
Quasigroups and Related Systems 30 (2022), 219− 240

https://doi.org/10.56415/qrs.v30.19

Projective finitely supported M-sets

Khadijeh Keshvardoost and Mahdieh Haddadi

Abstract. The purpose of this paper is to provide simple characterizations of the pro-
jective objects in the category of finitely supported M -sets. To do so, first, we introduce
the notion of zero-retraction monoid and then characterize projective finitely supported
M -sets where M contains a zero-retraction monoid.

1. Introduction

Take D to be a countable infinite set. A permutation over D is said to be
finite if it changes only a finite number of elements of D. Let G = Perm(D)
be the group of finite permutations. A nominal set is a G-set such that for
each element x one can find a finite set of D supporting x.

The notion of nominal sets (finitely supported G-sets) was introduced
by Fraenkel in 1922, and developed by Mostowski in the 1930s in order to
prove the independence of the axiom of choice and other axioms in classical
Zermelo-Fraenkel set theory. In computer science, nominal sets were used
in order to properly model the syntax of formal systems involving variable-
binding operations (cf. [5]). Nominal sets also have been used in game
theory [1], Logic [10], topology [9] and in proof theory [13].

Pitts [12] generalized finite permutations to finite substitutions and in-
troduced the monoid Cb. He has shown that this category is equivalent to
a particular category of presheaves named cubical sets.

The question of projectivity, as the dual notion of injectivity, is one
which arises in many areas of mathematics, and concerns the possibility of
lifting a given morphism defined in to a structure through the epimorphisms.

A projective M -set, a set equipped with an action of a monoid (or a
group) M , generalizes the concept of the free M -set (cf. [8]). In fact, a
projective M -set is a retract of a free M -set. Indecomposable projective
M -sets are cyclic (cf. Proposition 17.7.III, [8]). Also a characterization of a
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projective M -set in terms of indecomposable projective M -sets is given by
Knauer (cf. Theorem 17.8.III, [8]).

Throughout the paper, D and End(D) are both fixed. The set D is
an infinite countable set and End(D) is the monoid of all maps from D to
itself with respect to composition. As we mentioned, a projective M -set is
a retract of a free M -set. However in categories of finitely supported M -
sets there exists no free finitely supported M -sets over sets (see Theorem
3.1). Here, we observe that although the category of nominal sets has
no projective object (see Corollary 3.4), but projective finitely supported
M -sets exist, in which M is a submonoid of End(D). In [8], it is proved
that every singletonM -set is projective if and only ifM contains some zero
elements. This result fails in the category of finitely supported Cb-sets. The
monoid Cb has no zero element (see Lemma 2.15) while every singleton Cb-
set (which is also a finitely supported Cb-set) in the category of finitely
supported Cb-sets is projective, by Proposition 3.5.

These facts motivate us to study projective finitely supported M -sets
where M is a submonoid of End(D). We introduce the notion of zero-
retraction monoids (Definition 3.6) and then we characterize projective
finitely supported M -sets where M is a zero-retraction monoid. In fact,
we consider those monoids to behave almost like Cb. Finally, using the
functor introduced in [6], we characterize projective finitely supported N -
sets where N contains a zero-retraction monoid M .

2. Preliminaries

In this section, the preliminary facts about (finitely supported) M -sets are
given where M 6 End(D). For more information see [2, 3, 8, 12].

2.1 M-sets

An (left) M -set for a monoid M with identity idD is a set X equipped with
a map M ×X → X, (m,x)  mx, called an action of M on X, such that
idDx = x and m(m′x) = (mm′)x, for all x ∈ X and m,m′ ∈M .

The set D is an M -set with the action given by md = m(d) for all
m ∈M and d ∈ D.

The set Dk = {(d1, . . . , dk) : d1, . . . , dk ∈ D} is anM -set with the action
m(d1, . . . , dk) = (md1, . . . ,mdk).

An equivariant map from anM -setX to anM -set Y is a map f : X → Y
with f(mx) = mf(x), for all x ∈ X,m ∈M .
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An element x of anM -setX is called a zero (fixed or equivariant) element
if mx = x, for all m ∈ M . We denote the set of all zero elements of an
M -set X by Z(X). The M -set X all of whose elements are zero is called a
discrete M -set.

A subset Y of anM -set X is anM -subset of X ifmy ∈ Y , for allm ∈M
and y ∈ Y . Given an M -set X, the set Z(X) is in fact an M -subset of X.

For the family {Xi}i∈I of M -sets, the cartesian product
∏

i∈I
Xi with

the component wise action, m(xi)i∈I = (mxi)i∈I , is the product of Xi ’s
in the category of M -sets. The coproduct of the family {Xi}i∈I is their
disjoint union

∐
i∈I
Xi =

⋃
i∈I

(Xi × {i}) with the action of M defined by
m(x, i) = (mx, i), for every m ∈M and x ∈ Xi .

An element m ∈M is called idempotent if mm = m.
AnM -set X is decomposable if there exist twoM -subsets Y, Z of X with

X = Y ∪Z and Y ∩Z = ∅. In this case X = Y ∪Z is called a decomposition
of X. An M -set X is called indecomposable if it has no decomposition.

Every M -set has a decomposition into indecomposable M -subsets (cf.
Theorem 5.10.I, [8]).

A cyclic M -set X is an M -set which is generated by only one element.
That is X = Mx, for some x ∈ X.

2.2 Projective M-sets

The following facts about projective M -sets are needed in the sequel. For
more details see [8].

AnM -set P is said to be projective if for each epimorphism (equivariant
surjective map) h : A � B and each equivariant map f : P → B, there
exists an equivariant map ϕ : P → A with hϕ = f .

Also, anM -subset A of anM -set B is called a retract of B if there exists
an equivariant map f : B → A with fi = idA , in this case, f is said to be
a retraction.

Remark 2.1. (cf. Proposition 17.2.III, [8])
(1) A free M -set is projective.
(2) Any retract of a projective M -set is projective.
(3) Any monoid M is a free M -set.

Proposition 2.2. (cf. [8]) Let X be an M -set. Then,

(i) (Proposition 17.1.III) X is projective if and only if X =
∐

i∈I
Xi ,
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where Xi ’s are projective M -sets.
(ii) (Theorem 17.8.III) X is projective if and only if X =

∐
i∈I
Xi with

Xi
∼= Me, where Me is a cyclic M -subset of M , and e ∈M is an

idempotent element.
(iii) (Proposition 17.4.III) X is projective if and only if it is a retract of

a free M -set.

2.3 Finitely supported M-sets

In this subsection, we give some needed facts about finitely supported M -
sets. For more information see [2, 12].

Definition 2.3. (cf. [12]) Suppose X is an M -set and x ∈ X.
(a) A subset C ⊆ D supports x if, for every m,m′ ∈M ,

(m(c) = m′(c), (∀c ∈ C))⇒ mx = m′x.

If there is a finite (possibly empty) support C then we say that x is finitely
supported.

(b) If every element of X has a finite support, then X is called a finitely
supported M -set.

(c) A subset C ⊆ D strongly supports x if, for every m,m′ ∈M ,

(m(c) = m′(c), (∀c ∈ C))⇔ mx = m′x.

We denote the category of all M -sets with equivariant maps between
them by M -Set, and its full subcategory of all finitely supported M -sets
by (M -Set)fs.

Remark 2.4. Suppose C ⊆ Z(D) is a finite subset. If X is a finitely
supported M -set and x ∈ X, then

(1) B ⊆ D supports x if and only if B − C supports x.
(2) B ⊆ C supports x if and only if x is a zero element.

Example 2.5. (1) A discrete M -set is a finitely supported M -set, because
the empty set is a finite support for each element.

(2) For each M -set X, the set

Xfs = {x ∈ X : x has a finite support in X},

is a finitely supported M -subset of X. Also, Z(X) = Z(Xfs).
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(3) The sets D and

Dk = {(d1, . . . , dk) : d1, . . . , dk ∈ D}

are finitely supported M -sets. In fact, {d} is a finite support of d and
{d1, . . . , dk} is a finite support for (d1, . . . , dk).

The following example shows that there exists an M -set which is not a
finitely supported M -set.

Example 2.6. (Exercise 2.4, [11]) For each natural number k, let X
k

= D.
Take the element (x

k
)
k∈N

in A =
∏

k∈N
X
k
such that for every d ∈ D there

exists k ∈ N with d = x
k
. Then, this element has no finite support. So,

A
fs
6= A.

Remark 2.7. (1) The product of a family of finitely supportedM -sets Xi ’s
is (

∏
i∈I
Xi)fs .

(2) Coproducts in the category of finitely supported M -sets are con-
strcuted just as in the catgeory of M -sets. Hence, for a family of finitely
supported M -sets Xi indexed by a set I, disjoint union of Xi ’s is the co-
product of them, and denoted by

∐
i∈I
Xi . For each element t ∈

∐
i∈I
Xi ,

there exists j ∈ I with t ∈ Xj . Hence, if S is a finite support of t in Xj ,
then S is a finite support of t in

∐
i∈I
Xi . For more details cf. Section 2.2,

[12] and Chapter II, [8].

Definition 2.8. (cf. [2, 12]) Let X be a finitely supported M -set and
x ∈ X. Then,

(a) x admits least support if the set
⋂
{C : C is a finite support of x}

supports x. We denote the least support of x ∈ X with suppx.
(b) X admits least support if every x ∈ X has the least support.

Remark 2.9. (1) For the given M -set X and x ∈ X, if C (strongly)
supports x, then m(C) (strongly) supports mx.

(2) Suppose f : X → Y is an equivariant map and x ∈ X. If C is a
finite support of x, then C is a finite support of f(x).

Definition 2.10. (a) A permutation (bijection map) π : D → D is said to
be finite if {d ∈ D | π(d) 6= d} is finite. The set Perm(D) is the group of all
finite permutations on D.

(b) A finitely supported Perm(D)-set X is called a nominal set.

Example 2.11. The set D(k) = {(d1, . . . , dk) ∈ Dk : (∀i 6= j), di 6= dj} is a
nominal set.
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2.4 Finitely supported Cb-sets

We give some basic facts about the monoid Cb and finitely supported Cb-
sets. For more information one can see [4, 7, 12].

Also, we take 2 = {0, 1} with 0, 1 6∈ D.

Definition 2.12. (a) A map σ : D → D ∪ 2 is called an injective finite
substitution if {d ∈ D | σ(d) 6= d} is finite and

(∀d, d′ ∈ D), σ(d) = σ(d′) /∈ 2⇒ d = d′.

(b) If d ∈ D and b ∈ 2, a basic substitution (b/d) maps d to b, and is
the identity mapping on all the other elements of D.

(c) If d, d′ ∈ D then each transposition (d d′) is called a transposition
substitution.

Definition 2.13. (a) The monoid Cb is the monoid whose elements are
injective finite substitutions with the monoid operation given by σ·σ′ = σ̂σ′,
where σ̂ : D ∪ 2→ D ∪ 2 maps 0 to 0, 1 to 1, and on D is defined the same
as σ. The identity element of Cb is the inclusion ι : D ↪→ D ∪ 2.

(b) The subsemigroup of Cb generated by basic substitutions is denoted
by S. Each element of S is of the form δ = (b1/d1) · · · (bk/dk) ∈ S for some
di ∈ D and bi ∈ 2, and we denote the set {d1, . . . , dk} by D

δ
.

Theorem 2.14. (Theorem 2.4, [7]) For the monoid Cb, we have

Cb = Perm(D)(S ∪ {ι}).

Lemma 2.15. The monoid Cb (as a Cb-set) has no zero element.

Proof. On the contrary, assume that there exists a zero element σ′ ∈ Cb. We
must show that σσ′ = σ′, for all σ ∈ Cb. By Theorem 2.14, σ′ ∈ Perm(D)
or σ′ ∈ Perm(D)S. For the first case, let σ = (0/d). Then,

d = σ′(σ′−1d) = σσ′(σ′−1d) = σd = (0/d)d = 0,

which is a contradiction. Now, suppose σ′ ∈ Perm(D)S. So, there exist
π′ ∈ Perm(D) and δ′ ∈ S with σ′ = π′δ′. Let σ = (0/d)π′−1 with d /∈ D

δ′ .
Then,

π′d = π′δ′d = σ′d = σσ′d = (0/d)π′−1π′δ′d = (0/d)d = 0

which is impossible.
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Proposition 2.16. (i) (Lemma 2.4, [12]) Suppose X is a Cb-set, x ∈ X
and b ∈ 2. Also, let C be a finite subset of D. Then, C is a support of x if
and only if

(∀d ∈ D) d /∈ C ⇒ (b/d)x = x.

(ii) The set {d ∈ D : (0/d)x 6= x} is the least finite support of x.

Lemma 2.17. (cf. Lemma 3.4, [4]) Let X be a Cb-set and x ∈ X. Then,
(i) Sx = {δ ∈ S | δx 6= x} and S′

x
= S−Sx are two subsemigroups of S.

(ii) If x has the least finite support, then supp δx ⊆ (suppx) \ D
δ
, for

all δ ∈ S′
x
.

(iii) Let δ ∈ S. Then, δx 6= x if and only if D
δ
∩ suppx 6= ∅.

Remark 2.18. Let δ, δ′ ∈ S. Then, δ = δ′ if and only if D
δ

= D
δ′ with

δ(d) = δ′(d), for all d ∈ D
δ
.

Lemma 2.19. (Lemma 4.5, [4]) Let Cbx be a cyclic finitely supported Cb-
set. Then, Cbx = Perm(D)S′xx ∪ Perm(D)x.

3. Projective finitely supported M-sets

In this section, we give a characterization of projective finitely supported
M -sets, where M is a zero-retraction monoid. To do so, first we show that
although free objects over sets do not exist in the categories of finitely sup-
ported Cb-sets and nominal sets, but this is not true about projectivity. In
fact, we show that the singleton finitely supported Cb-sets are projective
while no nominal sets are projective. This fact happens because of a prop-
erty of finite substitutions in Cb. So then we generalize this property and
introduce the notion of zero-retraction monoids. Then, using this notion we
find the projective finitely supported M -sets when M is a zero-retraction
monoid or contains a zero-retraction monoid.

Let us begin this section with the following theorem which shows that,
analogous to the categories nominal sets and Cb-sets, the forgetful functor

V : (M -Set)
fs
→ Set

has no left adjoint and so free finitely supported M -sets over sets do not
exist.

Theorem 3.1. The forgetful functor V : (M -Set)
fs
→ Set has no left

adjoint.
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Proof. Let L be a left adjoint of V . Then, since right adjoints preserves
limits, we get that V preserves arbitrary products. Consider the finitely
supported M -set A

fs
in Example 2.6. So, V (A

fs
) = A

fs
is the product of

the family of X
k
’s. But, the product of X

k
’s is A.

Corollary 3.2. No free finitely supported M -sets exists over sets.

Lemma 3.3. No indecomposable nominal set is projective.

Proof. Let X be indecomposable. Then X = Perm(D)x, for some x ∈ X.
Notice that, indecomposable nominal sets are cyclic. Take k to be a natural
number with k > |suppx|, h : D(k) → {θ} to be a surjective constant
equivariant map, and f : X → {θ} is an equivariant map. If X is projective,
then there exists an equivariant map ϕ : X → D(k) with hϕ = f . Now,
we have ϕ(x) = (d1, . . . , dk) ∈ D(k). Since ϕ is equivariant, we get that
suppϕ(x) ⊆ suppx. Thus, k = |{d1, . . . , dl}| 6 |suppx| which is a contra-
diction.

Corollary 3.4. No nominal set is projective.

Proof. Follows from Proposition 2.2(i).

Proposition 3.5. The singleton finitely supported Cb-set {θ} is projective.

Proof. Suppose h :A→ B is a surjective equivariant map. Take f :{θ} → B
to be an equivariant map with f(θ) = θ′ ∈ Z(B). Notice that, finitely
supported Cb-sets have zero elements. We show that there exists an equiv-
ariant map ϕ : {θ} → A with hϕ = f . Since h is surjective, there ex-
ists a ∈ A with h(a) = θ′. If a ∈ Z(A), then define ϕ(θ) = a, and so,
hϕ(θ) = h(a) = θ′ = f(θ). If supp a 6= ∅, then take δ ∈ S with D

δ
= suppx.

Now, by Lemma 2.17(ii), supp δx = ∅, and so, taking ϕ(θ) = δa, we get
that hϕ(θ) = h(δa) = δh(a) = δθ′ = θ′ = f(θ).

3.1 Retraction-monoid

Definition 3.6. (a) Let A and B be two finite subsets of D with A ⊆ B.
Then, A is called an M -zero-retraction of B if A ∪ Z(D) is a retraction of
B; that is there exists m ∈M with m(B) ⊆ A ∪ Z(D) and m|A = id|A .

(b) A is an absolutely M -zero-retraction if A is an M -zero-retraction of
every B that contains A; that is A ⊆ B.

The monoid M is called zero-retraction, if every finite subset A of D is
an absolutely M -zero-retraction.
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Proposition 3.7. Let M be a zero-retraction monoid. Then,

(i) Z(D) is non-empty.

(ii) There exists C ⊆ Z(D) such that m|C = id|C , for every m ∈M .
In other words, M is a submonoid of MC where

MC = {m ∈ End(D) : m|C = id|C},
for some C ⊆ Z(D).

Proof. (i). Suppose B ⊆ D is a non-empty finite subset. Notice that,
m(B) 6= ∅, for every m ∈ M . Since M is zero-retraction and ∅ ⊆ B,
there exists m0 ∈ M with m0(B) ⊆ Z(D). Now, since m0(B) 6= ∅, we get
Z(D) 6= ∅.

(ii). By (i), C = m0(B) ⊆ Z(D). Let m ∈ M . Then, m|C = id|C and
so m ∈MC .

Remark 3.8. (1) The nominal set D has no zero elements.

(2) The group G = Perm(D) is not a zero-retraction monoid. This is
because, if A ( B finite subsets of D and there exists π ∈ G with π(B) ⊆ A,
then A = B which is a contradiction.

(3) The monoid Cb is a zero-retraction monoid (cf. Lemma 4.1). Notice
that, Z(D) = 2.

3.2 Finitely supported DA

The following example plays an important role in characterizing projective
finitely supported M -sets.

For a finite subset A of D, the set DA = {m|A : m ∈ M} is an M -set
with the action defined by m′ ∗m|A := (m′m)|A , for all m,m′ ∈ M , where
∗ : M × DA → DA (cf. Example 2.4, [2]).

Lemma 3.9. Let A be a finite subset of D. Then, DA is a cyclic finitely
supported M -set.

Proof. First we show that m(A) is a finite support of m|A . Indeed, if
m1,m2 ∈ M and m1(a) = m2(a), for all a ∈ m(A), then m1m(d) =
m2m(d), for all d ∈ A. Hence (m1m)|A = (m2m)|A , and so m1 ∗ m|A =
m2 ∗m|A .

Now we note that DA = Mid|A . That is DA is cyclic and we are done.
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Corollary 3.10. The map ϕ : M → DA defined by ϕ(m) = m|A is a
surjective equivariant map.

Proposition 3.11. Given a finitely supported M -set Y and a finite subset
A ⊆ D, there exists an equivariant map from DA to Y if and only if A is a
finite support of some y ∈ Y .

Proof. Suppose ϕ : DA → Y is an equivariant map. Then, we consider
ϕ(id|A) = y ∈ Y . Since ϕ is equivariant, we get that A is a finite support
of y, by Remark 2.9.

To prove the other part, it is sufficient to define ϕ : DA → Y by
ϕ(m|A) = my, where A is a finite support of y.

Lemma 3.12. Let X = Mx be a cyclic finitely supported M -set and A be a
finite support of x. Then, Mx is isomorphic to DA if and only if A strongly
supports x.

Proof. First notice that if A = ∅, then X ∼= D∅. Let x be non-zero. Then,
ϕ : DA → Mx defined by ϕ(m|A) = mx is a surjective equivariant map
using Proposition 3.11. Now, ϕ is an injective map if and only if

(∀m,m′ ∈M) (mx = m′x ⇔ m|A = m′|A)

if and only if A strongly supports x.

3.3 Projective finitely supported M-sets

In this subsection, we take M to be a zero-retraction monoid and then
characterize projective finitely supported M -sets.

Proposition 3.13. If X is a finitely supported M -set, then X has some
zero elements.

Proof. First, notice that M is a submonoid of MC , for some finite subset C
of D, by Proposition 3.7. Now suppose x ∈ X and B is a finite support of x.
The set B−C is a support of x, by Remark 2.4(2). If B−C = ∅, then x is
zero. If ∅ ( B−C, then there exists m0 ∈M with m0(B−C) ⊆ Z(D). By
Remark 2.9(1), m0(B −C) is a finite support of m0x. Thus, m0x ∈ Z(X),
by Remark 2.4(2).

The following lemma is the key to show that cyclic finitely supported
M -sets DA are projective (see Lemma 3.16).
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Lemma 3.14. Suppose f : X → Y is an equivariant map between finitely
supported M -sets, and A is a finite support of f(x), for some x ∈ X. Then,
there exists m ∈ M with f(mx) = f(x) such that A is a finite support of
mx.

Proof. Let A be a finite support of y = f(x). Then, by Remark 2.4(2),
A1 = A − Z(D) supports y. If A1 supports x, then taking m = id we get
the result. Otherwise, take B1 = B −Z(D) to be a finite support of x. So,
A1 ⊆ A1 ∪B1 and since M is a zero-retraction monoid, there exists m ∈M
with [m(A1∪B1)] ⊆ A1∪Z(D) andm|A1

= id|A1
. Sincem(A1∪B1) supports

mx, we have A1 ∪ Z(D) supports mx and so A1 supports mx, by Remark
2.4(2). Also, m|A1

= id|A1
implies that f(mx) = mf(x) = f(x) = y.

As a result of Lemma 3.14, we have the following corollary for finitely
supported M -sets admit least supports.

Corollary 3.15. Let f : X → Y be an equivariant map between finitely
supported M -sets admit least supports. Then, for every y ∈ f(X) there
exist x ∈ X and m ∈M with f(mx) = y and supp y = suppmx.

Proof. Let y = f(x), for some x ∈ X. Since f is equivariant, we have
supp y ⊆ suppx. Since M is zero-retraction, there exists m0 ∈ M with
m0(suppx) ⊆ supp y ∪ Z(D) and m0 |supp y = id|supp y . Now, f(m0x) =
m0y = y. Also, supp y ⊆ suppm0x ⊆ [m0(suppx) − Z(D)] ⊆ supp y
implies that suppm0x = supp y.

Lemma 3.16. If A is a finite subset of D, then DA is a projective finitely
supported M -set.

Proof. Let f : X → Y be a surjective equivariant map and g : DA → Y
be an equivariant map. Then, we show that there exists an equivariant
map ϕ : DA → X with fϕ = g. To do so, applying Proposition 3.11, we
find an element in X such that A supports it. We have g(id|A) ∈ Y and
f is surjective. So, there exists x ∈ X with f(x) = g(id|A). Since g is
equivariant and A = id(A) is a finite support of id|A , we get that A is a
finite support of g(id|A). Hence, by Lemma 3.14, there exists m0 ∈M with
f(m0x) = g(id|A) and A supports m0x. Therefore, ϕ(m|A) = mm0x is a
required equivariant map by Proposition 3.11. Also,

fϕ(m|A) = f(mm0x) = mf(m0x) = mg(id|A) = g(m|A).

This completes the proof.
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Corollary 3.17.
(i) Every singleton finitely supported M -set is projective.
(ii) Every discrete finitely supported M -set is projective.

Proof. (i). D∅ is isomorphic to a singleton finitely supported M -set.
(ii). Follows from (i) and Proposition 2.2(i).

Theorem 3.18. Suppose X is a finitely supportedM -set. Then, there exists
a surjective equivariant map from P =

∐
x∈X

DAx to X, where Ax is a finite
support of x.

Proof. For each element x ∈ X, take Ax to be a finite support of x. Then,
by Proposition 3.11 there exists an equivariant map ϕx : DAx → X with
ϕx(m|Ax ) = mx. Now, the universal property of coproduct, ensures that
there exists a unique equivariant map ϕ : P → X by ϕ(a) = ϕx(a), for
every a ∈ DAx . Also, for each x ∈ X, there exists an element id|Ax ∈ DAx

with ϕ(id|Ax ) = ϕx(id|Ax ) = x which means that ϕ is surjective.

Lemma 3.19. Let X be a finitely supported M -set. Then, there exists a
projective finitely supported M -set P such that X is a surjective equivariant
image of P .

Proof. If X = Z(X), then by Corollary 3.17(ii), X is projective, and so,
in this case P = X. If X is non-discrete, then applying Lemma 3.16,
Proposition 2.2(i), and Theorem 3.18 we get the result.

Lemma 3.20. Let X be a finitely supported M -set. Then, X is indecom-
posable and projective if and only if X is cyclic and X ∼= DA, for some finite
subset A ⊆ D.

Proof. Necessity. First, notice that, applying Theorem 3.18 there exists a
surjective equivariant map ϕ : P → X, where P =

∐
x∈X

DAx and ϕ|
DAx

=

ϕx : DAx → X. Now since X be projective, there exists an equivariant map
ψ : X → P such that ϕψ = idX , where idX : X → X. Thus, ϕψ(X) = X.
Since X is indecomposable, we have ψ(X) ⊆ DAx , for some x ∈ X. Now,
X = ϕψ(X) ⊆ ϕ(DAx) ⊆ X, and so, Mϕ(id|Ax ) = ϕ(DAx ) = X which
means that X is cyclic. Notice that, X = Mϕ(id|Ax ) = Mϕx(id|Ax ) = DAx .
Also, since ψ is an injective equivariant map, we get that

X ∼= ψ(X) = ψ(DAx) = Mψϕ(id|Ax ) = Mψ(id|Ax ) = DAx .

Sufficiency. Follows from Lemma 3.9 and Lemma 3.16.
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Theorem 3.21. Let X be a finitely supported M -set. Then, X is projective
if and only if X =

∐
i∈I
Xi , where every Xi is isomorphic to DA, for some

finite subset A.

Proof. Suppose X is projective. Take X =
∐
Xi to be a coproduct of

indecomposable finitely supported M -sets Xi . Then, since each Xi has a
zero element, it is a retract of X. So, by Remark 2.1(2), we get that Xi ’s
are projective. Now, applying Theorem 3.20, every Xi is isomorphic to DA,
for some finite subset A.

To prove the other side, by Lemma 3.16, cyclic DA’s are projective, and
so, every Xi is projective. Now, applying Proposition 2.2(i), any coproduct
of projective finitely supported M -sets is projective.

Corollary 3.22. Every projective finitely supported M -set is a surjective
equivariant image of a free M -set.

Proof. Let X be a projective finitely supported M -set. Then, by Theorem
3.21, we get that X ∼=

∐
x∈X

DAx , where Ax supports x. On the other hand,
by Corollary 3.10, for every x ∈ X there exists a surjective equivariant
map ϕx : M → DAx . Now, the map ϕ :

∐
x∈X

M →
∐

x∈X
DAx defined

by ϕ(m) = ϕx(m) for some x ∈ X and m ∈ M is a required surjective
equivariant map.

4. Projective finitely supported Cb-sets

The monoid Cb is isomorphic to a submonoid of End(D). It is sufficient
to take two fixed elements a, b ∈ D instead of 0 and 1 and replace D with
D−{a, b}. Then, by the same scheme of Pitts, one can get a submonoid of
End(D) isomorphic to Cb. As an example of a zero-retraction monoid, we
can mention the monoid Cb.

Lemma 4.1. The monoid Cb is a zero-retraction monoid.

Proof. Suppose A ⊆ B are two finite subsets of D. If A = B or B = ∅, then
ι(B)− 2 = ι(B) = ι(A) = A.

If A ( B and A = ∅, then take δ ∈ S with D
δ
=B. So, δ(B)−2 = ∅ = A.

If A ( B and A 6= ∅, then take δ ∈ S with D
δ

= B − A. Hence
δ(B) = A ∪ 2 and so δ(B)− 2 = A and δ|A = id|A .

Lemma 3.15 holds in the category of finitely supported Cb-sets. In the
following proposition we prove it more specifically.
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Proposition 4.2. Suppose X and Y are two finitely supported Cb-set. If
f : X → Y is an equivariant map, then for every y ∈ f(X) there exists
x ∈ X with suppx = supp y.

Proof. Let y ∈ f(X). Then, there exists x ∈ X with y = f(x). If suppx =
∅, then supp y = ∅. Suppose x ∈ X with suppx 6= ∅. If suppx = supp y,
then we get the result. If suppx ( supp y, then take δ0 ∈ S with D

δ0
=

(supp y) − suppx. Thus δ0x = x and so suppx ⊆ supp δ0y. On the other
hand, supp y = (supp y − suppx) ∪ suppx = D

δ0
∪ suppx. So, supp δ0y ⊆

supp y − D
δ0

= suppx.

4.1 Max-zero cyclic finitely supported Cb-sets

In this subsection, we construct a particular cyclic finitely supported Cb-
set, and show that it is isomorphic to a finitely supported Cb-set DA, for
some finite subset A ⊆ D.

First, we give the following needed remark and lemma.

Remark 4.3. Let Cbx be a non-singleton cyclic finitely supported Cb-set.
Then,

(1) The Cb-subset Z(Cbx) of Cbx is a subset of S′
x
x. This is because,

by Lemma 2.19, we have Z(Cbx) ∩ Perm(D)x = ∅.
(2) If δ ∈ S′

x
with D

δ
= suppx, then, by Lemma 2.17(ii), we get that

supp δx ⊆ (suppx)− D
δ

= ∅. So, δx ∈ Z(Cbx).

(3) If δ ∈ S′
x
, then there exists δ′ ∈ S′

x
such that D

δ′ ⊆ suppx and
δx = δ′x. Furthermore, suppx \ D

δ
= suppx − D

δ′ . To show this, let
δ ∈ S′

x
. Then, D

δ
∩ suppx 6= ∅. Suppose δ = δ1δ2 with D

δ2
= D

δ
∩

suppx ⊆ suppx and D
δ1
∩ suppx = ∅. Then, δx = δ2x. Now, we show that

suppx − D
δ

= suppx − D
δ′ . Notice that, since D

δ1
∩ suppx = ∅, we get

that suppx− D
δ1

= suppx. So,

suppx−D
δ

= suppx− (D
δ1
∪D

δ2
) = (suppx−D

δ1
)−D

δ2
= suppx−D

δ2
.

Proposition 4.4. Suppose X is a finitely supported Cb-set and x ∈ X. Let
σ, σ′ ∈ Cb with σx = σ′x. Then,

(i) σ, σ′ ∈ Perm(D) ∪ Perm(D)Sx or σ, σ′ ∈ Perm(D)S′
x
.

(ii) there exists π ∈ Perm(D) with πx = x or there exist δ, δ′ ∈ S′
x
and

π ∈ Perm(D) with πδx = δ′x.
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Proof. (i). Since Sx ∩ S′x = ∅, it is sufficient to prove if σ ∈ Perm(D)S′
x
,

then σ′ ∈ Perm(D)S′
x
and vice versa. Let σx = σ′x with σ ∈ Perm(D)S′

x
.

Then, σ = πδ, and so, by Lemma 2.17, we get that

|suppσ′x| = |suppσx| = |suppπδx| = |supp δx| < |suppx|.

Now, if σ′ ∈ Perm(D) ∪ Perm(D)Sx , then |suppσ′x| = |suppx|, which is
impossible.

(ii). By (i), we get σ, σ′∈Perm(D) ∪ Perm(D)Sx or σ, σ′ ∈ Perm(D)S′
x
.

If σ, σ′ ∈ Perm(D)S′
x
, then σ = π1δ and σ′ = π2δ

′, and so, we get that
π1δx = π2δ

′x. In this case, taking π−12 π1 = π, we have πδx = δ′x.
Notice that, if σ ∈ Perm(D)Sx , then σx = πδx = πx. So, if both

σ, σ′ ∈ Perm(D) ∪ Perm(D)Sx , then σx = πx, and σ′x = π′x which means
that πx = π′x. Thus, π1x = x where π1 = π′−1π.

Remark 4.5. (1) For given c1, . . . , ck ∈ {0, 1}, the decimal number is
denoted by (c

k
c
k−1
· · · c1)2 and computed as c

k
× 2

k−1
+ c

k−1
× 2

k−2
+ · · ·+

c2 × 2
1

+ c1 × 2
0 .

(2) If (c
k
c
k−1
· · · c1)2 = (c′

k
c′
k−1
· · · c′

1
)2 , then ci = c′i, for all i = 1, . . . , k.

Note. The substitutions 0 6= 1 are just symbols, and they do not belong
to D. In the following lemma, if bi is the substitution 1, then take ci to be
the natural number 1, and if bi = 0, then take ci to be the zero number 0,
for all i = 1, . . . , k.

Lemma 4.6. Suppose X is a finitely supported Cb-set with x ∈ X. Let
suppx = {d1, . . . , dk} and b1, . . . , bk ∈ 2. Take A = {0, 1, 2, 3, . . . , 2k−1, x}
to be a set with 2

k+1 elements. Define map gx : Cb→ A by

gx(σ) =


(c
k
c
k−1
· · · c1)2 , if σ ∈ Cb(b1/d1) · · · (bk/dk)

x, if otherwise.

Then, supp gx = suppx.

Proof. First applying Proposition 2.16, we show that (0/d) gx = gx , for all
d /∈ suppx. In fact, we show that ((0/d)gx)(σ) = gx(σ), for all σ ∈ Cb.
Suppose σ ∈ Cb.

If σ /∈ Cb(b1/d1) · · · (bk/dk), then σ(0/d) /∈ Cb(b1/d1) · · · (bk/dk), be-
cause otherwise if σ(0/d) = σ′(b1/d1) · · · (bk/dk), then

σ̂(di) = (σ̂(0/d))(di) = σ̂′(b1/d1) · · · (bk/dk)(di) ∈ 2,
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for all di ∈ {d1, . . . , dk}. This implies that σ ∈ Cb(b1/d1) · · · (bk/dk), which
is impossible. Thus, in this case, for all σ ∈ Cb, we get that

((0/d)gx)(σ) = gx(σ(0/d)) = x = gx(σ).

Now, let σ ∈ Cb(b1/d1) · · · (bk/dk). Then, for some σ1 ∈ Cb, we have
σ = σ1(b1/d1) · · · (bk/dk). Hence,

σ(0/d) = σ1(b1/d1) · · · (bk/dk)(0/d)
= σ1(0/d)(b1/d1) · · · (bk/dk) ∈ Cb(b1/d1) · · · (bk/dk),

and so, gx(σ(0/d)) = gx(σ).
Therefore, gx ∈ (ACb)

fs
, and so supp gx ⊆ suppx.

Now, we show that suppx ⊆ supp gx . To prove this, by Proposition
2.16, first, we prove that (0/d) gx 6= gx , for all d ∈ suppx.

Let α = (0/d1) · · · (0/di−1)(1/di)(0/di+1) · · · (0/dk), and d = di . Then,

((0/di)gx)(α) = gx(α(0/di))
= gx((0/d1) · · · (0/di−1)(0/di)(0/di+1) · · · (0/dk))
= (0 · · · 0)2 = 0

6= 2
i−1

= (0 · · · 1 · · · 0)2
= gx(α).

Thus, (0/di)gx 6= gx .

Remark 4.7. The element gx in Lemma 4.6 belongs to (ACb)
fs
. Thus,

Cbgx is a Cb-subset of (ACb)
fs
.

In the following proposition, we give all needed information about Cbgx .

Proposition 4.8. Consider Cbgx constructed in Lemma 4.6. The following
statements hold:

(i) Suppose δ, δ′ ∈ S′
gx

with D
δ

= D
δ′ = supp gx . Then δ(d) = δ′(d), if

δgx = δ′gx , for all d ∈ supp gx .

(ii) For all δ ∈ S′
gx
, we have supp δgx = (supp gx)− D

δ
.

(iii) For all δ ∈ S′
gx

with D
δ
( supp gx , we have δgx /∈ Z(Cbgx).

(iv) Z(Cbgx) = {δgx : D
δ

= supp gx}.

(v) Cbgx has exactly 2
k zero elements.
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Proof. (i). On the contrary, suppose there exists some d ∈ supp gx with
δ(d) = 0 6= 1 = δ′(d). We show that δgx 6= δ′gx . Let δ = (b1/d1) · · · (0/dk)
and δ′ = (b′1/d1) · · · (b′k−1

/d
k−1

)(1/d
k
). Then,

δgx(ι) = gx(ιδ) = (0c
k−1
· · · c0)2 6= (1c′

k−1
· · · c′

0
)2 = gx(ιδ′) = δ′gx(ι).

(ii). Let δ ∈ S′
gx
. Then, by Remark 4.3(3), there exists δ1 ∈ S′gx with

D
δ1
⊆ supp gx and δgx = δ1gx . Also, supp gx \ Dδ

= supp gx − D
δ1
. If

D
δ1

= supp gx , then by Lemma 2.17(ii), supp δ1gx ⊆ (supp gx) − D
δ1

= ∅.
So, in this case, supp δgx = supp δ1gx = (supp gx)−D

δ1
= supp gx−Dδ

. Let
D
δ1

( supp gx . In this case, we also show that supp δgx = (supp gx) − D
δ
.

To prove this, it is sufficient to show that supp δ1gx = (supp gx) − D
δ1
.

On the contrary, suppose the equality does not hold. Take δ′1, δ′2 ∈ S with
D
δ′1

= D
δ′2

= [(supp gx) − D
δ1

)] − supp δ1gx , and δ′1(d) 6= δ′2(d), for some
d ∈ D

δ′1
. Then, δ′1δ1gx = δ1gx = δ′2δ1gx . We have the following cases;

Case (1): Suppose supp δ1gx 6= ∅. Let δ
0
∈ S with D

δ
0

= supp δ1gx .
Then, D

δ
0
δ′1δ1

= supp gx = D
δ
0
δ′2δ1

. Now, since there exists some d ∈ D
δ′1

with δ′1(d) 6= δ′2(d), we get that δ0δ′1δ1(d) 6= δ0δ
′
2δ1(d). So applying (i),

we get that δ0δ′1δ1gx 6= δ0δ
′
2δ1gx which is a contradiction. This is because

the equality of δ′1δ1gx = δ1gx = δ′2δ1gx implies that δ0δ′1δ1gx = δ0δ1gx =
δ0δ
′
2δ1gx .

Case (2): Let supp δ1gx = ∅. Then, D
δ′1δ1

= supp gx = D
δ′2δ1

. Now, since
there exists some d ∈ D

δ′1
with δ′1(d) 6= δ′2(d), we get that δ′1δ1(d) 6= δ′2δ1(d).

So, applying (i), we get that δ′1δ1gx 6= δ′2δ1gx which is a contradiction. This
is because δ′1δ1gx = δ1gx = δ′2δ1gx .

(iii). Since D
δ
( supp gx , we get that supp gx − D

δ
6= ∅. Now, applying

(ii), we have supp δgx 6= ∅, and so, δgx /∈ Z(Cbgx).

(iv). Let Z = {δgx : D
δ

= supp gx}. Then, we show that Z = Z(Cbgx).
Let a ∈ Z. Then, a = δgx with D

δ
= supp gx . Thus, by Lemma 2.17(ii),

supp δgx ⊆ (supp gx) − D
δ

= ∅, and so, δgx ∈ Z(Cbgx). Now, let a ∈
Z(Cbgx). Then, a = σgx for some σ ∈ Cb. By Remark 4.3(1), σ ∈ S′

gx
.

Thus, a = δgx where δ ∈ S′
gx
. First, we show that D

δ
⊆ supp gx . Notice

that, since δ ∈ S′
gx
, applying Remark 4.3(3), there exists δ1 ∈ S′

gx
with

D
δ1
⊆ supp gx and δgx = δ1gx . Also, supp gx − D

δ
= supp gx − D

δ1
. If

D
δ1

( supp gx , then by part (iii), δ1gx /∈ Z(Cbgx). So, δgx /∈ Z(Cbgx).
Thus, D

δ1
= supp gx , and so, supp gx −D

δ
= supp gx −D

δ1
= ∅. Therefore,
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D
δ
⊆ supp gx . Now, if D

δ
( supp gx , then using part (iii) we get that

δgx /∈ Z(Cbgx) which is impossible. So, D
δ

= supp gx .
(v). This follows by (iv).

Lemma 4.9. Let πδ1gx = δ2gx where D
δ1
,D

δ2
⊆ supp gx and π ∈ Perm(D).

Then,
(i) |D

δ1
| = |D

δ2
|.

(ii) D
δ1

= D
δ2
.

(iii) δ1 = δ2.

Proof. (i). Notice that, by Proposition 4.8(ii), supp δ1gx = (supp gx)−D
δ1
,

and supp δ2gx = (supp gx) − D
δ2
. Now, since |supp δ1gx | = |supp δ2gx |, we

get that |D
δ1
| = |D

δ2
|.

(ii). On the contrary, suppose D
δ1
6= D

δ2
. So, there exists some

d ∈ D
δ1
− D

δ2
or d ∈ D

δ2
− D

δ1
. Assuming d ∈ D

δ2
− D

δ1
, we prove the

result. The other case is proved similarly. Notice that, d ∈ D
δ2

implies that
δ2(d) ∈ 2, say, δ2(d) = 0. Take δ ∈ S with D

δ
= supp δ1gx and δ(d) = 1.

Now, πδδ1gx = δ′′πδ1gx = δ′′δ2gx . Applying Proposition 4.8(ii), since
supp δδ1gx = (supp δ1gx)−D

δ
= ∅, we get that δδ1gx ∈ Z(Cbgx). Thus, by

Proposition 4.8(i), we have δδ1(d) = δ′′δ2(d) for all d ∈ supp gx which is a
contradiction. This is because δ′′δ2(d) = 0 while δδ1(d) = δ(d) = 1.

(iii). By part (ii), we have D
δ1

= D
δ2
. Now, we show that δ1(d) = δ2(d),

for all d ∈ D
δ1
. Similar to the proof of (ii), take δ ∈ S with D

δ
= supp δ1gx .

Then, we get that πδδ1gx = δ′′δ2gx , and so, δδ1(d) = δ′′δ2(d) for all d ∈
supp gx . Let d ∈ D

δ1
. Then, δ1(d) ∈ 2, say δ1(d) = 0. So, δ′′δ2(d) =

δδ1(d) = 0. Now, since D
δ1

= D
δ2
, we get that d ∈ D

δ2
, and so, δ2(d) = 0.

Thus, δ1 = δ2.

The following lemma shows that gx is a strongly finitely supported ele-
ment of Cbgx .

Lemma 4.10. Let σgx = σ′gx where σ, σ′ ∈ Cb. Then, σ|supp gx = σ′|supp gx .

Proof. Let σgx = σ′gx . Then, by Proposition 4.4, we have the following
cases:

Case (1): Suppose πgx = gx . In this case, for all d ∈ supp gx , we
show that π(d) = d. We have π(supp gx) = suppπgx = supp gx . Take
d ∈ supp gx . Since πgx = gx , we get that π(0/d)gx = (0/πd)gx . Now, by
Lemma 4.9, πd = d.
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Case (2): If πδgx = δ′gx , then applying Lemma 4.9, we have δ = δ′. So,
πδgx = δgx . Notice that, by Proposition 4.8(ii), supp δgx = (supp gx)−D

δ
.

If supp δgx = ∅, then supp gx = D
δ
. So, in this case, it s clear that πδ(d) =

δ(d) for all d ∈ supp gx . Suppose supp δgx 6= ∅. First, we show π|
supp δgx

=
ι|

supp δgx
. Let d ∈ supp δgx Then, πd ∈ supp δgx , and so, π(0/d)δgx =

(0/πd)δgx . Applying Lemma 4.9, πd = d. Therefore, for all d ∈ supp δgx ,
we have πd = d. Now, we prove the result. Take d ∈ supp gx . If d ∈ D

δ
,

then the result holds. If d /∈ D
δ
, then σd = πδd = πd and δ′d = δd = d. On

the other hand, since d ∈ (supp gx−Dδ
) = supp δgx , we get that πd = d.

Corollary 4.11. Max-zero cyclic finitely supported Cb-sets are projective.

Proof. If X = Cbx is a max-zero cyclic finitely supported Cb-sets, then X
is isomorphic to Dsuppx, by Lemma 3.12 and Lemma 4.10. So, applying
Lemma 3.16 we get that X is projective.

5. Conclusions

In this section, we assume that M and N are two submonoids of End(D)
such that M is a submonoid of N .

Note. An N -equivariant (M -equivariant) map is an equivariant map be-
tween finitely supported N -sets (M -sets). (cf. Example 2.4, [2])

In [6], we proved that free finitely supported N -sets exist over finitely
supportedM -sets (Theorem 5.1). By Theorem 5.1, we show that the functor
F preserves projective objects and then we characterize projective finitely
supported N -sets in which N contains a zero-retraction submonoid M .

Theorem 5.1. (cf. [6]) The forgetful functor U : (N -Set)
fs
→ (M -Set)

fs

has a left adjoint F : (M -Set)
fs
→ (N -Set)

fs
.

Remark 5.2. (cf. [6]) (1) Since M 6 N , every finitely supported N -set
can be considered as a finitely supported M -set.

(2) The set N ×X together with the action (n, (n′, x)) 7→ (nn′, x) is an
N -set, for each finitely supported M -set X.

(3) F (X) = (N × X)/ ∼ is a finitely supported N -set where X is a
finitely supported M -set and the relation ∼ over N × X is the smallest
equivariant equivalence relation generated by R defined as follows:

(n, x)R(n′, x′)⇔ ∃m ∈M ; mx = x′ and n′m|S = n|S ,
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where S is a finite support of x.
The equivalence class of (n, x) denoted by [n, x].
(4) If X is a finitely supported M -set, then ηX : X −→ F (X) defined

by ηX (x) = [id, x] is an equivariant map.
(5) Using (1), for every finitely supported N -set, there exists a surjective

equivariant map ϕ : F (U(X)) = F (X) −→ X defined by ϕ([n, x]) = nx.

Now, by Theorem 5.1, we can characterize projective finitely supported
N -sets.

Proposition 5.3. If X is a projective finitely supported M -set, then F (X)
is a projective finitely supported N -set.

Proof. Let g : Y −→ Z be a surjective N -equivariant map and f : F (X) −→
Z be an N -equivariant map. Then, fηX : X −→ Z is an M -equivariant
map, since ηX : X −→ F (X) is an M -equivariant map. Now, since X is
projective, there exists an M -equivariant map h : X −→ Y with gh = fηX .
On the other hand, since F (X) is free over X, there exists an N -equiavriant
map f̄ : F (X) −→ Y with f̄ηX = h. Now, we show that gf̄ = f . We have

gf̄ [n, x] = ngf̄ [id, x] = ngf̄ηX (x) =

ngh(x) = nfηX (x) = nf([id, x]) = f([n, x]).

Corollary 5.4. If M is a zero-retraction submonoid of N and A ⊆ D is a
finite subset, then F (DA) is a projective finitely supported N -set.

Proof. Follows from Lemma 3.16 and Proposition 5.3.

Lemma 5.5. Let DA be a finitely supported N -set where A is a finite subset
of D. Then, DA is a retract of F (DA).

Proof. First, notice that, by Remark 5.2(2), there exists a surjective N -
equivariant ϕ : F (DA) −→ DA defined by ϕ[n, id|A ] = nid|A = n|A . Sup-
pose n ∈ N . Define h(n|A) = [n, id|A ]. We show that h is an N -equivariant
and commutes the following diagram; that is, ϕh = id.

DA

h

{{
id
��

F (DA)
ϕ // // DA
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To do so, let n, n′ ∈ N with n|A = n′|A . Then, since A is a finite
support of id|A , by Remark 5.2(2), we get that (n, id|A)R(n′, id|A). Now,
since R ⊆∼, we get that [n, id|A ] = [n′, id|A ]. If n1 ∈ N , then

n1h(n|A) = n1[n, id|A ] = [n1n, id|A ] = h(n1n|A).

Also, ϕh(n|A) = ϕ([n, id|A ] = n|A = id(n|A).

Corollary 5.6. For every finite subset A ⊆ D, finitely supported N -set DA

is projective.

Proof. Follows from Proposition 5.3 and Lemma 5.5.

Theorem 5.7. Let X be a finitely supported N -set. Then,
(i) X is indecomposable and projective if and only if it is cyclic and

isomorphic to DA for some finite subset A ⊆ D.
(ii) X is projective if and only if X =

∐
i∈I
Xi , where every Xi is iso–

morphic to DA for some finite A ⊆ D.

Proof. (i). Follows from Lemma 3.20 and Corollary 5.6.
(ii). Follows from (i), Proposition 2.2 and Corollary 5.6.
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