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The Cayley sum graph of ideals of a semigroup

Mojgan Afkhami, Mehdi Hassankhani and Kazem Khashyarmanesh

Abstract. Let S be a regular semigroup, I(S) be the set of ideals of S and M be a subset
of I(S). In this paper, we introduce an undirected Cayley graph of S, denoted by ΓS,M , with
elements of I(S) as the vertex set, and, for two distinct vertices I and J , I is adjacent to J if and
only if there is an element K of M such that IK = J or JK = I. We study some basic properties
of the graph ΓS,M such as connectivity, girth and clique number. Moreover, we investigate the
planarity, outerplanarity and ring graph of ΓS,M .

1. Introduction

The Cayley sum graphs of ideals of a commutative ring was introduced by Afkhami
et al. in [3]. Among all types of graphs related to various algebraic structures,
Cayley graphs have attracted serious attention in the literature, since they have
many useful applications, see [2], [6], [12], [13], [14], [17] for examples of recent
results and further references. Let us refer the readers to the survey article [15]
for extensive bibliography devoted to various applications of Cayley graphs. A
semigroup is an algebraic structure consisting of a set together with an associative
binary operation. The Cayley graphs of semigroups are related to automata theory,
as explained in [11] and the monograph [12]. For a semigroup S and a subset H of
S, the Cayley graph Cay(S,H) of S relative to H is defined as the digraph with
vertex set S and edge set E(S,H) consisting of those ordered pairs (x, y) such that
y = sx, for some s ∈ H (cf. [13]).

Let S be a regular semigroup, I(S) be the set of ideals of S and M be a subset
of I(S). In this paper, we introduce an undirected Cayley graph associated to S,
which is denoted by ΓS,M . The elements of I(S) are its vertices and two distinct
vertices I and J are adjacent if and only if there is an element K of M such that
IK = J or JK = I. In Section 2, we recall some definitions and notations about
semigroups. In Section 3, we study some basic properties of the graph ΓS,M such as
connectivity, girth and clique number. For example we show that if M = {I, J},
where I and J are not minimal ideals and the graph ΓS,M is connected, then
diam(ΓS,M ) 6 4 and girth(ΓS,M ) 6 4. Also, we prove that if M = {I1, I2, . . . , In},
where non of the Ii’s are minimal, then the graph ΓS,M is connected if and only
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if I1I2 . . . In = J. Finally, in Section 4, we determine M for which ΓS,M is planar,
outerplanar and a ring graph.

Now we recall some definitions and notations about undirected graphs. We
use the standard terminology of graphs following [4]. In a graph G, the distance
between two distinct vertices a and b, denoted by d(a, b), is the length of a shortest
path connecting a and b, if such a path exists; otherwise, we set d(a, b) :=∞. The
diameter of a graphG is diam(G) = sup{d(a, b) : a and b are distinct vertices of G}.
The girth of G, denoted by girth(G), is the length of a shortest cycle in G, if G
contains a cycle; otherwise, we set girth(G) := ∞. Also, for two distinct vertices
a and b in G, the notation a − b means that a and b are adjacent. A vertex a in
a graph G is said to be a pendant vertex if deg(a) = 1, where deg(a) denotes the
number of vertices which are adjacent to a. A graph G is said to be connected
if there exists a path between any two distinct vertices, and it is complete if it is
connected with diameter one. We use Kn to denote the complete graph with n
vertices. Also, the complete bipartite graph (2-partite graph) with part sizes m
and n is denoted by Km,n. We say that G is totally disconnected if no two vertices
of G are adjacent. Also, G is called an empty graph if its vertex set is empty.
A clique of a graph is a complete subgraph of it and the number of vertices in a
largest clique of G, denoted by ω(G), is called the clique number of G. A subset
X of the vertices of G is called an independent set if the induced subgraph on X
has no edges. A vertex a of G is called a cutvertex if the number of connected
components of G \ {a} is larger than that of G. A graph G is 2-connected if
|V (G)| > 2 and G has no cutvertices. A graph is said to be planar if it can be
drawn in the plane, so that its edges intersect only at their ends. A subdivision
of a graph is any graph that can be obtained from the original graph by replacing
edges by paths. A remarkable characterization of the planar graphs was given by
Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and only
if it contains no subdivision of K5 or K3,3.

LetG be a graph with n vertices and q edges. We denote the vertex set and edge
set of G by V (G) = {x1, · · · , xn} and E(G) = {t1, · · · , tq} respectively. Recall
that a 0-chain (resp. 1-chain) of G is a formal linear combination

∑
aixi(resp.∑

biti) of vertices (resp. edges), where ai ∈ Z2 (resp. bi ∈ Z2). The boundary
operator is the linear map ∂ : C1 → C0 defined by ∂({x, y}) = x + y, where Ci is
the Z2-vector space of i-chains. A cycle vector is a 1-chain of the form t1 + · · ·+ tr
where t1, · · · , tr are the edges of a cycle of G. The cycle space Z(G) of G over Z2

is equal to ker(∂).
Let C be a cycle of G. A chord in G is any edge joining two nonadjacent

vertices in C. A primitive cycle is a cycle without chords. Moreover, we say that
a graph G has the primitive cycle property (PCP ) if any two primitive cycles
intersect in at most one edge. The free rank of G, denoted by frank(G), is the
number of primitive cycles of G. Also, the number rank(G) := q−n+r, where r is
the number of connected components of G, is called the cycle rank of G. The cycle
rank of G can be expressed as the dimension of the cycle space of G. These two
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numbers satisfy the inequality rank(G) 6 frank(G), as is seen in [7, Proposition
2.2]. In the second section of [7], the authors provided a characterization of graphs
such that the equality occurs. The precise definition of a ring graph can be found
in Section 2 of [7]. Roughly speaking, ring graphs can be obtained starting with
a cycle and subsequently attaching paths of length at least two that meet graphs
already constructed in two adjacent vertices. In [7], it is showed that, for the graph
G, the following conditions are equivalent:

(i) G is a ring graph,

(ii) rank(G) = frank(G),

(iii) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

The following lemma is useful.

Lemma 1.1. [1,Lemma 7.78] Let G be a graph with vertex set V . If G is 2-
connected and deg(v) > 3 for all v ∈ V , then G contains a subdivision of K4 as a
subgraph.

2. Preliminaries
In this section we recall some basic definitions and notations on a semigroup S.
For more details on semigroups see [5], [8], [9] and [16].

Let A be a nonempty subset of a semigroup S. We say that A is a subsemigroup
of S, denoted by A 6 S, if A is closed under the product of S, that is, A 6 S ⇔
A2 ⊆ A. Also, a nonempty subset I of S is a left ideal, if SI ⊆ I, and it is a right
ideal, if IS ⊆ I. Moreover I is called an ideal, if it is both a left and a right ideal.

An ideal I of S is said to be minimal, if for any ideal J of S, J ⊆ I implies
that J = I.

Theorem 2.1. [9, Theorem 2.5] If a semigroup S has a minimal ideal, then it is
unique.

Lemma 2.2. [9, Lemma 2.11] If I is a minimal ideal, and J is any ideal of S,
then I ⊆ J .

Every finite semigroup S has a minimal ideal. Indeed, consider an ideal I,
which has the least number of elements. Such an ideal exists because S is finite
and S is its own ideal. An element a ∈ S is regular if a = axa, for some x ∈ S.
S is regular if every a ∈ S is regular. Also b ∈ S is an inverse of a if a = aba and
b = bab. We denote V (a) to be the set of inverses of a.

The following two theorems, provide a condition under which a semigroup S is
regular.

Theorem 2.3. [10] A semigroup S is regular if and only if IJ = I ∩ J , for every
right ideal I and every left ideal J of S.
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3. Basic properties of the Cayley graph ΓS,M

Let S be a finite regular semigroup, I(S) be the set of all ideals of S, and J be the
minimal ideal of S. Let M be a nonempty subset of I(S). We define the graph
ΓS,M , as an undirected graph with I(S) as the vertex set, and two distinct vertices
I and J are adjacent if and only if there is a vertex K in M such that IK = J
or JK = I. Hence if I is adjacent to J , then, for some vertex K in M , either
I ⊆ J ∩K or J ⊆ I ∩K. Thus, the set of maximal ideals is an independent set.
Also, for each vertex I, JI = J, that is, if J ∈M , then J is adjacent to all vertices
of ΓS,M and ΓS,M is a refinement of a star graph. Thus, in the rest of the paper,
we assume that J /∈M and we put I∗(S) = I(S) \ {J}.

Lemma 3.1. Let M = {I} ⊆ I(S). Then there is no path of length greater than
2 in ΓS,M .

Proof. First we claim that if there is a path K1 −K2 −K3 of length 2 in ΓS,M ,
then K2 ⊆ K1,K3. Since K1 is adjacent to K2, we have K1I = K2 or K2I = K1.
Also K3 is adjacent to K2. So K3I = K2 or K2I = K3. Assume that K2I = K1.
Thus we have K3I = K2 which is impossible. Hence K1I = K2 and K3I = K2.
Therefore K2 ⊆ K1,K3. Now suppose that there is a path K1 −K2 −K3 −K4

of length three in ΓS,M . By the above discussion, we have K2 ⊆ K1,K3 and
K3 ⊆ K2,K4 which is again impossible.

Proposition 3.2. Let M ⊆ I(S). Then ΓS,M has no cycle if and only if M = {I},
for some I ∈ I(S).

Proof. Assume that |M | > 2 and I, J ∈ M . Put F = IJ and G = I ∪ J . Then it
is clear that F − I −G − J − F is a cycle in ΓS,M . Now let M = {I}. Then, by
Lemma 3.1, there is no cycle in ΓS,M .

Proposition 3.3. Let M be a singleton subset of I(S). Then ΓS,M is discon-
nected.

Proof. Suppose that M = {I}, and let J be any vertex distinct from I. If I ⊆ J ,
then I is adjacent to J and J is not adjacent to any vertex of ΓS,M , and if J ⊆ I,
then I is not adjacent to J . Now suppose that I and J are not comparable.
Then clearly I is not adjacent to J . Therefore the set A = {J : I ⊆ J} forms a
component of ΓS,M and hence the graph ΓS,M is not connected.

Lemma 3.4. Let M = {I, J} ⊆ I∗(S). Then the graph ΓS,M is connected if and
only if IJ = J.

Proof. Suppose that IJ = J. Clearly J is adjacent to both vertices I and J . We
claim that ΓS,M has no isolated vertex. Now, if K ∈ I∗(S) and K is an isolated
vertex, then KI = K and KJ = K, and hence K ⊆ I, J . Therefore K = J,
which is a contradiction. Thus it is enough to show that for any vertex K there
is a path between K and J. As K is not an isolated vertex, there is a vertex K ′
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such that K is adjacent to K ′. Hence KI = K ′ or K ′I = K, for some I ∈ M . If
KI = K ′, then K ′ ⊆ I and so K ′J = J, which means that K ′ is adjacent to J.
If K ′I = K, then K ⊆ I and KJ = J, which implies that K is adjacent to J. A
similar argument for KJ = K ′ or K ′J = K, shows that for any vertex K, there
is a path between K and J.

Conversely assume that ΓS,M is connected. Suppose on the contrary that
IJ 6= J. Let K = IJ and B = {F : F ∈ I(S) and K ⊆ F}. Suppose that F ∈ B
and T /∈ B. It is clear that FI and FJ lies in B, and TI and TJ are not in B,
and hence F is not adjacent to T . Therefore B forms a component of ΓS,M and
hence the graph ΓS,M is not connected.

Theorem 3.5. Let M = {I, J} ⊆ I∗(S) and the graph ΓS,M be connected. Then
diam(ΓS,M ) 6 4 and girth(ΓS,M ) 6 4.

Proof. By the proof of Lemma 3.4, for every vertex K that is not adjacent to J,
there is a vertex K ′ such that K ′ is adjacent to K and J. Now let N and T be two
distinct non adjacent vertices such that they are not adjacent to J. Then there
are vertices N ′ and T ′ such that we have the path N −N ′−J−T ′−T , and hence
its diameter is less than or equal to four.

Since we have the cycle, I − J − J − (I ∪ J) − I of length four, therefore the
girth of ΓS,M is less than or equal to 4.

Proposition 3.6. Let M = {I1, I2, . . . , In} ⊆ I∗(S). Then the graph ΓS,M is
connected if and only if I1I2 . . . In = J.

Proof. First assume that I1I2 . . . In = J. Suppose that there are two ideals Ij and
Ik in M such that IjIk = J, for some 1 6 j 6= k 6 n. Therefore, by Lemma 3.4,
the result holds. So we assume that for each vertex Ij in M ,

∏
(M \ {Ij}) 6= J.

Now let K be a vertex such that K is not adjacent to J. Hence KIj 6= J, for
j = 1, 2, . . . , n. Put Kj = (KI1 . . . Ij−1)Ij . Therefore there is a path of length at
most n between K and Kn = J, and hence the graph is connected.

For the converse statement, assume that I1 . . . In 6= J. Put K = I1 . . . In and
let B = {F : F ∈ I(S) and K ⊆ F}. Now let F ∈ B and T /∈ B. It is clear that
for i = 1, . . . , n, FIi lies in B, and TIi are not in B, and hence F is not adjacent
to T . Therefore the graph ΓS,M is not connected.

Corollary 3.7. Let M = {I1, I2, . . . , In} ⊆ I∗(S) and the graph ΓS,M be con-
nected. Then diam(ΓS,M ) 6 2n and also girth(ΓS,M ) 6 4.

Proposition 3.8. Let ΓS,M be connected and K ∈ I∗(S) be a pendant vertex.
Then K is adjacent to J.

Proof. Suppose that for some I, J in M , KI 6= KJ . Then deg(K) > 2, and hence
for all I, J in S, KI = KJ . Put F = KI. So for all I in M , F ⊆ I, and hence
F = J.
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Lemma 3.9. If K1 −K2 −K3 −K1 is a cycle of length three in the graph ΓS,M ,
then {K1,K2,K3} is a chain in I(S).

Proof. If two vertices are adjacent in ΓS,M , then one of them is a subset of another.
Hence {K1,K2,K3} is a chain in I(S).

Proposition 3.10. Assume that M is a finite subset of I(S) and that ΓS,M has
a clique of size n. Then |S| > n.

Proof. By the definition of adjacency of vertices in ΓS,M , K1 is adjacent to K2

only if K1 ⊆ K2 or K2 ⊆ K1. Thus if the graph ΓS,M has a clique with n vertices
K1,K2, . . . ,Kn, then, by Lemma 3.9, the set {K1,K2, . . . ,Kn} is a chain in I(S).
Without loss of generality, we may assume that K1 ⊆ K2 ⊆ . . . ⊆ Kn. Hence if
|S| < n − 1, then K1 is not adjacent to at least one vertex Ki, for i = 2, . . . , n,
and hence {K1,K2, . . . ,Kn} is not a clique, which is a contradiction.

We say that a vertex I has the property (∗) if I is comparable with at least
one of the elements in M or I is adjacent to J in ΓS,M .

Proposition 3.11. Let M = {I, J} and ΓS,M be connected. If all vertices of ΓS,M

has the property (∗), then M ∪ {J} is a dominating set in ΓS,M .

Proof. Let F be an arbitrary vertex in ΓS,M . Then we show that F is adjacent to
J, I or J . Since F has the property (∗), there is a vertex in M , say I, such that
I ⊆ F or F ⊆ I. If I ⊆ F , then clearly F is adjacent to I. Also if F ⊆ I, then
FJ = J, which means that F is adjacent to J.

4. Planarity of ΓS,M

Let M be a subset of I∗(S). We say that M has a property (∗), if for all ideals
Mi and Mj in M , Mi ∩Mj = J.

Example 4.1. Let S be the usual multiplicative semigroup (Z6, ·) and let M =
{2Z6, 3Z6}. Then J = 0 and 2Z6 ∩ 3Z6 = 0 and S has the property (∗).

Notation 1. To simplify notations, let M = {M1,M2, . . . ,Mn} has the property
(∗). We set Si := {F |F % Mi and F +

⋃
j 6=i Mj} and

Sij := {F |F % Mi ∪Mj and F +
⋃

k 6=i,j

Mk}

and similarly S12...n := {F |F % M1 ∪M2 ∪ . . . ∪Mn}.

Note that if S12...n = ∅, then M1 ∪M2 . . . ∪Mn = S.
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Remark 1. Let M = {M1,M2, . . . ,Mn} has the property (∗). Then for n > 4,
the graph ΓS,M has a subdivision of K3,3, and therefore it is not planar as it is
shown in Figure 1. For n = 2, the graph is planar as it is shown in Figure 2, where
Fi in S12, G1j in S1 and G2k in S2. Note that if for some t, G1t ∩M2 6= J or
G2t ∩M1 6= J, then the graph ΓS,M is a subdivision of the graph in Figure 2 and
clearly it is planar.

Figure 1.

Figure 2.

Proposition 4.2. Let M = {M1,M2,M3} be a subset of I∗(S) which has the
property (∗). Then S123 6= ∅ implies that ΓS,M is not planar. Moreover, if S123 =
∅, then we have the following statements:

1. If for some i, j, Sij 6= ∅, then ΓS,M is not planar.

2. If for all i, j, Sij = ∅, then ΓS,M is a planar graph.

Proof. If S123 6= ∅, then K3,3 is a subgraph of ΓS,M with two partitions X =
{M1,M2,M3} and Y = {F, J,M1∪M2∪M3}, where F ∈ S123. Now let S123 = ∅,
and for some i, j, Sij 6= ∅. Without loss of generality, we may assume that S12 6= ∅
and F ∈ S12. Therefore ΓS,M has a subgraph isomorphic to K3,3 as it is shown in
Figure 3, and hence it is not planar.

Figure 3.
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For the second statement, let Sij = ∅ for all i, j. Then ΓS,M is a planar
graph, as it is shown in Figure 4, where Fij ∈ Si. Note that if, for some t,
F1t ∩ (M2 ∪M3) 6= J, F2t ∩ (M1 ∪M3) 6= J or F3t ∩ (M1 ∪M2) 6= J , then the
graph ΓS,M is a subdivision of the graph in Figure 4 and clearly it is planar.

Figure 4.

In the sequel of this section, we deal with the outerplanarity of ΓS,M . By [7,
Lemma 2.9], we know that every outerplanar graph is a ring graph and every ring
graph is a planar graph. Let M be a subset of ideals of I∗(S) which has the
property (∗), |M | = 3 and ΓS,M is a planar graph. By Proposition 4.2, for all
i, j, we have |Sij | = 0, and even if for all i, i = 1, 2, 3, Si = ∅, then ΓS,M has an
induced subgraph H that is satisfied in the conditions of Lemma 1.1. Therefore
ΓS,M has a subdivision isomorphic to K4, as it is shown in Figure 5. Hence it is
not a ring graph.

Figure 5.

By [7, Lemma 2.9], for n > 3, K2,n is not a ring graph. Assume that |M | = 2.
If S12 6= ∅, then ΓS,M has an induced subgraph isomorphic to K2,3, which is not
a ring graph. Now let S12 = ∅ and |Si| > 1, for i = 1, 2. Then, similar to the
above case, ΓS,M has an induced subgraph isomorphic to K2,3.

By the above discussion we have the following theorem.

Theorem 4.3. Let M be a subset of I∗(S) which has the property (∗). Then ΓS,M

is a ring graph if and only if |M | = 2, S12 = ∅ and |S1| = |S2| = 1.
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