https://doi.org/10.56415/qrs.v30.20

A note on 2-prime and n-weakly 2-prime ideals of semirings

Biswaranjan Khanra, Manasi Mandal and Sampad Das

Abstract. We introduce and study the concepts of 2-prime and *n*-weakly 2-prime (resp. weakly 2-prime) ideals in a commutative semiring. We prove that an integral semidomain S is a valuation semiring if and only if every proper ideal of S is 2-prime and in a principal ideal semidomain the concepts of primary, quasi-primary and 2-prime ideals coincide. We characterize semirings where 2-prime ideals are prime and also characterize semirings where every proper ideal is *n*-weakly 2-prime (resp. weakly 2-prime).

1. Introduction

A commutative semiring is a commutative semigroup (S, \cdot) and a commutaive monoid $(S, +, 0_S)$ in which 0_S is the additive identity and $0_S.x = x.0_S = 0_S$ for all $x \in S$, both are connected by ring like distributivity. We say S is a semiring with identity if the multiplicative semigroup (S, \cdot) has identity element. Throughout this paper, unless otherwise mentioned, all semirings are commutative with identity element $1 \neq 0$, in particular S will denote such a semiring.

A nonempty subset I of S is called an ideal of S if $a, b \in I$ and $r \in S$, then $a + b \in I$ and $ra \in I$. We define radical of an ideal I as $\sqrt{I} = \{x \in S : x^n \in I\}$ and residual of I by $a \in S$ as $(I : a) = \{s \in S : sa \in I\}$. Annihilator of an element a in a semiring S is defined as $Ann(a) = \{x \in S : ax = 0\}$. For an element x of S, (x) = Sx is the principal ideal of S generated by x. An ideal I of a semiring S is said to be subtructive (or k-ideal) if $a, a+b \in I$, $b \in S$ then $b \in I$. A nonzero element a of S is said to be a zero divisor if ab = 0 for some nonzero $b \in S$. For an ideal I of $S, Zd_S(I) = \{s \in S : sr \in I$ for some $r \notin I\}$ and $\sqrt[2]{I} = \{x \in S : x^2 \in I\}$. An ideal I of a semiring Sis said to be proper if $I \neq S$ and an ideal generated by nth powers of

²⁰¹⁰ Mathematics Subject Classification: 16Y60.

Keywords: Prime ideal, maximal ideal, 2-prime ideal, weakly 2-prime ideal

elements of I is denoted as $I_n = (\{x^n : x \in I\})$ [?]. A semiring S is called a semidomain if ab = ac implies b = c for any $b, c \in S$ and for all nonzero $a \in S$. Similarly to the concept of field of fractions in ring theory, one can define the semifield of fractions F(S) of a semidomain S([5], p. 22). Let A be a multiplicatively closed subset of a semiring S. The relation is defined on the set $S \times A$ by $(s, a) \sim (t, b) \Leftrightarrow xsb = xat$ for some $a \in A$ is an equivalence relation and the equivalence class of $(s, a) \in S \times A$ denoted by s/a. The set of all equivalence classes of $S \times A$ under "~" denoted by $A^{-1}S$. The addition and multiplication are defined s/a + t/b = (sb + ta)/ab and (s/a)(t/b) = st/ab. The semiring $A^{-1}S$ is called quotient semiring S by A. Suppose that S is a commutative semiring, A be a multiplicatively closed subset and I be an ideal. The set $A^{-1}I = \{a/b : a \in I, b \in A\}$ is an ideal of $A^{-1}S$. A proper ideal I of a semiring is said to be prime (resp. weakly prime) if for $a, b \in S$ such that $ab \in I$ (resp. $0 \neq ab \in I$) implies either $a \in I$ or $b \in I$. An ideal I of S is said to be primary if $ab \in I$ for some $a, b \in S$ implies $a \in I$ or $b \in \sqrt{I}$ and quasiprimary if \sqrt{I} is a prime ideal of S. The notion of 2-prime (resp. weakly 2-prime ideal) as a generalisations of prime (resp. weakly prime) ideals in a commutative ring was introduced in [2, 7] and in a commutative semigroup in [6]. Moreover, rings in which concept of 2-prime, primary ideals coincide and rings in which 2-prime ideals are prime has been studied in [13]. These observations tempted us to study 2-prime (resp. weakly 2-prime) ideals in a commutative semiring.

In this article, firstly we define 2-prime ideals in a commutative semiring and state its relations with prime and quasi-primary ideals. Then we prove that every maximal ideal of a semiring without unity is 2-absorbing (Theorem 2.6). We define valuation ideal in a semiring and prove that a semidomain is a valuation semiring if and only if every proper ideal of the semidomain is 2-prime (Theorem 2.11). Also we prove that in a principal ideal semidomain the concepts of 2-prime, primary, quasi-primary ideals coincide (Theorem 2.15). In section 3, we characterize semirings in which 2-prime ideals are prime, defined as 2-P-semiring. In section 4, we define n-weakly 2-prime (resp. weakly 2-prime) ideals in a semiring. Then we characterize semirings in which every proper ideal is weakly 2-prime (Theorem 4.5) (resp. n-weakly 2-prime) (Theorem 4.6) and also studied some further properties of these ideals.

Before going to main work, we discuss some necessary preliminaries.

Theorem 1.1. (cf. [8]) Let $I \subseteq P$ be ideals of a semiring S, where P is prime. Then the following statements are equivalent:

- (1) P is a minimal prime ideal of I.
- (2) For each $x \in P$, there is a $y \notin P$ and a nonnegative integer i such that $yx^i \in I$.

2. 2-prime ideals

Definition 2.1. A proper ideal I of a semiring S is said to be a 2-prime ideal if $xy \in I$ for some $x, y \in S$ implies either $x^2 \in I$ or $y^2 \in I$.

The following lemmas are obvious, hence we omit the proof.

Lemma 2.2.

- (1) Every prime ideal of S is a 2-prime ideal of S.
- (2) Every 2-prime ideal of S is a quasi-primry ideal of S. Therefore if I is a 2-prime ideal of S, then $\sqrt{I} = P$ is a prime ideal of S.

Remark 2.3. For a 2-prime ideal I of a semiring S, we refer to the prime ideal $P = \sqrt{I}$ as the associated prime ideal of I and I is referred to as a P-2-prime ideal of S.

The following examples show that converses of above lemmas are not true.

Example 2.4. Consider the ideal $I = \{m \in \mathbb{N} \cup \{0\} : m \ge 3\}$ in the semiring $S = \{\mathbb{N} \cup \{0\}, +, \cdot\}$. Clearly, I is 2-prime but not a prime ideal of S, since $2.2 \in I$ but $2 \notin I$.

Example 2.5. Consider the ideal $I = (\{X_n^n\}_{n=1}^\infty)$ in the semiring $S = \mathbb{Z}_2[\{X_i\}_{i=1}^\infty]$. Clearly I is quasiprimary ideal of S, since \sqrt{I} is a prime ideal of S. But I is not a 2-prime ideal of S, as $X_6^2 \cdot X_6^4 = X_6^6 \in I$ and neither $(X_6^2)^2 \notin I$ nor $(X_6^4)^2 \notin I$.

If S is a semiring with unity, then every maximal ideal of S is prime ([1], Theorem 11) and hence 2-prime. If S is a semiring without unity then maximal ideal of S need not be prime for example see ([1], Example 12) but there is a relation between maximal and 2-prime ideal of S, as follows

Theorem 2.6. Let S be semiring without unity and assume maximal ideal exists. Then every maximal ideal of S is a 2-prime ideal of S.

Proof. Let $xy \in M$ with $x^2 \notin M$ for some $x, y \in S$, where M is a maximal ideal of S. If $y^2 \notin M$, then clearly $x, y \in S - M$. Hence M + (x) = M + (y) = S. Since $x \in S$, $x^2 = (p + s_1x + n_1x)(q + s_2y + n_2y)$ for some $p, q \in M, s_1, s_2 \in S$ and $n_1, n_2 \in \mathbb{Z}$, implies $x^2 \in M$, a contradiction. Consequently, $y^2 \in M$. Hence M is a 2-prime ideal of S. \Box

Proposition 2.7. Let I be an ideal of a semiring S.

- (1) If I is a 2-prime ideal of S, then there is exactly one prime ideal of S that is minimal over I.
- (2) If I is a prime ideal of S, then I^2 is a 2-prime ideal of S.
- (3) An ideal I of S is prime if and only if it is both 2-prime and semiprime.
- (4) If I is a 2-prime ideal of S and J_1, J_2, \ldots, J_n are ideals of S such that $\bigcap J_i \subseteq \sqrt{I}$, then $J_i \subseteq \sqrt{I}$ for some $i \in \{1, 2, \ldots, n\}$. In particular, if $\bigcap J_i = \sqrt{I}$, then $J_i = \sqrt{I}$ for some $i \in \{1, 2, \ldots, n\}$.
- (5) If I is a P-2-prime ideal of S, then (I:a²) is a 2-prime ideal of S, for all a ∈ S such that a² ∉ I. In particular (I:a²) is a P-2-prime ideal of S for all a ∈ S − √I.
- (6) If I is a 2-prime ideal of S and $(I:a) = (I:a^2)$ for all $a \in S I$, then (I:a) is a 2-prime ideal of S.
- (7) I is a proper ideal of S and A be a multiplicatively closed subset of S, then the following statements hold.
 - (i) If I is a 2-prime ideal of S such that $I \cap A = \phi$, then $A^{-1}I$ is a 2-prime ideal of $A^{-1}S$.
 - (ii) If $A^{-1}I$ is a 2-prime ideal of $A^{-1}S$ with $Zd_S(I) \cap S = \phi$, then I is a 2-prime ideal of S.
- (8) If I is a P-primary ideal for some prime ideal P of S such that $P^2 \subseteq I$. Then I is a 2-prime ideal of S.

Proof. (1). If possible, let J_1 and J_2 be two distinct prime ideal that are minimal over I. Hence there exists $j_1 \in J_1 - J_2$ and $j_2 \in J_2 - J_1$. By Theorem 1.1 there is $a_1 \notin J_1$ and $a_2 \notin J_2$ such that $a_1 j_1^n \in I$ and $a_2 j_2^m \in I$ for some integer $m, n \ge 1$. Since $j_1, j_2 \notin I \subseteq J_1 \cap J_2$ and I is 2-prime, hence $a_1^2 \in I \subseteq J_1 \cap J_2$ and $a_2^2 \in I \subseteq J_1 \cap J_2$. Therefore $a_1^2 \in J_1$. Since J_1 is prime so $a_1 \in J_1$, a contradiction. Similarly if $a_2^2 \in J_2$ then $a_2 \in J_2$, a contradiction. Hence there is exactly one prime ideal minimal over I.

- (2). Since $I^2 \subseteq I$ for any ideal I of S, it is clear.
- (3). If an ideal I is prime, then clearly it is 2-prime and semiprime.

Conversely, let $ab \in I$ for some $a, b \in S$. Since I is 2-prime we have $a^2 \in I$ or $b^2 \in I$, which implies $a \in I$ or $b \in I$, since I is semprime also. Consequently I is a prime ideal of S.

(4). Let $J_i \not\subseteq \sqrt{I}$ for all $i \in \{1, 2, ..., n\}$. Then there exists $a_i \in J_i$ but $a_i \notin \sqrt{I}$ for all $i \in \{1, 2, ..., n\}$. Let $x = a_1 a_2 \cdots a_n$. Then $x \in \bigcap J_i$ but $x \notin \sqrt{I}$, since \sqrt{I} is a prime ideal of S, a contradiction. Hence $J_i \subseteq \sqrt{I}$ for some $i \in \{1, 2, ..., n\}$.

Again if, $\bigcap J_i = \sqrt{I}$, then $\sqrt{I} \subseteq J_i$ for all $i \in \{1, 2, ..., n\}$. Hence $J_i = \sqrt{I}$ for some $i \in \{1, 2, ..., n\}$.

(5). Let $xy \in (I : a^2)$ with $x^2 \notin (I : a^2)$ for $x, y \in S$. Then $xya^2 = (xa)(ya) \in I$. Hence $(ya)^2 = y^2a^2 \in I$, since I is a 2-prime ideal of S and $x^2a^2 \notin I$. Consequently $(I : a^2)$ is a 2-prime ideal of S.

Again let $a \in S - P$ and $x \in (I : a^2)$. Then $a^2x \in I \subseteq P$. Hence $x^2 \in I$, since $a \notin P$ and I is a 2-prime ideal of S. Thus $I \subseteq (I : a^2) \subseteq P$, which implies $P = \sqrt{I} \subseteq \sqrt{(I : a^2)} \subseteq \sqrt{P} = P$. Consequently $(I : a^2)$ is a P-2-prime ideal of S.

(6). Clearly follows from (5).

(7). (i) Let $(a/s)(b/t) \in A^{-1}I$ for some $a, b \in S$ and $s, t \in A$. Then there exists $u \in A$ such that $abu \in I$. Then $a^2 \in I$ or $b^2u^2 \in I$, since Iis a 2-prime ideal of S. If $a^2 \in I$, then $(a/s)^2 = (ua^2/us^2) \in A^{-1}I$ and if $b^2u^2 \in I$ then $(b/s)^2 = (b^2u^2/s^2u^2) \in A^{-1}I$. Therefore $A^{-1}I$ is a 2-prime ideal of $A^{-1}S$.

(*ii*) Let $xy \in I$ for some $x, y \in S$. Then $\frac{x}{1} \frac{y}{1} \in A^{-1}I$ implies $\frac{x^2}{1} \in A^{-1}I$ or $\frac{y^2}{1} \in A^{-1}I$. Hence $ax^2 \in I$ or $by^2 \in I$ for some $a, b \in S$. Since $A \cap Zd_S(I) = \phi$, we have either $x^2 \in I$ or $y^2 \in I$, as desired.

(8). Let $ab \in I$ for some $a, b \in S$, where I is a P-primary ideal of S such that $P^2 \subseteq I$. Then either $a \in I$ or $b \in \sqrt{I} = P$. If $a \in I$ then $a^2 \in I^2$ and if $b \in P$ then $b^2 \in P^2 \subseteq I$. Consequently I is a 2-prime ideal of S. \Box

Theorem 2.8. Let P be a proper ideal of a semiring S. Then the following statements are equivalent:

- (1) P is a 2-prime ideal of S.
- (2) for any ideals J, K of S with $JK \subseteq P$ implies either $J_2 \subseteq P$ or $K_2 \subseteq P$, where $J_2 = (\{x^2 : x \in J\})$ and $K_2 = (\{k^2 : k \in K\})$.
- (3) For every $s \in S$, either $(s) \subseteq (P:s)$ or $(P:s) \subseteq \sqrt[2]{P}$.
- (4) For any ideals A and B of S with $AB \subseteq P$ implies either $A_2 \subseteq P$ or $B \subseteq \sqrt[2]{P}$.
- (5) For every $s \in S$, either $s^2 \in P$ or $(P:s)_2 \subseteq P$.

Proof. (1) \Rightarrow (2). Let *P* be a 2-prime ideal of a semiring *S* and $JK \subseteq P$ for some ideal *J*, *K* of *S* with $J_2 \notin P$. Then there exists an element $p \in J$ such that $p^2 \notin P$. Since $pK \subseteq P$ and $p^2 \notin P$, we conclude $K_2 \subseteq P$ (Proposition 2.7???).

 $(2) \Rightarrow (1)$. Let $ab \in P$ for some $a, b \in S$ and $a^2 \notin P$. Let J = (a) and K = (b). Then $JK \subseteq P$ and $J_2 \notin P$, otherwise $a^2 \in P$. Hence $K_2 \subseteq P$ implies $b^2 \in P$. Consequently, P is a 2-prime ideal of S.

(1) \Rightarrow (3) Let $s \in S$. If $s^2 \in P$, then $s \in (P:s)$ implies $(s) \subseteq (P:s)$. Let $s^2 \notin P$ and $r \in (P:s)$ for some $r \in S$. Hence $rs \in P$ implies $r^2 \in P$, since P is 2-prime and $s^2 \notin P$. Consequently, $(P:s) \subseteq \sqrt[2]{P}$.

 $(3) \Rightarrow (4)$. Let $AB \subseteq P$ for some ideals A, B of S. Let $B \not\subseteq \sqrt[2]{P}$. Then there exists $b \in B - \sqrt[2]{P}$ and $ab \in P$ for all $a \in A$. Since $b \in (P:a) - \sqrt[2]{P}$, we have $(P:a) \not\subseteq \sqrt[2]{P}$. Hence by hypothesis, $(a) \subseteq (P:a)$ implies $a^2 \in P$. Consequently $A_2 \subseteq P$.

 $(4) \Rightarrow (5)$. Let $s \in S$. If $s^2 \in P$, there is nothing to prove. So let $s^2 \notin P$ and A = (P:s), B = (s). Then $AB = (P:s)(s) \subseteq P$. Since $B \nsubseteq \sqrt[q]{P}$, we have $A_2 = (P:s)_2 \subseteq P$.

 $(5) \Rightarrow (1)$. Let $xy \in P$ with $x^2 \notin P$ for some $x, y \in S$. Then $y \in (P:x)$. Hence by hypothesis, $y^2 \in (P:s)_2 \subseteq P$, as desired.

The concept of valuation semiring has been defined by P. Nasehpour in [10], here we define valuation ideal of a semiring, as follows

Definition 2.9. Let S be a semidomain and K be its semifield of fractions. Then an ideal I in S is a valuation ideal if I is the intersection of S with an ideal of a valuation semiring S_v containing S. Moreover if v is the corresponding M-valuation we say I is a valuation ideal associated with the M-valuation v or I is a v-ideal.

Lemma 2.10. Let v be an M-valuation on K and I an ideal of a semidomain S. Then the followings are equivalent

- (1) I is a valuation ideal.
- (2) For each $x \in S$, $y \in I$, the inequality $v(x) \ge v(y)$ implies $x \in I$.
- (3) I is of the form $I = S_v I \cap S$.

Proof. The proof is similar to ([15], page 340).

Theorem 2.11. Let S be a semidomain. Then the following are equivalent (1) Every ideal of S is 2-prime.

- (2) Every principal ideal of S is 2-prime.
- (3) S is a valuation semiring.

Proof. $(1) \Rightarrow (2)$. It is clear.

 $(2) \Rightarrow (3)$. Let $x \in K - \{0\}$, where K is the semifield of fractions of S. Then $x = \frac{a}{b}$ for some $a, b \in S - \{0\}$. Let I = (ab) be a principal ideal of S so 2-prime and since $ab \in (ab) = I$, we have $a^2 \in I$ or $b^2 \in I$. If $a^2 \in I$, then there exists an element $c \in S$ such that $a^2 = cab$, hence $x = \frac{a}{b} = c \in S$. Similarly, if $b^2 \in I$, we have $x^{-1} \in S$. Consequently, S is a valuation semiring ([10], Theorem 2.4).

(3) \Rightarrow (1). Let *I* be a *v*-ideal on *S* where *v* is a valuation on *S*. Let $xy \in I$ for some $x, y \in S$. If $v(x) \ge v(y)$, we get $v(x^2) \ge v(xy)$ and as *I* is a *v*-ideal we have $x^2 \in I$. Similarly, $v(y) \ge v(x)$ implies $y^2 \in I$. Consequently *I* is a 2-prime ideal of *S*.

The following lemmas are obvious, hence we omit the proof

Lemma 2.12. Let S be a semidomain and $a, b \in S - \{0\}$. Then a and b are associates if and only if (a) = (b).

Lemma 2.13. Let S be a semidomain and $p \in S - \{0\}$. Then p is an irreducible element of S if and only if (p) is a maximal ideal of S.

Lemma 2.14. Let I be a P-primary ideal of a semiring S. Then P is the unique minimal prime ideal of I in S.

Proof. Let Q be another minimal prime of I in S. Then $I \subseteq Q$ implies $P = \sqrt{I} \subseteq \sqrt{Q} = Q$. Hence P is the unique minimal prime ideal of I in S. \Box

Theorem 2.15. Let I be a proper ideal of a principal ideal semidomain S. Then the followings are equivalent

- (1) I is a quasi-primary ideal of S.
- (2) I is a primary ideal of S.
- (3) I is of the form (p^n) , where n is a postitive integer and p = 0 or an irreducible element of S.
- (4) I is a 2-prime ideal of S.

Proof. (1) \Rightarrow (2). Since every nonzero prime ideal of a principal ideal semidomain S is a maximal ideal ([11], Proposition 2.1), it follows claerly from ([1], Theorem 40).

 $(2) \Rightarrow (1)$. It is obvious.

 $(2) \Rightarrow (3)$. Let *I* be a nonzero primary ideal of *S*. Then I = (a) for some nonzero nonunit element $a \in S$. Since every principal ideal semidomain is a unique factorization semidomain ([11], Theorem 3.2), *a* can written as a product of irreducible elements of *S*. If *a* were divisible by two irreducible elements *x* and *y* of *S*, which are not associates, then by Lemma 2.12 and 2.13 (*x*) and (*y*) would be distinct maximal ideal of *S*, they would both minimal prime ideal of (*a*), which contradicts Lemma 2.14. Hence $I = \{(p^n) : p = 0 \text{ or } p \text{ is an irreducible elements of } S \text{ and } n \in \mathbb{N}\}.$

 $(3) \Rightarrow (2)$. Since S is a semidomain, $\{0\}$ is prime and hence primary. Let p be an irreducible element of S and $n \in \mathbb{N}$, then by Lemma 2.13 (p^n) is a power of a maximal ideal so is a primary ideal of S ([1], Theorem 40).

(3) \Leftrightarrow (4) The proof is similar as that of ([13], Theorem 2.3).

Example 2.16. Let I be an ideal of a von neuman regular semiring S. Then $I = I^2 = \sqrt{I}$ ([14], Proposition 1). Hence the concepts of prime, primary, 2-prime and quasiprimary ideal coincide in a regular semiring S.

If R and S are semirings then a function $f : R \longrightarrow S$ is said to be a morphism of semirings ([4], p. 105) if (i)) $f(0_R) = 0_S$, (ii) $f(1_R) = 1_S$ and (iii) $f(r_1 + r_2) = f(r_1) + f(r_2)$ and $f(r_1r_2) = f(r_1)f(r_2)$ for all $r_1, r_2 \in R$.

Theorem 2.17. Let $f : S_1 \to S_2$ be a morphism of semirings. Then the following statements holds:

- (1) If J is a 2-prime ideal of S_2 , then $f^{-1}(J)$ is a 2-prime ideal of S_1 .
- (2) If f is onto steady morphism such that kerf $\subseteq I$ and I is a 2-prime k-ideal of S_1 , then f(I) is a 2-prime k-ideal of S_2 .

Proof. (1). Let $ab \in f^{-1}(J)$ for some $a, b \in S_1$. Then $f(ab) \in J$, hence $f(a^2) \in J$ or $f(b^2) \in J$, since f is a morphism and J is a 2-prime of S_2 . Therefore $a^2 \in f^{-1}(J)$ or $b^2 \in f^{-1}(J)$. Consequently, $f^{-1}(J)$ is a 2-prime ideal of S_1 .

(2). Let $xy \in f(I)$ for some $x, y \in S_2$. Then there exists $a, b \in S_1$ such that f(a) = x and f(b) = y. Then $xy = f(a)f(b) = f(ab) \in f(I)$. Hence f(ab) = f(r) for some $r \in I$. So we have ab + s = r + t for some s, $t \in I$, since f is steady. Hence $ab \in I$, since $\ker f \subseteq I$ and I is a k-ideal of S_1 . Hence either $a^2 \in I$ or $b^2 \in I$, since I is a 2-prime ideal of S_1 . Thus either $f(a^2) \in f(I)$ or $f(b^2) \in f(I)$. Consequently, f(I) is a 2-prime k-ideal of S_2 . **Corollary 2.18.** If $S \subseteq R$ is an extension of semiring and I is a 2-prime ideal of R, then $I \cap S$ is a 2-prime ideal of S.

Theorem 2.19. Let $S = S_1 \times S_2$ and $I = I_1 \times I_2$, where I_i are ideals of S_i for i = 1, 2. Then the following are equivalent

- (1) I is a 2-prime ideal of S.
- (2) $I_1 = S_1$ and I_2 is a 2-prime ideal of S_2 or $I_2 = S_2$ and I_1 is a 2-prime ideal of S_1 .

Proof. (1) \Rightarrow (2). Let I be a 2-prime ideal of S. Then $\sqrt{I} = \sqrt{I_1} \times \sqrt{I_2}$, is a prime ideal of S. Hence either $I_1 = S_1$ or $I_2 = S_2$. Let $I_2 = S_2$ and $ab \in I_1$ for some $a, b \in S_1$. Then $(a, 1)(b, 1) \in I$. Hence $(a, 1)^2 \in I$ or $(b, 1)^2 \in I$, since I is a 2-prime ideal of S. This implies $a^2 \in I_1$ or $b^2 \in I_1$. Consequently, I_1 is a 2-prime of S_1 . Similarly, if $I_1 = S_1$, we can show that I_2 is a 2-prime ideal of S_2 .

(2) \Rightarrow (1). Assume $I_1 = S_1$ and I_2 is a 2-prime ideal of S_2 . Let $(a, x)(b, y) \in I$ for some $a, b \in S_1$ and $x, y \in S_2$. Then $xy \in I_2$ and this implies $x^2 \in I_2$ or $y^2 \in I_2$. Hence $(a, x)^2 \in I$ or $(b, y)^2 \in I$, as desired. In a similar way, one can prove the other case.

Corollary 2.20. Let $S = S_1 \times S_2 \times \ldots \times S_n$ and $I = I_1 \times I_2 \times \ldots \times I_n$, where I_i are ideals of S_i and $n \in \mathbb{N}$. Then the following are equivalent

- (1) I is a 2-prime ideals of S.
- (2) I_i is a 2-prime ideal of S_i for some $i \in \{1, 2, ..., n\}$ and $I_j = S_j$ for all $j \neq i$.

Proof. By using Theorem 2.19 and induction on n, the proof is straightforward.

Let S be a semiring and M an S-semimodule. Then $S \times M$ equipped with the following two operations $(s_1, m_1) + (s_2, m_2) = (s_1 + s_2, m_1 + m_2)$ and $(s_1, m_1)(s_2, m_2) = (s_1s_2, s_1m_2 + s_2m_1)$, forms a semiring, denoted by $S \bigoplus M$, is called the expectation semiring of the S-semimodule M ([12], Proposition 1.1).

If I is an ideal of S and N is an S-subsemimodule of M, then $I \bigoplus N$ is an ideal of $S \bigoplus M$ if and only if $IM \subseteq N$ ([12], Theorem 1.6(2)).

Theorem 2.21. Let M be a S-semimodule, I a proper ideal of S and $N \neq M$ an S-subsemimodule of M. Then

(1) If $I \bigoplus N$ is a 2-prime ideal of $S \bigoplus M$, then I is a 2-prime ideal of S.

(2) If the ideal I of S is 2-prime and $\sqrt[2]{I}M \subseteq N$, then $I \bigoplus N$ is a 2-prime ideal of $S \bigoplus M$.

Proof. (1). Let $ab \in I$ with $a^2 \notin I$ for some $a, b \in S$. Then $(a, 0)(b, 0) \in I \bigoplus N$ while $(a, 0)^2 \notin I \bigoplus N$. Hence $(b, 0)^2 \in I \bigoplus N$, since $I \bigoplus N$ is a 2-prime ideal of $S \bigoplus M$. Consequently, $b^2 \in I$, as desired.

(2). Let $(a,m)(b,n) \in I \bigoplus N$ for some $a, b \in S, m, n \in M$. This implies $ab \in I$ implies $a^2 \in I$ or $b^2 \in I$. If $a^2 \in I$, then $am \in \sqrt[2]{IM} \subseteq N$ and this yields $(a,m)^2 = (a^2, 2am) \in I \bigoplus N$. Again if $b^2 \in I$ we have $(b,m)^2 \in I \bigoplus N$. Consequently, $I \bigoplus N$ is a 2-prime ideal of $S \bigoplus N$. \Box

3. 2-*P*-semiring

Definition 3.1. A semiring S is said to be a 2-*P*-semiring if 2-prime ideals of S are prime.

Example 3.2. Clearly every idempotent semiring is a 2-*P*-semiring.

Theorem 3.3. A semiring S is 2-P-semiring if and only if one of the following conditions holds:

- (1) 2-prime ideals are semiprime.
- (2) Prime ideals are idempotent and every 2-prime ideal is of the form A^2 , where A is a prime ideal of S.

Proof. (1). If S is a 2-P-semiring, clearly 2-prime ideals are semiprime. Converse follows easily from Proposition 2.7(3).

(2). Let P be a prime ideal of a 2-P-semiring S. Then P^2 is a prime ideal of S (Proposition 2.7(2)) and hence $P \subseteq P^2$. Clearly $P^2 \subseteq P$. Therefore prime ideals of S are idempotent. Again, let I be a 2-prime ideal of S. Then I is prime and hence $I = I^2$.

Conversely, let I be a 2-prime ideal of S. Then $I = P^2 = P$ for some prime ideal P of S. Consequently, S is a 2-P semiring.

Lemma 3.4. Let (S, M) be a local semiring. Then for every prime ideal I of S, IM is a 2-prime ideal of S. Furthermore, IM is prime if and only if IM = I

Proof. Let $xy \in IM \subseteq I$. Then either $x \in I$ or $y \in I$, since I is a prime ideal of S. Let $x \in I$ implies $x^2 \in IM$, since $I \subseteq M$. Hence IM is a 2-prime ideal of S.

Definition 3.5. Let I be an ideal of a semiring S. We define a 2-prime ideal P to be a minimal 2-prime ideal over I if there is not a 2-prime ideal K of S such that $I \subseteq K \subset P$. We denote the set of minimal 2-prime ideals over I by $2-Min_S(I)$.

Theorem 3.6. Let S be a subtructive semiring with unique maximal ideal M such that $(\sqrt{I})^2 \subseteq I$ for every 2-prime ideal I of S. Then the following statements are equivalent.

- (1) S is a 2-P-semiring.
- (2) If P is the minimal prime ideal over a 2-prime ideal I, then IM = P.
- (3) For every prime ideal P of S, $2-Min_S(P^2) = \{P\}$.

Proof. (1) \Rightarrow (2). Let *P* be the minimal prime ideal over a 2-prime ideal *I* of a 2-*P*-semiring *S*. Then clearly IM = P (Lemma 3.4).

 $(2) \Rightarrow (1)$. Let *I* be a 2-prime ideal of a subtructive semiring *S* with unique maximal ideal *M* and *P* is the minimal prime ideal over *I* such that IM = P. Then $I \subseteq P = IM \subseteq I \cap M = I$ implies I = P. Hence *S* is a 2-*P*-semiring.

 $(2) \Rightarrow (3)$ Let P be a prime ideal of S and I be a 2-prime ideal of S such that $I \in 2-\operatorname{Min}_S(P^2)$. Let J be a prime ideal of S such that $I \subseteq J \subseteq P$. Clearly, $P^2 \subseteq I \subseteq J \subseteq P$. Let $a \in P$ then $a^2 \in P^2$. Therefore $a^2 \in J$ implies $a \in J$, since J is prime. Hence J = P. Now by hypothesis, IM = P implies $P = IM \subseteq I \subseteq P$. Consequently, $2-\operatorname{Min}_S(P^2) = \{P\}$.

 $(3) \Rightarrow (2)$. Let P is the minimal prime ideal over a 2-prime ideal I of S. Then $\sqrt{I} = P$. Hence by hypothesis $P^2 \subseteq I \subseteq P$. Therefore 2- $\operatorname{Min}_S(P^2) = \{P\}$. Clearly I = P implies IM is 2-prime (Lemma 3.4). Now $P^2 \subseteq PM \subseteq P$ so IM = PM = P.

Theorem 3.7. Let $S \subseteq R$ be an extension of semiring and spec(S) = spec(R), where spec(S) and spec(R) denotes set of all prime ideals of S and R respectively. If S is a 2-P-semiring, then R is 2-P-semiring.

Proof. Let I be a 2-prime ideal of R. Then $\sqrt{I} = P \in spec(R) = spec(S)$. Clearly $I \subseteq P$. Also $I \cap S$ is a 2-prime ideal of S (Corollary 2.18), hence prime, since S is 2-P-semiring. Therefore $I \cap S = \sqrt{I \cap S} = P$ and $P^2 \subseteq I \cap S$. Let $x \in P$. Then $x^2 \in P^2 \subseteq I \cap S \in spec(A)$. Hence $x \in I \cap S \subseteq I$. Consequently, I = P, as desired.

4. *n*-weakly 2-prime ideal

Definition 4.1. A proper ideal I of a semiring S is said to be *n*-weakly 2-prime if for $a, b \in S, ab \in I - I^n$ implies that $a^2 \in I$ or $b^2 \in I$.

Definition 4.2. A proper ideal I of a semiring S is said to be a *weakly* 2-prime ideal of S if $0 \neq xy \in I$ for some $x, y \in S$ implies $x^2 \in I$ or $y^2 \in I$.

The following lemmas are obvious, hence we omit the proof.

Lemma 4.3.

- (1) Every 2-prime ideal of S is a weakly 2-prime ideal of S.
- (2) Every weakly prime ideal of S is a weakly 2-prime ideal of S.
- (3) Every weakly 2-prime ideal of S is a n-weakly 2-prime ideal of S.
- (4) An n-weakly 2-prime is a (n-1)-weakly 2-prime ideal, for all $n \ge 3$.

Proposition 4.4. Let I be a subtructive ideal of a semiring S. Then

- (1) If I is weakly 2-prime but not a 2-prime ideal of S, then (i) $I^2 = 0.$ (ii) $\sqrt{I} = \sqrt{0}.$
- (2) Let (S, M) be a local semiring with $M^2 = 0$. Then every proper subtructive ideal of S is a weakly prime and hence weakly 2-prime ideal of S.
- (3) Let P be a weakly prime ideal of S and Q be an ideal of S containg P, then PQ is a weakly 2-prime ideal of S. In particular, for every weakly prime ideal P of S, P² is a weakly 2-prime ideal of S.
- (4) \sqrt{I} is a prime (resp. weakly prime) ideal of S if and only if \sqrt{I} is a 2-prime (resp. weakly 2-prime) ideal of S.
- (5) Let I be a n-weakly 2-prime ideal of S and A be a multiplicatively closed subset of S with $A \cap I = \phi$ and $A^{-1}I^n \subseteq (A^{-1}I)^n$. Then $A^{-1}I$ is a n-weakly 2-prime ideal of $A^{-1}S$.

Proof. (1)(*i*). We first show that if ab = 0 for some $a, b \in S - I$, then we have aI = bI = 0. Let $ai \neq 0$ for some $i \in I$. Then $0 \neq a(b+i) \in I$. Since I is a subtructive weakly 2-prime ideal of S, either $a^2 \in I$ or $b^2 \in I$, a contradiction. Therefore aI = 0. Similarly we can show Ib = 0. Now let $xy \neq 0$ for some $x, y \in I$ and ab = 0 for some $a, b \notin I$. Then we have

 $(a+x)(b+y) = xy \neq 0$. Since I is subtructive weakly 2-prime ideal of S, either $a^2 \in I$ or $b^2 \in I$, a contradiction. Hence $I^2 = 0$.

(*ii*). By (*i*), $I^2 = \{0\}$. So we have $I \subseteq \sqrt{0}$ implies $\sqrt{I} \subseteq \sqrt{0}$. Also we have $\sqrt{0} \subseteq \sqrt{I}$. Therefore $\sqrt{I} = \sqrt{0}$.

(2). Let I be a proper ideal of a local semiring (S, M) such that $M^2 = 0$ and $0 \neq ab \in I$ for some $a, b \in S$. Then either $a \in M$ or $b \in M$ but both a, b does not belongs to M, otherwise $ab \in M^2 = 0$, a contradiction. Hence a or b must be semi-unit, let a be a semi-unit of S. Then there exists p, $q \in S$ such that 1 + pa = qa implies $b + pab = qab \in I$. Also $pab \in I$ implies $b \in I$, since I is a subtructive ideal of S. Similarly if b is a semi-unit then $a \in I$. Consequently I is a weakly 2-prime ideal of S, as desired.

(3). Let $0 \neq ab \in PQ$ for some $a, b \in I$. Since $PQ \subseteq P$ and P is weakly prime ideal of S, we have either $a \in P \subseteq Q$ or $b \in P \subseteq Q$. Hence either $a^2 \in PQ$ or $b^2 \in PQ$. Consequently, PQ is a weakly 2-prime ideal of S, in particular, P^2 is a weakly 2-prime ideal of S.

(4). Since $\sqrt{\sqrt{I}} = I$ for any ideal I of S, it is clear.

(4). Since $\sqrt{\sqrt{I}} = I$ for any ideal I of S, it is clear. (5). Let $a, b \in S$ and $x, y \in A$ such that $\frac{a}{x}\frac{b}{y} \in A^{-1}I - (A^{-1}I)^n$. Then there exists $u \in A$ such that $uab \in I$. Again $vab \notin I^n$ for any $v \in A$ because if $vab \in I^n$ then $\frac{a}{x}\frac{b}{y} \in A^{-1}I \subseteq (A^{-1}I)^n$, a contradiction. So $abu \in I - I^n$, implies $a^2 \in I$ or $b^2u^2 \in I$, since I is a n-weakly 2-prime ideal of S. Hence $(\frac{a}{x})^2 \in A^{-1}I$ or $(\frac{b}{y})^2 \in A^{-1}I$. Thus $A^{-1}I$ is a n-weakly 2-prime ideal of $A^{-1}S$.

The following is a characterization of a semiring in which every proper ideal is weakly 2-prime.

Theorem 4.5. Let S be a semiring. Then every proper ideal of S is weakly 2-prime if and only if $(a^2) \subseteq (ab)$ or $(b^2) \subseteq (ab)$ or ab = 0, for any $a, b \in S$ such that $(ab) \neq S$.

Proof. Let every proper ideal of a semiring S is weakly 2-prime and $a, b \in S$ such that $(ab) \neq S$. If $ab \neq 0$, then $0 \neq ab \in (ab)$ and (ab) is weakly 2-prime, hence $a^2 \in (ab)$ or $b^2 \in (ab)$. Consequently, $(a^2) \subseteq (ab)$ or $b^2 \subseteq (ab)$.

Conversely, let I be a proper ideal of a semiring S and $0 \neq ab \in I$ for some $a, b \in S$. Then $0 \neq ab \in (ab) \subseteq I$ implies $a^2 \in (a^2) \subseteq (ab) \subseteq I$ or $b^2 \in (b^2) \subseteq (ab) \subseteq I$. Hence, I is weakly 2-prime ideal of S, as desired. \Box

Theorem 4.6. Let I be a subtructive ideal of a semiring S with $I^2 \not\subseteq I^n$. Then I is a 2-prime ideal of S if and only if I is a n-weakly 2-prime ideal. *Proof.* Let *I* be a subtructive *n*-weakly 2-prime ideal of *S* such that $I^2 \subseteq I^n$ and $ab \in I$ for some $a, b \in S$. If $ab \notin I^n$, then $a^2 \in I$ or $b^2 \in I$, since *I* is *n*-weakly 2-prime. So we assume $ab \in I^n$. First we suppose $aI \nsubseteq I^n$. Then for some $i \in I$, $ai \notin I^n$ implies $a(b+i) \notin I^n$, since *I* is subtructive and $ab \in I^n$. Hence $a(b+i) \in I - I^n$ implies $a^2 \in I$ or $b^2 \in I$. So we can assume $aI \subseteq I^n$. Similarly we can assume $Ib \subseteq I^n$. Now since $I^2 \nsubseteq I^n$, there exists $a_1, b_1 \in I$ such that $a_1b_1 \notin I^n$. Hence $(a + a_1)(b + b_1) \in I - I^n$ because if $(a+a_1)(b+b_1) \in I^n$ then $a_1b_1 = (a+a_1)(b+b_1) = (ab+aa_1+bb_1+a_1b_1) \in I^n$, which contradicts that $a_1b_1 \notin I^n$. Hence $(a + a_1)^2 \in I$ or $(b + b_1)^2 \in I$, since *I* is *n*-weakly 2-prime ideal of *S*. Therefore $a^2 \in I$ or $b^2 \in I$, since *I* is subtructive ideal of *S*, as desired. The other part is obvious. □

Proposition 4.7. Let S be a semiring and $x \in S$. Then the following statements holds.

- (1) If Sx is a subtructive ideal of S and $Ann(x) \subseteq Sx$. Then Sx is a 2-prime ideal of S if and only if Sx is a n-weakly 2-prime ideal.
- (2) If Sx is a subtructive ideal of S and $Ann(x) \subseteq xI$ for some subtrative ideal I of S. Then xI is a 2-prime ideal of S if and only if xIis a n-weakly 2-prime ideal of S.

Proof. (1). Let Sx be a subtructive *n*-weakly 2-prime ideal of S and $ab \in Sx$ for some $a, b \in S$. If $ab \notin (Sx)^n$, then I is 2-prime ideal, since Sx is *n*-weakly 2-prime ideal of S. So we assume $ab \in (Sx)^n$. Clearly $a(b+x) \in Sx$. If $a(b+x) \notin (Sx)^n$, then $a^2 \in Sx$ or $b^2 \in Sx$, since Sx is *n*-weakly 2-prime ideal of S. So we assume $a(b+x) \in (Sx)^n$. Since $ab \in (Sx)^n$ and $(Sx)^n$ is subtructive, we have $ax \in (Sx)^n$ implies ax = tx for some $t \in (Sx)^n \subseteq Sx$. Hence $a - t \subseteq Ann(x) \subseteq Sx$ implies $a^2 \in Sx$. Consequently, Sx is a 2-prime ideal of S. The converse part is obvious.

(2). Let xI be a subtructive *n*-weakly 2-prime ideal of S and $ab \in xI$ for some $a, b \in S$. If $ab \in (xI)^n$, then xI is a 2-prime ideal of S. Hence we assume $ab \in (xI)^n$. Clearly, $a(b+x) \in xI$. If $a(b+x) \notin (xI)^n$, then $a^2 \in xI$ or $b^2 \in xI$, since xI is subtructive *n*-weakly 2-prime ideal of S. Hence xI is *n*-weakly 2-prime ideal of S. Now suppose $a(b+x) \in (xI)^n$. Since $ab \in (xI)^n$, we have ax = yx for some $y \in (aI)^n \subseteq aI$. This implies (a-y)x = 0. Hence $a-y \in Ann(x) \subseteq xI$. Therefore $a^2 \in xI$. Consequently, xI is a 2-prime ideal of S.

Definition 4.8. A proper ideal I of a semiring S is said to be a *strong ideal*, if for each $a \in I$ there exists $b \in I$ such that a + b = 0.

Proposition 4.9. Let $f: S \to S_1$ be an epimorphism of semirings such that f(0) = 0 and I be a subtructive strong ideal of S. Then

- (1) If I is a weakly 2-prime ideal of S such that kerf $\subseteq I$, then f(I) is a weakly 2-prime ideal of S_1 .
- (2) If I is a 2-prime ideal of S such that kerf $\subseteq I$, then f(I) is a 2-prime ideal of S_1 .

Proof. (1). Let $a_1, b_1 \in S_1$ be such that $0 \neq a_1 b_1 \in f(I)$. So there exists an element $p \in I$ such that $0 \neq a_1 b_1 = f(p)$. Also there exist $a, b \in S$ such that $f(a) = a_1$, $f(b) = b_1$, since f is an epimorphism. Since I is a strong ideal of S and $p \in I$, there exists $q \in I$ such that p + q = 0. This implies f(p+q) = 0, that is, f(ab+q) = 0, implies $ab+q \in kerf \subseteq I$, Hence $0 \neq ab \in I$, as I is a subtructive ideal of S and if ab = 0, then f(p) = 0, a contradiction. Thus $a^2 \in I$ or $b^2 \in I$, since I is a weakly 2-prime ideal of S. Thus $a_1^2 \in f(I)$ or $b_1^2 \in f(I)$. Hence, f(I) is a weakly 2-prime ideal of S.

(2). It is clear from (1).

Proposition 4.10. Let S_1 and S_2 be two semirings and I be a proper ideal of S_1 . Then the followings are equivalent:

- (1) I is a 2-prime ideal of S_1 .
- (2) $I \times S_2$ is a 2-prime ideals of $S_1 \times S_2$.
- (3) $I \times S_2$ is a weakly 2-prime ideals of $S_1 \times S_2$.

Proof. (1) \Rightarrow (2). Let $(a_1, b_1)(c_1, d_1) \in I \times S_2$ for some $(a_1, b_1) \in S_1 \times S_2$ and $(c_1, d_1) \in S_1 \times S_2$. Then $(a_1c_1, b_1d_1) \in I \times S_2$ implies $a_1^2 \in I$ or $c_1^2 \in I$, since I is a 2-prime ideal of S_1 . Now if $a_1^2 \in I$, then $(a_1, b_1)^2 = (a_1^2, b_1^2) \in I \times S_2$. Similarly if $c_1^2 \in I$, then $(c_1, d_1)^2 = (c_1^2, d_1^2) \in I \times S_2$. Consequently, $I \times S_2$ is a 2-prime ideal of $S_1 \times S_2$.

 $(2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (1)$. Let $ab \in I$ for some $a, b \in S$. Then $(0,0) \neq (a,1)(b,1) \in I$ $I \times S_2$. This implies $(a^2, 1) \in I \times S_2$ or $(b^2, 1) \in I \times S_2$, since $I \times S_2$ is a 2-prime ideal of $S_1 \times S_2$. Hence, $a^2 \in I$ or $b^2 \in I$, as desired.

Acknowledgments. We are thankful to the referee for several valuable suggestions which improve the presentation of the paper.

References

[1] Allen, P.J., Neggers, J., Ideal theory in commutative A-semirings, Kyngpook Math. J., 46(2006), 261 - 271. 5

- Beddani, C., and Messirdi, W., 2-Prime ideals and their applications, J. Algebra Appl., 15(3)(2016), 1650051(11 pages). 5
- [3] Dubey, M. K., and Aggarwal, P., On 2-absorbing ideals in a commutative rings with unity, Lobachevskii J. Math., 39(2)(2018), 185 – 190.
- [4] Golan, J.S., Semirings and their applications, Dordrecht: Kluwer Academic Publ., (1999).
- [5] Golan, J. S., *Power algebras over semirings*. With applications in mathematics and computer science, Dordrecht: Kluwer Academic Publ., (1999).
- [6] Khanra, B., and Mandal, M., On 2-prime ideals in commutative semigroups, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 68 (2022), 49-60.
- [7] Koc, S., On weakly 2-prime ideals in commutative rings, Commun. Algebra, (2021), 1-17.
- [8] Nasehpour, P., Pseudocomplementation and minimal prime ideals in semirings, Algebra Universalis, 79(1)(2018), Paper No. 11.
- [9] Nasehpour, P., Some remarks on ideals of commutative semirings, Quasigroups Relat. Syst., 26 (2018), 281 – 298.
- [10] Nasehpour, P., Valuation semiring, J. Algebra Appl., 17 (2018) 1850073.
- [11] Nasehpour, P., Some remarks on semirings and their ideals, Asian-Eur. J. Math., 13(1)(2020), Article ID 2050002 (14 pages).
- [12] Nasehpour, P., Algebraic properties of expectation semirings, Afrika Mathematika 31(2020), 903 – 915.
- [13] Nikandish, R., Nikmehr, M. J. and Yassine, A., More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc., 57(1)(2020), 117-126.
- [14] Subramanian, H., Von Neumann regularity in semirings, Math. Nachrichten, 45 (1970), 73 – 76.
- [15] Zariski, O., and Samuel, P., Commutative Algebra, Vol II, Van Nostrand, New York, 1960.

Received October 14, 2021

Department of Mathematics, Jadavpur University, Kolkata-700032, India E-mails: biswaranjanmath91@gmail.com (B. Khanra) m.haddadi@semnan.ac.ir, haddadi 1360@yahoo.com M. (Mandal)

jumathsampad@gmail.com (S. Das)