https://doi.org/10.56415/qrs.v30.01

The Cayley sum graph of ideals of a semigroup

Mojgan Afkhami, Mehdi Hassankhani and Kazem Khashyarmanesh

Abstract. Let S be a regular semigroup, $\mathfrak{I}(S)$ be the set of ideals of S and M be a subset of $\mathfrak{I}(S)$. In this paper, we introduce an undirected Cayley graph of S, denoted by $\Gamma_{S,M}$, with elements of $\mathfrak{I}(S)$ as the vertex set, and, for two distinct vertices I and J, I is adjacent to J if and only if there is an element K of M such that IK = J or JK = I. We study some basic properties of the graph $\Gamma_{S,M}$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $\Gamma_{S,M}$.

1. Introduction

The Cayley sum graphs of ideals of a commutative ring was introduced by Afkhami et al. in [3]. Among all types of graphs related to various algebraic structures, Cayley graphs have attracted serious attention in the literature, since they have many useful applications, see [2], [6], [12], [13], [14], [17] for examples of recent results and further references. Let us refer the readers to the survey article [15] for extensive bibliography devoted to various applications of Cayley graphs. A semigroup is an algebraic structure consisting of a set together with an associative binary operation. The Cayley graphs of semigroups are related to automata theory, as explained in [11] and the monograph [12]. For a semigroup S and a subset H of S, the Cayley graph Cay(S, H) of S relative to H is defined as the digraph with vertex set S and edge set E(S, H) consisting of those ordered pairs (x, y) such that y = sx, for some $s \in H$ (cf. [13]).

Let S be a regular semigroup, $\mathfrak{I}(S)$ be the set of ideals of S and M be a subset of $\mathfrak{I}(S)$. In this paper, we introduce an undirected Cayley graph associated to S, which is denoted by $\Gamma_{S,M}$. The elements of $\mathfrak{I}(S)$ are its vertices and two distinct vertices I and J are adjacent if and only if there is an element K of M such that IK = J or JK = I. In Section 2, we recall some definitions and notations about semigroups. In Section 3, we study some basic properties of the graph $\Gamma_{S,M}$ such as connectivity, girth and clique number. For example we show that if $M = \{I, J\}$, where I and J are not minimal ideals and the graph $\Gamma_{S,M}$ is connected, then $\operatorname{diam}(\Gamma_{S,M}) \leq 4$ and $\operatorname{girth}(\Gamma_{S,M}) \leq 4$. Also, we prove that if $M = \{I_1, I_2, \ldots, I_n\}$, where non of the I_i 's are minimal, then the graph $\Gamma_{S,M}$ is connected if and only

²⁰¹⁰ Mathematics Subject Classification: 05C10, 13A99

 $^{{\}sf Keywords:}\ {\rm Semigroup,\ Cayley\ graph,\ ring\ graph,\ planar\ graph.}$

if $I_1I_2...I_n = \mathfrak{J}$. Finally, in Section 4, we determine M for which $\Gamma_{S,M}$ is planar, outerplanar and a ring graph.

Now we recall some definitions and notations about undirected graphs. We use the standard terminology of graphs following [4]. In a graph G, the distance between two distinct vertices a and b, denoted by d(a, b), is the length of a shortest path connecting a and b, if such a path exists; otherwise, we set $d(a,b) := \infty$. The diameter of a graph G is diam $(G) = \sup\{d(a, b) : a \text{ and } b \text{ are distinct vertices of } G\}$. The girth of G, denoted by girth(G), is the length of a shortest cycle in G, if G contains a cycle; otherwise, we set $girth(G) := \infty$. Also, for two distinct vertices a and b in G, the notation a-b means that a and b are adjacent. A vertex a in a graph G is said to be a pendant vertex if $\deg(a) = 1$, where $\deg(a)$ denotes the number of vertices which are adjacent to a. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_n to denote the complete graph with nvertices. Also, the complete bipartite graph (2-partite graph) with part sizes mand n is denoted by $K_{m,n}$. We say that G is totally disconnected if no two vertices of G are adjacent. Also, G is called an empty graph if its vertex set is empty. A clique of a graph is a complete subgraph of it and the number of vertices in a largest clique of G, denoted by $\omega(G)$, is called the clique number of G. A subset X of the vertices of G is called an independent set if the induced subgraph on Xhas no edges. A vertex a of G is called a cutvertex if the number of connected components of $G \setminus \{a\}$ is larger than that of G. A graph G is 2-connected if |V(G)| > 2 and G has no cutvertices. A graph is said to be planar if it can be drawn in the plane, so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Let G be a graph with n vertices and q edges. We denote the vertex set and edge set of G by $V(G) = \{x_1, \dots, x_n\}$ and $E(G) = \{t_1, \dots, t_q\}$ respectively. Recall that a 0-chain (resp. 1-chain) of G is a formal linear combination $\sum a_i x_i$ (resp. $\sum b_i t_i$) of vertices (resp. edges), where $a_i \in \mathbb{Z}_2$ (resp. $b_i \in \mathbb{Z}_2$). The boundary operator is the linear map $\partial : C_1 \to C_0$ defined by $\partial(\{x, y\}) = x + y$, where C_i is the \mathbb{Z}_2 -vector space of *i*-chains. A cycle vector is a 1-chain of the form $t_1 + \cdots + t_r$ where t_1, \dots, t_r are the edges of a cycle of G. The cycle space $\mathfrak{Z}(G)$ of G over \mathbb{Z}_2 is equal to ker (∂) .

Let C be a cycle of G. A chord in G is any edge joining two nonadjacent vertices in C. A primitive cycle is a cycle without chords. Moreover, we say that a graph G has the primitive cycle property (PCP) if any two primitive cycles intersect in at most one edge. The free rank of G, denoted by $\operatorname{frank}(G)$, is the number of primitive cycles of G. Also, the number $\operatorname{rank}(G) := q - n + r$, where r is the number of connected components of G, is called the cycle rank of G. The cycle rank of G can be expressed as the dimension of the cycle space of G. These two

numbers satisfy the inequality $\operatorname{rank}(G) \leq \operatorname{frank}(G)$, as is seen in [7, Proposition 2.2]. In the second section of [7], the authors provided a characterization of graphs such that the equality occurs. The precise definition of a ring graph can be found in Section 2 of [7]. Roughly speaking, ring graphs can be obtained starting with a cycle and subsequently attaching paths of length at least two that meet graphs already constructed in two adjacent vertices. In [7], it is showed that, for the graph G, the following conditions are equivalent:

- (i) G is a ring graph,
- (ii) $\operatorname{rank}(G) = \operatorname{frank}(G),$
- (iii) G satisfies PCP and G does not contain a subdivision of K_4 as a subgraph.

The following lemma is useful.

Lemma 1.1. [1, Lemma 7.78] Let G be a graph with vertex set V. If G is 2connected and deg $(v) \ge 3$ for all $v \in V$, then G contains a subdivision of K_4 as a subgraph.

2. Preliminaries

In this section we recall some basic definitions and notations on a semigroup S. For more details on semigroups see [5], [8], [9] and [16].

Let A be a nonempty subset of a semigroup S. We say that A is a subsemigroup of S, denoted by $A \leq S$, if A is closed under the product of S, that is, $A \leq S \Leftrightarrow$ $A^2 \subseteq A$. Also, a nonempty subset I of S is a left ideal, if $SI \subseteq I$, and it is a right ideal, if $IS \subseteq I$. Moreover I is called an ideal, if it is both a left and a right ideal.

An ideal I of S is said to be minimal, if for any ideal J of S, $J \subseteq I$ implies that J = I.

Theorem 2.1. [9, Theorem 2.5] If a semigroup S has a minimal ideal, then it is unique.

Lemma 2.2. [9, Lemma 2.11] If I is a minimal ideal, and J is any ideal of S, then $I \subseteq J$.

Every finite semigroup S has a minimal ideal. Indeed, consider an ideal I, which has the least number of elements. Such an ideal exists because S is finite and S is its own ideal. An element $a \in S$ is regular if a = axa, for some $x \in S$. S is regular if every $a \in S$ is regular. Also $b \in S$ is an inverse of a if a = aba and b = bab. We denote V(a) to be the set of inverses of a.

The following two theorems, provide a condition under which a semigroup ${\cal S}$ is regular.

Theorem 2.3. [10] A semigroup S is regular if and only if $IJ = I \cap J$, for every right ideal I and every left ideal J of S.

3. Basic properties of the Cayley graph $\Gamma_{S,M}$

Let S be a finite regular semigroup, $\mathfrak{I}(S)$ be the set of all ideals of S, and \mathfrak{J} be the minimal ideal of S. Let M be a nonempty subset of $\mathfrak{I}(S)$. We define the graph $\Gamma_{S,M}$, as an undirected graph with $\mathfrak{I}(S)$ as the vertex set, and two distinct vertices I and J are adjacent if and only if there is a vertex K in M such that IK = Jor JK = I. Hence if I is adjacent to J, then, for some vertex K in M, either $I \subseteq J \cap K$ or $J \subseteq I \cap K$. Thus, the set of maximal ideals is an independent set. Also, for each vertex I, $\mathfrak{J}I = \mathfrak{J}$, that is, if $\mathfrak{J} \in M$, then \mathfrak{J} is adjacent to all vertices of $\Gamma_{S,M}$ and $\Gamma_{S,M}$ is a refinement of a star graph. Thus, in the rest of the paper, we assume that $\mathfrak{J} \notin M$ and we put $\mathfrak{I}^*(S) = \mathfrak{I}(S) \setminus {\mathfrak{J}}$.

Lemma 3.1. Let $M = \{I\} \subseteq \mathfrak{I}(S)$. Then there is no path of length greater than 2 in $\Gamma_{S,M}$.

Proof. First we claim that if there is a path $K_1 - K_2 - K_3$ of length 2 in $\Gamma_{S,M}$, then $K_2 \subseteq K_1, K_3$. Since K_1 is adjacent to K_2 , we have $K_1I = K_2$ or $K_2I = K_1$. Also K_3 is adjacent to K_2 . So $K_3I = K_2$ or $K_2I = K_3$. Assume that $K_2I = K_1$. Thus we have $K_3I = K_2$ which is impossible. Hence $K_1I = K_2$ and $K_3I = K_2$. Therefore $K_2 \subseteq K_1, K_3$. Now suppose that there is a path $K_1 - K_2 - K_3 - K_4$ of length three in $\Gamma_{S,M}$. By the above discussion, we have $K_2 \subseteq K_1, K_3$ and $K_3 \subseteq K_2, K_4$ which is again impossible.

Proposition 3.2. Let $M \subseteq \mathfrak{I}(S)$. Then $\Gamma_{S,M}$ has no cycle if and only if $M = \{I\}$, for some $I \in \mathfrak{I}(S)$.

Proof. Assume that $|M| \ge 2$ and $I, J \in M$. Put F = IJ and $G = I \cup J$. Then it is clear that F - I - G - J - F is a cycle in $\Gamma_{S,M}$. Now let $M = \{I\}$. Then, by Lemma 3.1, there is no cycle in $\Gamma_{S,M}$.

Proposition 3.3. Let M be a singleton subset of $\mathfrak{I}(S)$. Then $\Gamma_{S,M}$ is disconnected.

Proof. Suppose that $M = \{I\}$, and let J be any vertex distinct from I. If $I \subseteq J$, then I is adjacent to J and J is not adjacent to any vertex of $\Gamma_{S,M}$, and if $J \subseteq I$, then I is not adjacent to J. Now suppose that I and J are not comparable. Then clearly I is not adjacent to J. Therefore the set $A = \{J : I \subseteq J\}$ forms a component of $\Gamma_{S,M}$ and hence the graph $\Gamma_{S,M}$ is not connected. \Box

Lemma 3.4. Let $M = \{I, J\} \subseteq \mathfrak{I}^*(S)$. Then the graph $\Gamma_{S,M}$ is connected if and only if $IJ = \mathfrak{J}$.

Proof. Suppose that $IJ = \mathfrak{J}$. Clearly \mathfrak{J} is adjacent to both vertices I and J. We claim that $\Gamma_{S,M}$ has no isolated vertex. Now, if $K \in \mathfrak{I}^*(S)$ and K is an isolated vertex, then KI = K and KJ = K, and hence $K \subseteq I, J$. Therefore $K = \mathfrak{J}$, which is a contradiction. Thus it is enough to show that for any vertex K there is a path between K and \mathfrak{J} . As K is not an isolated vertex, there is a vertex K'

such that K is adjacent to K'. Hence KI = K' or K'I = K, for some $I \in M$. If KI = K', then $K' \subseteq I$ and so $K'J = \mathfrak{J}$, which means that K' is adjacent to \mathfrak{J} . If K'I = K, then $K \subseteq I$ and $KJ = \mathfrak{J}$, which implies that K is adjacent to \mathfrak{J} . A similar argument for KJ = K' or K'J = K, shows that for any vertex K, there is a path between K and \mathfrak{J} .

Conversely assume that $\Gamma_{S,M}$ is connected. Suppose on the contrary that $IJ \neq \mathfrak{J}$. Let K = IJ and $B = \{F : F \in \mathfrak{I}(S) \text{ and } K \subseteq F\}$. Suppose that $F \in B$ and $T \notin B$. It is clear that FI and FJ lies in B, and TI and TJ are not in B, and hence F is not adjacent to T. Therefore B forms a component of $\Gamma_{S,M}$ and hence the graph $\Gamma_{S,M}$ is not connected.

Theorem 3.5. Let $M = \{I, J\} \subseteq \mathfrak{I}^*(S)$ and the graph $\Gamma_{S,M}$ be connected. Then $\operatorname{diam}(\Gamma_{S,M}) \leq 4$ and $\operatorname{girth}(\Gamma_{S,M}) \leq 4$.

Proof. By the proof of Lemma 3.4, for every vertex K that is not adjacent to \mathfrak{J} , there is a vertex K' such that K' is adjacent to K and \mathfrak{J} . Now let N and T be two distinct non adjacent vertices such that they are not adjacent to \mathfrak{J} . Then there are vertices N' and T' such that we have the path $N - N' - \mathfrak{J} - T' - T$, and hence its diameter is less than or equal to four.

Since we have the cycle, $I - \mathfrak{J} - J - (I \cup J) - I$ of length four, therefore the girth of $\Gamma_{S,M}$ is less than or equal to 4.

Proposition 3.6. Let $M = \{I_1, I_2, \ldots, I_n\} \subseteq \mathfrak{I}^*(S)$. Then the graph $\Gamma_{S,M}$ is connected if and only if $I_1I_2 \ldots I_n = \mathfrak{J}$.

Proof. First assume that $I_1I_2...I_n = \mathfrak{J}$. Suppose that there are two ideals I_j and I_k in M such that $I_jI_k = \mathfrak{J}$, for some $1 \leq j \neq k \leq n$. Therefore, by Lemma 3.4, the result holds. So we assume that for each vertex I_j in M, $\prod(M \setminus \{I_j\}) \neq \mathfrak{J}$. Now let K be a vertex such that K is not adjacent to \mathfrak{J} . Hence $KI_j \neq \mathfrak{J}$, for $j = 1, 2, \ldots, n$. Put $K_j = (KI_1 \ldots I_{j-1})I_j$. Therefore there is a path of length at most n between K and $K_n = \mathfrak{J}$, and hence the graph is connected.

For the converse statement, assume that $I_1 \ldots I_n \neq \mathfrak{J}$. Put $K = I_1 \ldots I_n$ and let $B = \{F : F \in \mathfrak{I}(S) \text{ and } K \subseteq F\}$. Now let $F \in B$ and $T \notin B$. It is clear that for $i = 1, \ldots, n, FI_i$ lies in B, and TI_i are not in B, and hence F is not adjacent to T. Therefore the graph $\Gamma_{S,M}$ is not connected.

Corollary 3.7. Let $M = \{I_1, I_2, \ldots, I_n\} \subseteq \mathfrak{I}^*(S)$ and the graph $\Gamma_{S,M}$ be connected. Then diam $(\Gamma_{S,M}) \leq 2n$ and also girth $(\Gamma_{S,M}) \leq 4$.

Proposition 3.8. Let $\Gamma_{S,M}$ be connected and $K \in \mathfrak{I}^*(S)$ be a pendant vertex. Then K is adjacent to \mathfrak{J} .

Proof. Suppose that for some I, J in M, $KI \neq KJ$. Then $\deg(K) \ge 2$, and hence for all I, J in S, KI = KJ. Put F = KI. So for all I in M, $F \subseteq I$, and hence $F = \mathfrak{J}$.

Lemma 3.9. If $K_1 - K_2 - K_3 - K_1$ is a cycle of length three in the graph $\Gamma_{S,M}$, then $\{K_1, K_2, K_3\}$ is a chain in $\Im(S)$.

Proof. If two vertices are adjacent in $\Gamma_{S,M}$, then one of them is a subset of another. Hence $\{K_1, K_2, K_3\}$ is a chain in $\Im(S)$.

Proposition 3.10. Assume that M is a finite subset of $\mathfrak{I}(S)$ and that $\Gamma_{S,M}$ has a clique of size n. Then $|S| \ge n$.

Proof. By the definition of adjacency of vertices in $\Gamma_{S,M}$, K_1 is adjacent to K_2 only if $K_1 \subseteq K_2$ or $K_2 \subseteq K_1$. Thus if the graph $\Gamma_{S,M}$ has a clique with n vertices K_1, K_2, \ldots, K_n , then, by Lemma 3.9, the set $\{K_1, K_2, \ldots, K_n\}$ is a chain in $\Im(S)$. Without loss of generality, we may assume that $K_1 \subseteq K_2 \subseteq \ldots \subseteq K_n$. Hence if |S| < n - 1, then K_1 is not adjacent to at least one vertex K_i , for $i = 2, \ldots, n$, and hence $\{K_1, K_2, \ldots, K_n\}$ is not a clique, which is a contradiction.

We say that a vertex I has the property (*) if I is comparable with at least one of the elements in M or I is adjacent to \mathfrak{J} in $\Gamma_{S,M}$.

Proposition 3.11. Let $M = \{I, J\}$ and $\Gamma_{S,M}$ be connected. If all vertices of $\Gamma_{S,M}$ has the property (*), then $M \cup \{\mathfrak{J}\}$ is a dominating set in $\Gamma_{S,M}$.

Proof. Let F be an arbitrary vertex in $\Gamma_{S,M}$. Then we show that F is adjacent to \mathfrak{J} , I or J. Since F has the property (*), there is a vertex in M, say I, such that $I \subseteq F$ or $F \subseteq I$. If $I \subseteq F$, then clearly F is adjacent to I. Also if $F \subseteq I$, then $FJ = \mathfrak{J}$, which means that F is adjacent to \mathfrak{J} .

4. Planarity of $\Gamma_{S,M}$

Let M be a subset of $\mathfrak{I}^*(S)$. We say that M has a property (*), if for all ideals M_i and M_j in $M, M_i \cap M_j = \mathfrak{J}$.

Example 4.1. Let S be the usual multiplicative semigroup (\mathbb{Z}_6, \cdot) and let $M = \{2\mathbb{Z}_6, 3\mathbb{Z}_6\}$. Then $\mathfrak{J} = 0$ and $2\mathbb{Z}_6 \cap 3\mathbb{Z}_6 = 0$ and S has the property (*).

Notation 1. To simplify notations, let $M = \{M_1, M_2, \ldots, M_n\}$ has the property (*). We set $S_i := \{F | F \supseteq M_i \text{ and } F \not\supseteq \bigcup_{j \neq i} M_j\}$ and

$$S_{ij} := \{F | F \supseteq M_i \cup M_j \text{ and } F \not\supseteq \bigcup_{k \neq i,j} M_k\}$$

and similarly $S_{12...n} := \{F | F \supseteq M_1 \cup M_2 \cup \ldots \cup M_n\}.$

Note that if $S_{12...n} = \emptyset$, then $M_1 \cup M_2 \ldots \cup M_n = S$.

Remark 1. Let $M = \{M_1, M_2, \ldots, M_n\}$ has the property (*). Then for $n \ge 4$, the graph $\Gamma_{S,M}$ has a subdivision of $K_{3,3}$, and therefore it is not planar as it is shown in Figure 1. For n = 2, the graph is planar as it is shown in Figure 2, where F_i in S_{12} , G_{1j} in S_1 and G_{2k} in S_2 . Note that if for some t, $G_{1t} \cap M_2 \neq \mathfrak{J}$ or $G_{2t} \cap M_1 \neq \mathfrak{J}$, then the graph $\Gamma_{S,M}$ is a subdivision of the graph in Figure 2 and clearly it is planar.

Figure 2.

Proposition 4.2. Let $M = \{M_1, M_2, M_3\}$ be a subset of $\mathfrak{I}^*(S)$ which has the property (*). Then $S_{123} \neq \emptyset$ implies that $\Gamma_{S,M}$ is not planar. Moreover, if $S_{123} = \emptyset$, then we have the following statements:

- 1. If for some $i, j, S_{ij} \neq \emptyset$, then $\Gamma_{S,M}$ is not planar.
- 2. If for all $i, j, S_{ij} = \emptyset$, then $\Gamma_{S,M}$ is a planar graph.

Proof. If $S_{123} \neq \emptyset$, then $K_{3,3}$ is a subgraph of $\Gamma_{S,M}$ with two partitions $X = \{M_1, M_2, M_3\}$ and $Y = \{F, \mathfrak{J}, M_1 \cup M_2 \cup M_3\}$, where $F \in S_{123}$. Now let $S_{123} = \emptyset$, and for some $i, j, S_{ij} \neq \emptyset$. Without loss of generality, we may assume that $S_{12} \neq \emptyset$ and $F \in S_{12}$. Therefore $\Gamma_{S,M}$ has a subgraph isomorphic to $K_{3,3}$ as it is shown in Figure 3, and hence it is not planar.

For the second statement, let $S_{ij} = \emptyset$ for all i, j. Then $\Gamma_{S,M}$ is a planar graph, as it is shown in Figure 4, where $F_{ij} \in S_i$. Note that if, for some t, $F_{1t} \cap (M_2 \cup M_3) \neq \mathfrak{J}$, $F_{2t} \cap (M_1 \cup M_3) \neq \mathfrak{J}$ or $F_{3t} \cap (M_1 \cup M_2) \neq \mathfrak{J}$, then the graph $\Gamma_{S,M}$ is a subdivision of the graph in Figure 4 and clearly it is planar.

Figure 4.

In the sequel of this section, we deal with the outerplanarity of $\Gamma_{S,M}$. By [7, Lemma 2.9], we know that every outerplanar graph is a ring graph and every ring graph is a planar graph. Let M be a subset of ideals of $\mathfrak{I}^*(S)$ which has the property (*), |M| = 3 and $\Gamma_{S,M}$ is a planar graph. By Proposition 4.2, for all i, j, we have $|S_{ij}| = 0$, and even if for all $i, i = 1, 2, 3, S_i = \emptyset$, then $\Gamma_{S,M}$ has an induced subgraph H that is satisfied in the conditions of Lemma 1.1. Therefore $\Gamma_{S,M}$ has a subdivision isomorphic to K_4 , as it is shown in Figure 5. Hence it is not a ring graph.

By [7, Lemma 2.9], for $n \ge 3$, $K_{2,n}$ is not a ring graph. Assume that |M| = 2. If $S_{12} \ne \emptyset$, then $\Gamma_{S,M}$ has an induced subgraph isomorphic to $K_{2,3}$, which is not a ring graph. Now let $S_{12} = \emptyset$ and $|S_i| > 1$, for i = 1, 2. Then, similar to the above case, $\Gamma_{S,M}$ has an induced subgraph isomorphic to $K_{2,3}$.

By the above discussion we have the following theorem.

Theorem 4.3. Let M be a subset of $\mathfrak{I}^*(S)$ which has the property (*). Then $\Gamma_{S,M}$ is a ring graph if and only if |M| = 2, $S_{12} = \emptyset$ and $|S_1| = |S_2| = 1$.

Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- [1] M. Aigner, Combinatorial Theory, Springer-verlag, New York, (1997).
- [2] M. Afkhami, Z. Barati and K. Khashyarmanesh, Cayley graphs of partially ordered sets, J. Algebras and its Appl., 12 (2013), 1250184 – 1250197.
- [3] M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc., 96 (2014), 289 – 304.
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Elsevier, New York, (1976).
- [5] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Math. Surveys No. 7, Amer. Math. Sot., Providence, RI, Vol. I, 1961; Vol. II, (1967).
- [6] G. Cooperman, L. Finkelstein and N. Sarawagi, Applications of Cayley graphs, Appl. Algebra and Error-Correcting Codes, (1990), 367 – 378.
- [7] I. Gitler, E. Reyes and R.H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math., 310 (2010), 430 – 441.
- [8] P.A. Grillet, Semigroups: An introduction to the structure theory, Marcel Dekker, (1995).
- [9] T. Harju, Lecture Notes on semigroups, Department of Mathematics, University of Turku, FIN-20014 Turku, Finland, (1996).
- [10] K. Iseki, A characterization of regular semigroup, Proc. Japan Acad., 32 (1956), 676-677.
- [11] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australasian J. Combinatorics, 30 (2004), 95 – 101.
- [12] A.V. Kelarev, On Cayley Graphs of Inverse Semigroups, Semigroup Forum, 72 (2006), 411-418.
- [13] A.V. Kelarev and C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin., 24 (2003), 59 – 72.
- [14] A.V. Kelarev and S.J. Quinn, A combinatorial property and Cayley graphs of semigroups, Semigroup Forum, 66 (2003), 89 – 96.
- [15] A.V. Kelarev, J. Ryan and J. Yearwood, Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math., 309 (2009), 5360 – 5369.
- [16] S. Schwarz, prime ideals and maximal ideals in semigroups, Czechoslovak Math. J., 19 (1969), 72 - 79.
- [17] S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, SIAM J. Discrete Math., 23 (2009), 694 – 714.

Received April 11, 2021

Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com

M. Hassankhani

M. Afkhami

Department of Mathematics, Chalous Branch, Islamic Azad University, P.O.Box 46315-397, Chalous, Iran

e-mail: hassankhani@iauc.ac.ir

K. Khashyarmanesh Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran e-mail: khashyar@ipm.ir