijection. For f, g ∈ Half (G), we have
ϕ(fg) = φfgφ−1 = φfφ−1φgφ−1 = ϕ(f)ϕ(g). Thus, Half (G) ∼= Half (G′). The
rest of the claim is concluded from the fact that ϕ(Half S(G)) = Half S(G

′).

Remark 3.9. If G
H∼= G′, then Aut(G) is not isomorphic to Aut(G′) in general

(see Example 4.6).
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4. Principal h-Groupoids of G
In this section, G0 = (G, ∗) is considered as a noncommutative groupoid.

Let (G′, •) be a groupoid such that G0

H∼= (G′, •). Then, there exists a special
half-isomorphism f of G0 into (G′, •). Define an operation · on G by x · y =
f−1(f(x) • f(y)). Thus, f is an isomorphism of (G, ·) into (G′, •), and hence
Id : G0 → (G, ·) is a special half-isomorphism, where Id is the identity mapping of
G.

A groupoid (G, ·) for which Id : G0 → (G, ·) is a special half-isomorphism is
called a principal h-groupoid of G0. Therefore, the following result is at hand.

Proposition 4.1. Let G′ be a groupoid. Then, G0

H∼= G′ if and only if G′ is
isomorphic to a principal h-groupoid of G0.

Denote by M(G0) the set of the principal h-groupoids of G0. Note that for
(G, ·), (G, •) ∈M(G0), we have (G, ·) = (G, •) if x · y = x • y, for all x, y ∈ G,
which is equivalent to Id being an isomorphism between (G, ·) and (G, •).

Let (G, ·) ∈ M(G0). Since Id : G0 → (G, ·) is a special half-isomorphism, we
have

{x ∗ y, y ∗ x} = {x · y, y · x}, for all x, y ∈ G. (1)

If (x, y) ∈ K(G0), then x · y = y · x = x ∗ y. For each pair (x, y), (y, x) ∈
G × G \K(G0), there are two possible values for x · y and y · x by (1). Thus, if
G is finite, we have 2|G×G\K(G0)|/2 possibilities for a principal h-groupoid of G0.
Hence, the following result is at hand.

Proposition 4.2. If G is finite, then |M(G0)| = 2(|G|
2−|K(G0)|)/2.

DefineMI(G0) = {G′ ∈M(G0) |G′ ∼= G0} and let S(G) be the set of permu-
tations of G. For G′ = (G, ·) ∈MI(G), define

Iso(G′, G0) = {f ∈ S(G) | f is an isomorphism of G′ into G0}.

Note that Iso(G0, G0) = Aut(G0). In the next result, we determine a relationship
between Half S(G0), Aut(G0) andMI(G0).

Proposition 4.3. We have:
(a) Iso(G′, G0) ⊂ Half S(G0), for every G′ ∈MI(G0).
(b) For each G′ ∈MI(G0), Iso(G′, G0) is a right coset of Aut(G0) in Half S(G0),

that is, there exists f ∈ Half S(G0) such that Iso(G′, G0) = Aut(G0)f .
(c) For G1, G2 ∈MI(G0), if Iso(G1, G0) ∩ Iso(G2, G0) 6= ∅, then G1 = G2.
(d) Half S(G0) =

⋃
G′∈MI(G0)

Iso(G′, G0).

(e) |MI(G0)| = [Half S(G0) : Aut(G0)], which is the index of Aut(G0) in
Half S(G0).
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Proof. (a). For G′ = (G, ·) ∈ MI(G0), let f ∈ Iso(G′, G0). Then f(x · y) =
f(x)∗f(y), for all x, y ∈ G. By (1), {f(x ·y), f(y ·x)} = {f(x)∗f(y), f(y)∗f(x)},
for all x, y ∈ G. By Theorem 3.2, f ∈ Half S(G0).

(b). Fix f ∈ Iso(G′, G0). It is clear that gf−1 ∈ Aut(G0), for every g ∈
Iso(G′, G0), and αf ∈ Iso(G′, G0), for every α ∈ Aut(G0). Hence, we have the
desired result.

(c). Let f ∈ Iso(G1, G0) ∩ Iso(G2, G0). Note that Id = f−1f : G1 → G2 is an
isomorphism. From the definition ofM(G0), it follows that G1 = G2.

(d). Let f ∈ Half S(G0). Define the operation · on G by x·y = f−1(f(x)∗f(y)),
for all x, y ∈ G. Note that f : (G, ·) → (G, ∗) is an isomorphism. Furthermore,
since f ∈ Half S(G0), and f(x · y) = f(x) ∗ f(y) and f(y · x) = f(y) ∗ f(x),
for all x, y ∈ G, we have {x · y, y · x} = {x ∗ y, y ∗ x}, for all x, y ∈ G. Thus,
G′ = (G, ·) ∈MI(G0), and hence f ∈ Iso(G′, G0).

(e). It is a consequence of the previous items.

As a consequence of the Proposition 3.8 and the item (e) of Proposition 4.3,
we have the following result.

Corollary 4.4. Let G′, G′′ be groupoids such that G′
H∼= G′′ and Half S(G

′) is
finite. Then,

|MI(G
′)| · |Aut(G′)| = |MI(G

′′)| · |Aut(G′′)|.

Define GT0 = (G, ·), where x · y = y ∗ x, for all x, y ∈ G, and denote the set
of anti-automorphisms of G0 by Ant(G0). Since G0 is noncommutative, we have
Aut(G0) ∩Ant(G0) = ∅.

Proposition 4.5. G0 has an anti-automorphism if and only if GT0 ∈MI(G0). In
this case, |Ant(G)| = |Aut(G)|.

Proof. Note that a bijection f of G is an anti-automorphism of G0 if and only if
f is an isomorphism of G0 into GT0 . The rest of the claim is concluded from the
item (b) of Proposition 4.3.

Example 4.6. Let Q = {1, 2, ..., 8} and consider the following Cayley tables of
(Q, ∗) and (Q, ·):

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 6 5 7 8
2 2 1 4 3 5 6 8 7
3 4 3 1 2 7 8 5 6
4 3 4 2 1 8 7 6 5
5 5 6 8 7 1 2 4 3
6 6 5 7 8 2 1 3 4
7 8 7 6 5 3 4 1 2
8 7 8 5 6 4 3 2 1

· 1 2 3 4 5 6 7 8
1 1 2 4 3 6 5 7 8
2 2 1 3 4 5 6 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 8 7 1 2 4 3
6 6 5 7 8 2 1 3 4
7 8 7 6 5 3 4 1 2
8 7 8 5 6 4 3 2 1
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We have (Q, ∗) and (Q, ·) being quasigroups. Note that, for x, y ∈ Q:

x ∗ y =

{
y · x, if (x, y) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)},
x · y, otherwise.

Thus, (Q, ·) ∈ M((Q, ∗)). Using the LOOPS package [13] for GAP [5] we get
|Aut((Q, ∗))| = 4 and |Aut((Q, ·))| = 8. This illustrates Remark 3.9.

Note that |K((Q, ∗))| = 16, and hence |M((Q, ∗))| = 224 = 16777216. Using a
GAP computation with the LOOPS package, we get that there are 64 quasigroups
inM((Q, ∗)) and |MI((Q, ∗))| = 12. By Proposition 4.3, we have |Half ((Q, ∗))| =
48 and |MI((Q, ·))| = 6.

It is observed that the number of quasigroups in M((Q, ∗)) is much smaller
than |M((Q, ∗))|. In the next section, we will see that the same occurs for any
finite noncommutative quasigroup.

5. Principal h-Quasigroups of Q
Here, Q0 = (Q, ∗) is considered as a noncommutative quasigroup. A quasigroup
(Q, ·) is a principal h-quasigroup of Q0 if (Q, ·) ∈M(Q0). Denote byN (Q0) the set
of the principal h-quasigroups of Q0. It is clear thatMI(Q0) ⊂ N (Q0) ⊂M(Q0).
The next result is concluded from Proposition 4.1.

Proposition 5.1. Let Q′ be a quasigroup. Then Q0

H∼= Q′ if and only if Q′ is
isomorphic to a principal h-quasigroup of Q0.

Now, we describe N (Q0). For (x, y), (x′, y′) ∈ Q × Q \ K(Q0), we say that
(x, y) ∼ (x′, y′) if one of the following holds:

(i) (x′, y′) = (y, x),
(ii) x = x′ and {x ∗ y, y ∗ x} ∩ {x ∗ y′, y′ ∗ x} 6= ∅,
(iii) y = y′ and {x ∗ y, y ∗ x} ∩ {x′ ∗ y, y ∗ x′} 6= ∅.

We say that (x, y) ≡ (x′, y′) if there are z1, z2, ..., zl ∈ Q×Q\K(Q0) such that
(x, y) ∼ z1 ∼ z2 ∼ ... ∼ zl ∼ (x′, y′).

The relation ∼ is reflexive and symmetric, and hence ≡ is an equivalence rela-
tion. Denote by r(Q0) the number of equivalence classes of ≡ on Q×Q \K(Q0).

Suppose that Q is finite and let τ = {(x1, y1), (x2, y2), ..., (xr(Q0), yr(Q0))} be a
set of representatives of the equivalence classes of ≡ on Q×Q \K(Q0). Consider
Z2 = {0, 1}, and for σ = {σ1, σ2, ..., σr(Q0)} ∈ Zr(Q0)

2 , define the operation
σ• on Q

by:

x
σ• y =

{
x ∗ y, if (x, y) ∈ K(Q0) or (x, y) ≡ (xi, yi), where σi = 0,
y ∗ x, if (x, y) ≡ (xi, yi), where σi = 1.

Denote (Q,
σ•) by Qσ and let Nτ (Q0) = {Qσ |σ ∈ Zr(Q0)

2 }. Note that Nτ (Q0) ⊂
M(Q0) and |Nτ (Q0)| = 2r(Q0).

Theorem 5.2. If Q is finite, then N (Q0) = Nτ (Q0). So, |N (Q0)| = 2r(Q0).
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Proof. Let Qσ ∈ Nτ (Q0). Since Q is finite, in order to prove that Qσ is a
quasigroup, we only need to show that the cancellation laws are satisfied, that
is, x

σ• y = x
σ• y′ ⇒ y = y′ and x

σ• y = x′
σ• y ⇒ x = x′.

Let x, y, y′ ∈ Q be such that x
σ• y = x

σ• y′. If (x, y) ∈ K(Q0), then
x ∗ y = y ∗ x ∈ {x∗y′, y′ ∗x}, and hence y = y′. Now suppose that (x, y) 6∈ K(Q0).
We have four possibilities:

(i) x
σ• y = x ∗ y and x

σ• y′ = x ∗ y′,
(ii) x

σ• y = y ∗ x and x
σ• y′ = y′ ∗ x,

(iii) x
σ• y = x ∗ y and x

σ• y′ = y′ ∗ x,
(iv) x

σ• y = y ∗ x and x
σ• y′ = x ∗ y′.

In (i) and (ii), it is immediately seen that y = y′.
For (iii) and (iv), we have (x, y) ∼ (x, y′). Hence, there exists (xi, yi) ∈ τ

such that (x, y) ≡ (xi, yi) and (x, y′) ≡ (xi, yi). By definition of
σ•, we have either

x
σ• y = x ∗ y and x

σ• y′ = x ∗ y′, or x
σ• y = y ∗ x and x

σ• y′ = y′ ∗ x.
Since (x, y) 6∈ K(Q0), it follows that (x, y′) ∈ K(Q0). Similarly to the case
(x, y) ∈ K(Q0), one can conclude that y = y′.

Thus, the cancellation law x
σ• y = x

σ• y′ ⇒ y = y′ holds in Qσ. The second
cancellation law can be proven similarly. Therefore, Qσ ∈ N (Q0).

Conversely, let Q′ = (Q, ·) ∈ N (Q0). Then, there exists σ ∈ Zr(Q0)
2 such that

xi · yi = xi
σ• yi, for any (xi, yi) ∈ τ . For (x, y) ∈ K(Q0), it is vividly deduced that

x · y = x
σ• y.

Consider (xi, yi) ∈ τ . Then, yi · xi = yi
σ• xi. Let (x, y) ∈ Q × Q \

{(xi, yi), (yi, xi)} such that (x, y) ∼ (xi, yi). By (1) and the definition of
σ•, we

have x · y 6= xi · yi = xi
σ• yi and x

σ• y 6= xi
σ• yi, and therefore the only possibility

is x ·y = x
σ• y. For every (x, y) ∼ (xi, yi), one can use the previous arguments and

result in x′ · y′ = x′
σ• y′, for all (x′, y′) ∼ (x, y). Since Q is finite, this procedure

must end at some point, and hence x · y = x
σ• y, for all (x, y) ≡ (xi, yi). As a

result, we have Q′ = Qσ.

By Proposition 4.2, if Q is finite, then r(Q0) 6 (|Q|2 − |K(Q0)|)/2. The next
proposition provides a better estimate for r(Q0). According to this result, it is
seen that |N (Q0)| is much smaller that |M(Q0)|.

Proposition 5.3. If Q is finite, then

r(Q0) 6 (|Q|2 − |K(Q0)|)/6 and |N (Q0)| 6 3
√
|M(Q0)|.

In particular, |M(Q0)| > 8.

Proof. Let (x, y) ∈ Q × Q \ K(Q0) and [(x, y)] be the equivalence class of (x, y)
with respect to ≡. Since Q0 is a quasigroup, there are x′, y′ ∈ Q such that x′ 6= x,
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y′ 6= y, (x′, y) ∼ (x, y), and (x, y′) ∼ (x, y). We have x 6= y, x′ 6= y and x 6= y′

since (x, y), (x′, y), (x, y′) 6∈ K(Q0). Thus,

|[(x, y)]| > |{(x, y), (x′, y), (x, y′), (y, x), (y, x′), (y′, x)}| = 6.

Hence, |Q × Q \ K(Q0)| > 6 r(Q0). The rest of the claim follows from Proposi-
tion 4.2, Theorem 5.2 and the fact that r(Q0) > 1.

If Q is finite and r(Q0) is small, one can generate all quasigroups of N (Q0)
computationally. Then, by using Propositions 5.1 and 4.5 it can be verified if a
quasigroup Q′ is half-isomorphic to Q0 and generated all elements of Half (Q0).
However, r(Q0) can be a large number even for groups of small order, and therefore
generating all the quasigroups of N (Q0) becomes computationally unviable. The
next example illustrates both situations. In this example, r(Q0) and |M(Q0)| are
obtained by using GAP computing with the LOOPS package [5, 13].

Example 5.4. (a). Let A5 be the alternating group of order 60. We have that
r(A5) = 91, and hence |N (A5)| = 291. Furthermore, |M(A5)| = 21650.

(b). The LOOPS package for GAP contains all nonassociative right Bol loops of
order 141 (there are 23 such loops). The right Bol loops of this order were classified
in [7]. If L is one of these loops, then 3 6 r(L) 6 8, and hence |N (L)| 6 256.
Furthermore, |M(L)| > 25405.

By Proposition 2.2, every quasigroup half-isomorphic to a loop is also a loop.
Consequently, the same results as those presented for quasigroups in this section
can be proven for loops. For more structured classes of loops, as it is seen in the
following result, one can provide more information about the loops of N (L).

Proposition 5.5. Let G be a finite noncommutative group. Then, |MI(G)| = 2.

Proof. From Scott’s result [15], we have Half (G) = Half T (G). Since G is non-
commutative, the mapping J : G → G, defined by J(x) = x−1, is an anti-
automorphism of G. By Proposition 4.5, we have |Half (G)| = 2|Aut(G)|. Thus,
the claim follows from Proposition 4.3.

In fact, the previous proposition can be extended to any noncommutative loop
that has an anti-automorphism and where every half-automorphism is trivial, such
as the noncommutative loops of the subclass of Moufang loops in [8, Thereom 1.4],
which include the noncommutative Moufang loops of odd order [3]. Notice that
this result cannot be extended even to all Moufang loops. In [16, Example 4.6],
a noncommutative Moufang loop L of order 16 is given for which |MI(L)| =
[Half (L) : Aut(L)] = 16.

6.AConstruction of aNon-specialHalf-automorphism
Let G be a nonempty set with binary operations ∗ and · such that there exists
a non-special half-isomorphism f : (G, ∗) → (G, ·). Define G∞ =

∏∞
i=1G. The
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elements of G∞ will be denoted by (xi) = (xi)
∞
i=1, where xi ∈ G, for all i. For

(xi), (yi) ∈ G∞, define the operation (xi) • (yi) = (zi), where

zj =

{
xj ∗ yj , if j is odd,
xj · yj , if j is even.

Then, (G∞, •) is a groupoid. It is easy to see that if (G, ∗) and (G, ·) are
quasigroups (loops), then (G∞, •) is also a quasigroup (loop). Define the mapping
φ : G∞ → G∞ by φ(xi) = (yi), where

yj =

 f(x1), if j = 2,
xj+2, if j is odd,
xj−2, if j > 2 and j is even.

Thus, φ is a bijection and in each entry of (xi) it behaves like an isomorphism
or a half-isomorphism. Hence, φ is a half-automorphism of G∞. Since f is a
non-special half-isomorphism, there are x, y ∈ G such that f−1(x · y) 6∈ {f−1(x) ∗
f−1(y), f−1(y) ∗ f−1(x)}. Then,

φ−1((x)∞i=1 • (y)∞i=1) 6∈ {φ−1((x)∞i=1) • φ−1((y)∞i=1), φ
−1((y)∞i=1) • φ−1((x)∞i=1)}.

Therefore, φ is a non-special half-automorphism of G∞.
In example 1.1, we have loops C6 = (G, ∗) and L = (G, ·) for the condi-

tions above, hence the loop G∞ has a non-special half-automorphism. Note that
Half (G∞) is not a group.

In the following example, a non-special half-isomorphism between a right Bol
loop and a group is provided. This example is obtained by using MACE4 [12].

Example 6.1. Let G = {1, 2, ..., 8} and consider the following Cayley tables of
(G, ∗) and (G, ·):

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 6 3 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 8 1 7 6 5
5 5 6 7 1 8 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 3 6 4 1 2
8 8 7 6 5 4 3 2 1

· 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 7 6 8 1 3 2 4
6 6 8 5 7 2 4 1 3
7 7 5 8 6 3 1 4 2
8 8 6 7 5 4 2 3 1

We have (G, ∗) = L as a right Bol loop and (G, ·) being isomorphic to D8,
which is the dihedral group of order 8. The permutation f = (3 5 7)(4 6 8) of G
is a half-isomorphism of L into D8. Since |K(L)| = 56 and |K(D8)| = 40, f is
a non-special half-isomorphism by Theorem 3.2. Since L and D8 are right Bol
loops, G∞ is also a right Bol loop, and from the previous construction we have a
non-special half-automorphism in a right Bol loop of infinite order.
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Acknowledgments. Some calculations in this work have been made by using the
finite model builder MACE4, developed by McCune [12], and the LOOPS package
[13] for GAP [5].
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