A note on 2 -prime and n-weakly 2 -prime ideals of semirings

Biswaranjan Khanra, Manasi Mandal and Sampad Das

Abstract

We introduce and study the concepts of 2 -prime and n-weakly 2 -prime (resp. weakly 2-prime) ideals in a commutative semiring. We prove that an integral semidomain S is a valuation semiring if and only if every proper ideal of S is 2-prime and in a principal ideal semidomain the concepts of primary, quasi-primary and 2-prime ideals coincide. We characterize semirings where 2 -prime ideals are prime and also characterize semirings where every proper ideal is n-weakly 2 -prime (resp. weakly 2 -prime).

1. Introduction

A commutative semiring is a commutative semigroup (S, \cdot) and a commutaive monoid $\left(S,+, 0_{S}\right)$ in which 0_{S} is the additive identity and $0_{S} . x=$ $x .0_{S}=0_{S}$ for all $x \in S$, both are connected by ring like distribuitivity. We say S is a semiring with identity if the multiplicative semigroup (S, \cdot) has identity element. Throughout this paper, unless otherwise mentioned, all semirings are commutative with identity element $1 \neq 0$, in particular S will denote such a semiring.

A nonempty subset I of S is called an ideal of S if $a, b \in I$ and $r \in S$, then $a+b \in I$ and $r a \in I$. We define radical of an ideal I as $\sqrt{I}=\{x \in S$: $\left.x^{n} \in I\right\}$ and residual of I by $a \in S$ as $(I: a)=\{s \in S: s a \in I\}$. Annihilator of an element a in a semiring S is defined as $\operatorname{Ann}(a)=\{x \in S: a x=0\}$. For an element x of $S,(x)=S x$ is the principal ideal of S generated by x. An ideal I of a semiring S is said to be subtructive (or k-ideal) if $a, a+b \in I$, $b \in S$ then $b \in I$. A nonzero element a of S is said to be a zero divisor if $a b=0$ for some nonzero $b \in S$. For an ideal I of $S, Z d_{S}(I)=\{s \in S: s r \in I$ for some $r \notin I\}$ and $\sqrt[2]{I}=\left\{x \in S: x^{2} \in I\right\}$. An ideal I of a semiring S is said to be proper if $I \neq S$ and an ideal generated by nth powers of
elements of I is denoted as $I_{n}=\left(\left\{x^{n}: x \in I\right\}\right)$ [?]. A semiring S is called a semidomain if $a b=a c$ implies $b=c$ for any $b, c \in S$ and for all nonzero $a \in S$. Similarly to the concept of field of fractions in ring theory, one can define the semifield of fractions $F(S)$ of a semidomain S ([5], p. 22). Let A be a multiplicatively closed subset of a semiring S. The relation is defined on the set $S \times A$ by $(s, a) \sim(t, b) \Leftrightarrow x s b=x a t$ for some $a \in A$ is an equivalence relation and the equivalence class of $(s, a) \in S \times A$ denoted by s / a. The set of all equivalence classes of $S \times A$ under " \sim " denoted by $A^{-1} S$. The addition and multiplication are defined $s / a+t / b=(s b+t a) / a b$ and $(s / a)(t / b)=s t / a b$. The semiring $A^{-1} S$ is called quotient semiring S by A. Suppose that S is a commutative semiring, A be a multiplicatively closed subset and I be an ideal. The set $A^{-1} I=\{a / b: a \in I, b \in A\}$ is an ideal of $A^{-1} S$. A proper ideal I of a semiring is said to be prime (resp. weakly prime) if for $a, b \in S$ such that $a b \in I$ (resp. $0 \neq a b \in I$) implies either $a \in I$ or $b \in I$. An ideal I of S is said to be primary if $a b \in I$ for some $a, b \in S$ implies $a \in I$ or $b \in \sqrt{I}$ and quasiprimary if \sqrt{I} is a prime ideal of S. The notion of 2 -prime (resp. weakly 2 -prime ideal) as a generalisations of prime (resp. weakly prime) ideals in a commutative ring was introduced in [2, 7] and in a commutative semigroup in [6]. Moreover, rings in which concept of 2-prime, primary ideals coincide and rings in which 2-prime ideals are prime has been studied in [13]. These observations tempted us to study 2 -prime (resp. weakly 2 -prime) ideals in a commutative semiring.

In this article, firstly we define 2 -prime ideals in a commutative semiring and state its relations with prime and quasi-primary ideals. Then we prove that every maximal ideal of a semiring without unity is 2 -absorbing (Theorem 2.6). We define valuation ideal in a semiring and prove that a semidomain is a valuation semiring if and only if every proper ideal of the semidomain is 2-prime (Theorem 2.11). Also we prove that in a principal ideal semidomain the concepts of 2-prime, primary, quasi-primary ideals coincide (Theorem 2.15). In section 3, we characterize semirings in which 2 -prime ideals are prime, defined as $2-P$-semiring. In section 4 , we define n-weakly 2 -prime (resp. weakly 2 -prime) ideals in a semiring. Then we characterize semirings in which every proper ideal is weakly 2 -prime (Theorem 4.5) (resp. n-weakly 2 -prime) (Theorem 4.6) and also studied some further properties of these ideals.

Before going to main work, we discuss some necessary preliminaries.
Theorem 1.1. (cf. [8]) Let $I \subseteq P$ be ideals of a semiring S, where P is prime. Then the following statements are equivalent:
(1) P is a minimal prime ideal of I.
(2) For each $x \in P$, there is a $y \notin P$ and a nonnegative integer i such that $y x^{i} \in I$.

2. 2-prime ideals

Definition 2.1. A proper ideal I of a semiring S is said to be a 2 -prime ideal if $x y \in I$ for some $x, y \in S$ implies either $x^{2} \in I$ or $y^{2} \in I$.

The following lemmas are obvious, hence we omit the proof.

Lemma 2.2.

(1) Every prime ideal of S is a 2-prime ideal of S.
(2) Every 2-prime ideal of S is a quasi-primry ideal of S. Therefore if I is a 2-prime ideal of S, then $\sqrt{I}=P$ is a prime ideal of S.

Remark 2.3. For a 2-prime ideal I of a semiring S, we refer to the prime ideal $P=\sqrt{I}$ as the associated prime ideal of I and I is referred to as a P-2-prime ideal of S.

The following examples show that converses of above lemmas are not true.

Example 2.4. Consider the ideal $I=\{m \in \mathbb{N} \cup\{0\}: m \geqslant 3\}$ in the semiring $S=\{\mathbb{N} \cup\{0\},+, \cdot\}$. Clearly, I is 2 -prime but not a prime ideal of S, since $2.2 \in I$ but $2 \notin I$.

Example 2.5. Consider the ideal $I=\left(\left\{X_{n}^{n}\right\}_{n=1}^{\infty}\right)$ in the semiring $S=$ $\mathbb{Z}_{2}\left[\left\{X_{i}\right\}_{i=1}^{\infty}\right]$. Clearly I is quasiprimary ideal of S, since \sqrt{I} is a prime ideal of S. But I is not a 2 -prime ideal of S, as $X_{6}^{2} \cdot X_{6}^{4}=X_{6}^{6} \in I$ and neither $\left(X_{6}^{2}\right)^{2} \notin I \operatorname{nor}\left(X_{6}^{4}\right)^{2} \notin I$.

If S is a semiring with unity, then every maximal ideal of S is prime ([1], Theorem 11) and hence 2-prime. If S is a semiring without unity then maximal ideal of S need not be prime for example see ([1], Example 12) but there is a relation between maximal and 2 -prime ideal of S, as follows

Theorem 2.6. Let S be semiring without unity and assume maximal ideal exists. Then every maximal ideal of S is a 2-prime ideal of S.

Proof. Let $x y \in M$ with $x^{2} \notin M$ for some $x, y \in S$, where M is a maximal ideal of S. If $y^{2} \notin M$, then clearly $x, y \in S-M$. Hence $M+(x)=$ $M+(y)=S$. Since $x \in S, x^{2}=\left(p+s_{1} x+n_{1} x\right)\left(q+s_{2} y+n_{2} y\right)$ for some $p, q \in M, s_{1}, s_{2} \in S$ and $n_{1}, n_{2} \in \mathbb{Z}$, implies $x^{2} \in M$, a contradiction. Consequently, $y^{2} \in M$. Hence M is a 2-prime ideal of S.

Proposition 2.7. Let I be an ideal of a semiring S.
(1) If I is a 2-prime ideal of S, then there is exactly one prime ideal of S that is minimal over I.
(2) If I is a prime ideal of S, then I^{2} is a 2-prime ideal of S.
(3) An ideal I of S is prime if and only if it is both 2-prime and semiprime.
(4) If I is a 2-prime ideal of S and $J_{1}, J_{2}, \ldots, J_{n}$ are ideals of S such that $\bigcap J_{i} \subseteq \sqrt{I}$, then $J_{i} \subseteq \sqrt{I}$ for some $i \in\{1,2, \ldots, n\}$.
In particular, if $\bigcap J_{i}=\sqrt{I}$, then $J_{i}=\sqrt{I}$ for some $i \in\{1,2, \ldots, n\}$.
(5) If I is a P-2-prime ideal of S, then $\left(I: a^{2}\right)$ is a 2-prime ideal of S, for all $a \in S$ such that $a^{2} \notin I$.
In particular $\left(I: a^{2}\right)$ is a P-2-prime ideal of S for all $a \in S-\sqrt{I}$.
(6) If I is a 2-prime ideal of S and $(I: a)=\left(I: a^{2}\right)$ for all $a \in S-I$, then $(I: a)$ is a 2-prime ideal of S.
(7) I is a proper ideal of S and A be a multiplicatively closed subset of S, then the following statements hold.
(i) If I is a 2-prime ideal of S such that $I \cap A=\phi$, then $A^{-1} I$ is a 2-prime ideal of $A^{-1} S$.
(ii) If $A^{-1} I$ is a 2-prime ideal of $A^{-1} S$ with $Z d_{S}(I) \cap S=\phi$, then I is a 2-prime ideal of S.
(8) If I is a P-primary ideal for some prime ideal P of S such that $P^{2} \subseteq I$. Then I is a 2 -prime ideal of S.

Proof. (1). If possible, let J_{1} and J_{2} be two distinct prime ideal that are minimal over I. Hence there exists $j_{1} \in J_{1}-J_{2}$ and $j_{2} \in J_{2}-J_{1}$. By Theorem 1.1 there is $a_{1} \notin J_{1}$ and $a_{2} \notin J_{2}$ such that $a_{1} j_{1}^{n} \in I$ and $a_{2} j_{2}^{m} \in I$ for some integer $m, n \geqslant 1$. Since $j_{1}, j_{2} \notin I \subseteq J_{1} \cap J_{2}$ and I is 2-prime , hence $a_{1}^{2} \in I \subseteq J_{1} \cap J_{2}$ and $a_{2}^{2} \in I \subseteq J_{1} \cap J_{2}$. Therefore $a_{1}^{2} \in J_{1}$. Since J_{1} is prime so $a_{1} \in J_{1}$, a contradiction. Similarly if $a_{2}^{2} \in J_{2}$ then $a_{2} \in J_{2}$, a contradiction. Hence there is exactly one prime ideal minimal over I.
(2). Since $I^{2} \subseteq I$ for any ideal I of S, it is clear.
(3). If an ideal I is prime, then clearly it is 2-prime and semiprime.

Conversely, let $a b \in I$ for some $a, b \in S$. Since I is 2-prime we have $a^{2} \in I$ or $b^{2} \in I$, which implies $a \in I$ or $b \in I$, since I is semprime also. Consequently I is a prime ideal of S.
(4). Let $J_{i} \nsubseteq \sqrt{I}$ for all $i \in\{1,2, \ldots, n\}$. Then there exists $a_{i} \in J_{i}$ but $a_{i} \notin \sqrt{I}$ for all $i \in\{1,2, \ldots, n\}$. Let $x=a_{1} a_{2} \cdots a_{n}$. Then $x \in \bigcap J_{i}$ but $x \notin \sqrt{I}$, since \sqrt{I} is a prime ideal of S, a contradiction . Hence $J_{i} \subseteq \sqrt{I}$ for some $i \in\{1,2, \ldots, n\}$.
Again if, $\bigcap J_{i}=\sqrt{I}$, then $\sqrt{I} \subseteq J_{i}$ for all $i \in\{1,2, \ldots, n\}$. Hence $J_{i}=\sqrt{I}$ for some $i \in\{1,2, \ldots, n\}$.
(5). Let $x y \in\left(I: a^{2}\right)$ with $x^{2} \notin\left(I: a^{2}\right)$ for $x, y \in S$. Then $x y a^{2}=$ $(x a)(y a) \in I$. Hence $(y a)^{2}=y^{2} a^{2} \in I$, since I is a 2 -prime ideal of S and $x^{2} a^{2} \notin I$. Consequently ($I: a^{2}$) is a 2-prime ideal of S.
Again let $a \in S-P$ and $x \in\left(I: a^{2}\right)$. Then $a^{2} x \in I \subseteq P$. Hence $x^{2} \in I$, since $a \notin P$ and I is a 2-prime ideal of S. Thus $I \subseteq\left(I: a^{2}\right) \subseteq P$, which implies $P=\sqrt{I} \subseteq \sqrt{\left(I: a^{2}\right)} \subseteq \sqrt{P}=P$. Consequently $\left(I: a^{2}\right)$ is a P-2-prime ideal of S.
(6). Clearly follows from (5).
(7). (i) Let $(a / s)(b / t) \in A^{-1} I$ for some $a, b \in S$ and $s, t \in A$. Then there exists $u \in A$ such that $a b u \in I$. Then $a^{2} \in I$ or $b^{2} u^{2} \in I$, since I is a 2-prime ideal of S. If $a^{2} \in I$, then $(a / s)^{2}=\left(u a^{2} / u s^{2}\right) \in A^{-1} I$ and if $b^{2} u^{2} \in I$ then $(b / s)^{2}=\left(b^{2} u^{2} / s^{2} u^{2}\right) \in A^{-1} I$. Therefore $A^{-1} I$ is a 2 -prime ideal of $A^{-1} S$.
(ii) Let $x y \in I$ for some $x, y \in S$. Then $\frac{x}{1} \frac{y}{1} \in A^{-1} I$ implies $\frac{x^{2}}{1} \in A^{-1} I$ or $\frac{y^{2}}{1} \in A^{-1} I$. Hence $a x^{2} \in I$ or $b y^{2} \in I$ for some $a, b \in S$. Since $A \cap Z d_{S}(I)=\phi$, we have either $x^{2} \in I$ or $y^{2} \in I$, as desired.
(8). Let $a b \in I$ for some $a, b \in S$, where I is a P-primary ideal of S such that $P^{2} \subseteq I$. Then either $a \in I$ or $b \in \sqrt{I}=P$. If $a \in I$ then $a^{2} \in I^{2}$ and if $b \in P$ then $b^{2} \in P^{2} \subseteq I$. Consequently I is a 2 -prime ideal of S.

Theorem 2.8. Let P be a proper ideal of a semiring S. Then the following statements are equivalent:
(1) P is a 2-prime ideal of S.
(2) for any ideals J, K of S with $J K \subseteq P$ implies either $J_{2} \subseteq P$ or $K_{2} \subseteq P$, where $J_{2}=\left(\left\{x^{2}: x \in J\right\}\right)$ and $K_{2}=\left(\left\{k^{2}: k \in K\right\}\right)$.
(3) For every $s \in S$, either $(s) \subseteq(P: s)$ or $(P: s) \subseteq \sqrt[2]{P}$.
(4) For any ideals A and B of S with $A B \subseteq P$ implies either $A_{2} \subseteq P$ or $B \subseteq \sqrt[2]{P}$.
(5) For every $s \in S$, either $s^{2} \in P$ or $(P: s)_{2} \subseteq P$.

Proof. (1) $\Rightarrow(2)$. Let P be a 2-prime ideal of a semiring S and $J K \subseteq P$ for some ideal J, K of S with $J_{2} \nsubseteq P$. Then there exists an element $p \in J$ such that $p^{2} \notin P$. Since $p K \subseteq P$ and $p^{2} \notin P$, we conclude $K_{2} \subseteq P$ (Proposition 2.7 ????).
$(2) \Rightarrow(1)$. Let $a b \in P$ for some $a, b \in S$ and $a^{2} \notin P$. Let $J=(a)$ and $K=(b)$. Then $J K \subseteq P$ and $J_{2} \nsubseteq P$, otherwise $a^{2} \in P$. Hence $K_{2} \subseteq P$ implies $b^{2} \in P$. Consequently, P is a 2 -prime ideal of S.
$(1) \Rightarrow(3)$ Let $s \in S$. If $s^{2} \in P$, then $s \in(P: s)$ implies $(s) \subseteq(P: s)$. Let $s^{2} \notin P$ and $r \in(P: s)$ for some $r \in S$. Hence $r s \in P$ implies $r^{2} \in P$, since P is 2-prime and $s^{2} \notin P$. Consequently, $(P: s) \subseteq \sqrt[2]{P}$.
$(3) \Rightarrow(4)$. Let $A B \subseteq P$ for some ideals A, B of S. Let $B \nsubseteq \sqrt[2]{P}$. Then there exists $b \in B-\sqrt[2]{\bar{P}}$ and $a b \in P$ for all $a \in A$. Since $b \in(P: a)-\sqrt[2]{P}$, we have $(P: a) \nsubseteq \sqrt[2]{P}$. Hence by hypothesis, $(a) \subseteq(P: a)$ implies $a^{2} \in P$. Consequently $A_{2} \subseteq P$.
(4) \Rightarrow (5). Let $s \in S$. If $s^{2} \in P$, there is nothing to prove. So let $s^{2} \notin P$ and $A=(P: s), B=(s)$. Then $A B=(P: s)(s) \subseteq P$. Since $B \nsubseteq \sqrt[2]{P}$, we have $A_{2}=(P: s)_{2} \subseteq P$.
$(5) \Rightarrow(1)$. Let $x y \in P$ with $x^{2} \notin P$ for some $x, y \in S$. Then $y \in(P: x)$. Hence by hypothesis, $y^{2} \in(P: s)_{2} \subseteq P$, as desired.

The concept of valuation semiring has been defined by P. Nasehpour in [10], here we define valuation ideal of a semiring, as follows

Definition 2.9. Let S be a semidomain and K be its semifield of fractions. Then an ideal I in S is a valuation ideal if I is the intersection of S with an ideal of a valuation semiring S_{v} containing S. Moreover if v is the corresponding M-valuation we say I is a valuation ideal associated with the M-valuation v or I is a v-ideal.

Lemma 2.10. Let v be an M-valuation on K and I an ideal of a semidomain S. Then the followings are equivalent
(1) I is a valuation ideal.
(2) For each $x \in S, y \in I$, the inequality $v(x) \geqslant v(y)$ implies $x \in I$.
(3) I is of the form $I=S_{v} I \cap S$.

Proof. The proof is similar to ([15], page 340).
Theorem 2.11. Let S be a semidomain. Then the following are equivalent
(1) Every ideal of S is 2-prime.
(2) Every principal ideal of S is 2-prime.
(3) S is a valuation semiring.

Proof. (1) \Rightarrow (2). It is clear.
$(2) \Rightarrow(3)$. Let $x \in K-\{0\}$, where K is the semifield of fractions of S. Then $x=\frac{a}{b}$ for some $a, b \in S-\{0\}$. Let $I=(a b)$ be a principal ideal of S so 2 -prime and since $a b \in(a b)=I$, we have $a^{2} \in I$ or $b^{2} \in I$. If $a^{2} \in I$, then there exists an element $c \in S$ such that $a^{2}=c a b$, hence $x=\frac{a}{b}=c \in S$. Similarly, if $b^{2} \in I$, we have $x^{-1} \in S$. Consequently, S is a valuation semiring ([10], Theorem 2.4).
$(3) \Rightarrow(1)$. Let I be a v-ideal on S where v is a valuation on S. Let $x y \in I$ for some $x, y \in S$. If $v(x) \geqslant v(y)$, we get $v\left(x^{2}\right) \geqslant v(x y)$ and as I is a v-ideal we have $x^{2} \in I$. Similarly, $v(y) \geqslant v(x)$ implies $y^{2} \in I$. Consequently I is a 2 -prime ideal of S.

The following lemmas are obvious, hence we omit the proof
Lemma 2.12. Let S be a semidomain and $a, b \in S-\{0\}$. Then a and b are associates if and only if $(a)=(b)$.

Lemma 2.13. Let S be a semidomain and $p \in S-\{0\}$. Then p is an irreducible element of S if and only if (p) is a maximal ideal of S.

Lemma 2.14. Let I be a P-primary ideal of a semiring S. Then P is the unique minimal prime ideal of I in S.

Proof. Let Q be another minimal prime of I in S. Then $I \subseteq Q$ implies $P=\sqrt{I} \subseteq \sqrt{Q}=Q$. Hence P is the unique minimal prime ideal of I in S.

Theorem 2.15. Let I be a proper ideal of a principal ideal semidomain S. Then the followings are equivalent
(1) I is a quasi-primary ideal of S.
(2) I is a primary ideal of S.
(3) I is of the form $\left(p^{n}\right)$, where n is a postitive integer and $p=0$ or an irreduicible element of S.
(4) I is a 2-prime ideal of S.

Proof. (1) $\Rightarrow(2)$. Since every nonzero prime ideal of a principal ideal semidomain S is a maximal ideal ([11], Proposition 2.1), it follows claerly from ([1], Theorem 40).
$(2) \Rightarrow(1)$. It is obvious.
$(2) \Rightarrow(3)$. Let I be a nonzero primary ideal of S. Then $I=(a)$ for some nonzero nonunit element $a \in S$. Since every principal ideal semidomain is a unique factorization semidomain ([11], Theorem 3.2), a can written as a product of irreduicible elements of S. If a were divisible by two irreduicible elements x and y of S, which are not associates, then by Lemma 2.12 and $2.13(x)$ and (y) would be distinct maximal ideal of S, they would both minimal prime ideal of (a), which contradicts Lemma 2.14. Hence $I=\left\{\left(p^{n}\right): p=0\right.$ or p is an irreduicible elements of S and $\left.n \in \mathbb{N}\right\}$.
$(3) \Rightarrow(2)$. Since S is a semidomain, $\{0\}$ is prime and hence primary. Let p be an irreduicible element of S and $n \in \mathbb{N}$, then by Lemma 2.13 (p^{n}) is a power of a maximal ideal so is a primary ideal of S ([1], Theorem 40).
$(3) \Leftrightarrow(4)$ The proof is similar as that of ([13], Theorem 2.3).
Example 2.16. Let I be an ideal of a von neuman regular semiring S. Then $I=I^{2}=\sqrt{I}$ ([14], Proposition 1). Hence the concepts of prime, primary, 2-prime and quasiprimary ideal coincide in a regular semiring S.

If R and S are semirings then a function $f: R \longrightarrow S$ is said to be a morphism of semirings ([4], p. 105) if (i)) $f\left(0_{R}\right)=0_{S}$, (ii) $f\left(1_{R}\right)=1_{S}$ and (iii) $f\left(r_{1}+r_{2}\right)=f\left(r_{1}\right)+f\left(r_{2}\right)$ and $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for all $r_{1}, r_{2} \in R$.

Theorem 2.17. Let $f: S_{1} \rightarrow S_{2}$ be a morphism of semirings. Then the following statements holds:
(1) If J is a 2-prime ideal of S_{2}, then $f^{-1}(J)$ is a 2-prime ideal of S_{1}.
(2) If f is onto steady morphism such that kerf $\subseteq I$ and I is a 2-prime k-ideal of S_{1}, then $f(I)$ is a 2 -prime k-ideal of S_{2}.

Proof. (1). Let $a b \in f^{-1}(J)$ for some $a, b \in S_{1}$. Then $f(a b) \in J$, hence $f\left(a^{2}\right) \in J$ or $f\left(b^{2}\right) \in J$, since f is a morphism and J is a 2-prime of S_{2}. Therefore $a^{2} \in f^{-1}(J)$ or $b^{2} \in f^{-1}(J)$. Consequently, $f^{-1}(J)$ is a 2 -prime ideal of S_{1}.
(2). Let $x y \in f(I)$ for some $x, y \in S_{2}$. Then there exists $a, b \in S_{1}$ such that $f(a)=x$ and $f(b)=y$. Then $x y=f(a) f(b)=f(a b) \in f(I)$. Hence $f(a b)=f(r)$ for some $r \in I$. So we have $a b+s=r+t$ for some s, $t \in I$, since f is steady. Hence $a b \in I$, since $\operatorname{ker} f \subseteq I$ and I is a k-ideal of S_{1}. Hence either $a^{2} \in I$ or $b^{2} \in I$, since I is a 2 -prime ideal of S_{1}. Thus either $f\left(a^{2}\right) \in f(I)$ or $f\left(b^{2}\right) \in f(I)$. Consequently, $f(I)$ is a 2-prime k-ideal of S_{2}.

Corollary 2.18. If $S \subseteq R$ is an extension of semiring and I is a 2-prime ideal of R, then $I \cap S$ is a 2 -prime ideal of S.

Theorem 2.19. Let $S=S_{1} \times S_{2}$ and $I=I_{1} \times I_{2}$, where I_{i} are ideals of S_{i} for $i=1,2$. Then the following are equivalent
(1) I is a 2-prime ideal of S.
(2) $I_{1}=S_{1}$ and I_{2} is a 2-prime ideal of S_{2} or $I_{2}=S_{2}$ and I_{1} is a 2 -prime ideal of S_{1}.

Proof. (1) $\Rightarrow(2)$. Let I be a 2 -prime ideal of S. Then $\sqrt{I}=\sqrt{I_{1}} \times \sqrt{I_{2}}$, is a prime ideal of S. Hence either $I_{1}=S_{1}$ or $I_{2}=S_{2}$. Let $I_{2}=S_{2}$ and $a b \in I_{1}$ for some $a, b \in S_{1}$. Then $(a, 1)(b, 1) \in I$. Hence $(a, 1)^{2} \in I$ or $(b, 1)^{2} \in I$, since I is a 2 -prime ideal of S. This implies $a^{2} \in I_{1}$ or $b^{2} \in I_{1}$. Consequently, I_{1} is a 2-prime of S_{1}. Similarly, if $I_{1}=S_{1}$, we can show that I_{2} is a 2 -prime ideal of S_{2}.
$(2) \Rightarrow(1)$. Assume $I_{1}=S_{1}$ and I_{2} is a 2-prime ideal of S_{2}. Let $(a, x)(b, y) \in I$ for some $a, b \in S_{1}$ and $x, y \in S_{2}$. Then $x y \in I_{2}$ and this implies $x^{2} \in I_{2}$ or $y^{2} \in I_{2}$. Hence $(a, x)^{2} \in I$ or $(b, y)^{2} \in I$, as desired. In a similar way, one can prove the other case.

Corollary 2.20. Let $S=S_{1} \times S_{2} \times \ldots \times S_{n}$ and $I=I_{1} \times I_{2} \times \ldots \times I_{n}$, where I_{i} are ideals of S_{i} and $n \in \mathbb{N}$. Then the following are equivalent
(1) I is a 2-prime ideals of S.
(2) I_{i} is a 2-prime ideal of S_{i} for some $i \in\{1,2, \ldots, n\}$ and $I_{j}=S_{j}$ for all $j \neq i$.

Proof. By using Theorem 2.19 and induction on n, the proof is straightforward.

Let S be a semiring and M an S-semimodule. Then $S \times M$ equipped with the following two operations $\left(s_{1}, m_{1}\right)+\left(s_{2}, m_{2}\right)=\left(s_{1}+s_{2}, m_{1}+m_{2}\right)$ and $\left(s_{1}, m_{1}\right)\left(s_{2}, m_{2}\right)=\left(s_{1} s_{2}, s_{1} m_{2}+s_{2} m_{1}\right)$, forms a semiring, denoted by $S \tilde{\oplus} M$, is called the expectation semiring of the S-semimodule M ([12], Proposition 1.1).

If I is an ideal of S and N is an S-subsemimodule of M, then $I \tilde{\oplus} N$ is an ideal of $S \tilde{\oplus} M$ if and only if $I M \subseteq N$ ([12], Theorem 1.6(2)).

Theorem 2.21. Let M be a S-semimodule, I a proper ideal of S and $N \neq$ M an S-subsemimodule of M. Then
(1) If $I \tilde{\oplus} N$ is a 2-prime ideal of $S \tilde{\oplus} M$, then I is a 2-prime ideal of S.
(2) If the ideal I of S is 2-prime and $\sqrt[2]{I} M \subseteq N$, then $I \tilde{\oplus} N$ is a 2 -prime ideal of $S \oplus$.

Proof. (1). Let $a b \in I$ with $a^{2} \notin I$ for some $a, b \in S$. Then $(a, 0)(b, 0) \in$ $I \tilde{\oplus} N$ while $(a, 0)^{2} \notin I \tilde{\oplus} N$. Hence $(b, 0)^{2} \in I \tilde{\oplus} N$, since $I \tilde{\oplus} N$ is a 2 -prime ideal of $S \tilde{\oplus} M$. Consequently, $b^{2} \in I$, as desired.
(2). Let $(a, m)(b, n) \in I \tilde{\bigoplus}^{\prime}$ for some $a, b \in S, m, n \in M$. This implies $a b \in I$ implies $a^{2} \in I$ or $b^{2} \in I$. If $a^{2} \in I$, then $a m \in \sqrt[2]{I} M \subseteq N$ and this yields $(a, m)^{2}=\left(a^{2}, 2 a m\right) \in I \tilde{\oplus} N$. Again if $b^{2} \in I$ we have $(b, m)^{2} \in I \tilde{\oplus} N$. Consequently, $I \tilde{\oplus} N$ is a 2-prime ideal of $S \tilde{\oplus} N$.

3. 2- P-semiring

Definition 3.1. A semiring S is said to be a $2-P$-semiring if 2-prime ideals of S are prime.

Example 3.2. Clearly every idempotent semiring is a $2-P$-semiring.
Theorem 3.3. A semiring S is 2 - P-semiring if and only if one of the following conditions holds:
(1) 2-prime ideals are semiprime.
(2) Prime ideals are idempotent and every 2-prime ideal is of the form A^{2}, where A is a prime ideal of S.

Proof. (1). If S is a 2 - P-semiring, clearly 2 -prime ideals are semiprime. Converse follows easily from Proposition 2.7(3).
(2). Let P be a prime ideal of a $2-P$-semiring S. Then P^{2} is a prime ideal of S (Proposition 2.7(2)) and hence $P \subseteq P^{2}$. Clearly $P^{2} \subseteq P$. Therefore prime ideals of S are idempotent. Again, let I be a 2 -prime ideal of S. Then I is prime and hence $I=I^{2}$.

Conversely, let I be a 2-prime ideal of S. Then $I=P^{2}=P$ for some prime ideal P of S. Consequently, S is a $2-P$ semiring.

Lemma 3.4. Let (S, M) be a local semiring. Then for every prime ideal I of $S, I M$ is a 2-prime ideal of S. Furthermore, IM is prime if and only if $I M=I$

Proof. Let $x y \in I M \subseteq I$. Then either $x \in I$ or $y \in I$, since I is a prime ideal of S. Let $x \in I$ implies $x^{2} \in I M$, since $I \subseteq M$. Hence $I M$ is a 2 -prime ideal of S.

Definition 3.5. Let I be an ideal of a semiring S. We define a 2 -prime ideal P to be a minimal 2 -prime ideal over I if there is not a 2 -prime ideal K of S such that $I \subseteq K \subset P$. We denote the set of minimal 2-prime ideals over I by $2-\operatorname{Min}_{S}(I)$.

Theorem 3.6. Let S be a subtructive semiring with unique maximal ideal M such that $(\sqrt{I})^{2} \subseteq I$ for every 2 -prime ideal I of S. Then the following statements are equivalent.
(1) S is a 2- P-semiring.
(2) If P is the minimal prime ideal over a 2 -prime ideal I, then $I M=P$.
(3) For every prime ideal P of $S, 2-\operatorname{Min}_{S}\left(P^{2}\right)=\{P\}$.

Proof. (1) $\Rightarrow(2)$. Let P be the minimal prime ideal over a 2-prime ideal I of a $2-P$-semiring S. Then clearly $I M=P$ (Lemma 3.4).
$(2) \Rightarrow(1)$. Let I be a 2 -prime ideal of a subtructive semiring S with unique maximal ideal M and P is the minimal prime ideal over I such that $I M=P$. Then $I \subseteq P=I M \subseteq I \cap M=I$ implies $I=P$. Hence S is a $2-P$-semiring.
(2) $\Rightarrow(3)$ Let P be a prime ideal of S and I be a 2 -prime ideal of S such that $I \in 2-\operatorname{Min}_{S}\left(P^{2}\right)$. Let J be a prime ideal of S such that $I \subseteq J \subseteq P$. Clearly, $P^{2} \subseteq I \subseteq J \subseteq P$. Let $a \in P$ then $a^{2} \in P^{2}$. Therefore $a^{2} \in J$ implies $a \in J$, since J is prime. Hence $J=P$. Now by hypothesis, $I M=P$ implies $P=I M \subseteq I \subseteq P$. Consequently, $2-\operatorname{Min}_{S}\left(P^{2}\right)=\{P\}$.
(3) $\Rightarrow(2)$. Let P is the minimal prime ideal over a 2 -prime ideal I of S. Then $\sqrt{I}=P$. Hence by hypothesis $P^{2} \subseteq I \subseteq P$. Therefore $2-$ $\operatorname{Min}_{S}\left(P^{2}\right)=\{P\}$. Clearly $I=P$ implies $I M$ is 2-prime (Lemma 3.4). Now $P^{2} \subseteq P M \subseteq P$ so $I M=P M=P$.

Theorem 3.7. Let $S \subseteq R$ be an extension of semiring and $\operatorname{spec}(S)=\operatorname{spec}(R)$, where spec (S) and $\operatorname{spec}(R)$ denotes set of all prime ideals of S and R respectively. If S is a $2-P$-semiring, then R is $2-P$-semiring.

Proof. Let I be a 2-prime ideal of R. Then $\sqrt{I}=P \in \operatorname{spec}(R)=\operatorname{spec}(S)$. Clearly $I \subseteq P$. Also $I \cap S$ is a 2-prime ideal of S (Corollary 2.18), hence prime, since S is 2 - P-semiring. Therefore $I \cap S=\sqrt{I \cap S}=P$ and $P^{2} \subseteq$ $I \cap S$. Let $x \in P$. Then $x^{2} \in P^{2} \subseteq I \cap S \in \operatorname{spec}(A)$. Hence $x \in I \cap S \subseteq I$. Consequently, $I=P$, as desired.

4. n-weakly 2 -prime ideal

Definition 4.1. A proper ideal I of a semiring S is said to be n-weakly 2 -prime if for $a, b \in S, a b \in I-I^{n}$ implies that $a^{2} \in I$ or $b^{2} \in I$.

Definition 4.2. A proper ideal I of a semiring S is said to be a weakly 2 -prime ideal of S if $0 \neq x y \in I$ for some $x, y \in S$ implies $x^{2} \in I$ or $y^{2} \in I$.

The following lemmas are obvious, hence we omit the proof.

Lemma 4.3.

(1) Every 2-prime ideal of S is a weakly 2-prime ideal of S.
(2) Every weakly prime ideal of S is a weakly 2-prime ideal of S.
(3) Every weakly 2-prime ideal of S is a n-weakly 2-prime ideal of S.
(4) An n-weakly 2-prime is a $(n-1)$-weakly 2 -prime ideal, for all $n \geqslant 3$.

Proposition 4.4. Let I be a subtructive ideal of a semiring S. Then
(1) If I is weakly 2-prime but not a 2-prime ideal of S, then
(i) $I^{2}=0$.
(ii) $\sqrt{I}=\sqrt{0}$.
(2) Let (S, M) be a local semiring with $M^{2}=0$. Then every proper subtructive ideal of S is a weakly prime and hence weakly 2-prime ideal of S.
(3) Let P be a weakly prime ideal of S and Q be an ideal of S containg P, then $P Q$ is a weakly 2-prime ideal of S. In particular, for every weakly prime ideal P of S, P^{2} is a weakly 2-prime ideal of S.
(4) \sqrt{I} is a prime (resp. weakly prime) ideal of S if and only if \sqrt{I} is a 2-prime (resp. weakly 2-prime) ideal of S.
(5) Let I be a n-weakly 2-prime ideal of S and A be a multiplicatively closed subset of S with $A \cap I=\phi$ and $A^{-1} I^{n} \subseteq\left(A^{-1} I\right)^{n}$. Then $A^{-1} I$ is a n-weakly 2 -prime ideal of $A^{-1} S$.

Proof. (1)(i). We first show that if $a b=0$ for some $a, b \in S-I$, then we have $a I=b I=0$. Let $a i \neq 0$ for some $i \in I$. Then $0 \neq a(b+i) \in I$. Since I is a subtructive weakly 2 -prime ideal of S, either $a^{2} \in I$ or $b^{2} \in I$, a contradiction. Therefore $a I=0$. Similarly we can show $I b=0$. Now let $x y \neq 0$ for some $x, y \in I$ and $a b=0$ for some $a, b \notin I$. Then we have
$(a+x)(b+y)=x y \neq 0$. Since I is subtructive weakly 2-prime ideal of S, either $a^{2} \in I$ or $b^{2} \in I$, a contradiction. Hence $I^{2}=0$.
(ii). By $(i), I^{2}=\{0\}$. So we have $I \subseteq \sqrt{0}$ implies $\sqrt{I} \subseteq \sqrt{0}$. Also we have $\sqrt{0} \subseteq \sqrt{I}$. Therefore $\sqrt{I}=\sqrt{0}$.
(2). Let I be a proper ideal of a local semiring (S, M) such that $M^{2}=0$ and $0 \neq a b \in I$ for some $a, b \in S$. Then either $a \in M$ or $b \in M$ but both a, b does not belongs to M, otherwise $a b \in M^{2}=0$, a contradiction. Hence a or b must be semi-unit, let a be a semi-unit of S. Then there exists p, $q \in S$ such that $1+p a=q a$ implies $b+p a b=q a b \in I$. Also $p a b \in I$ implies $b \in I$, since I is a subtructive ideal of S. Similarly if b is a semi-unit then $a \in I$. Consequently I is a weakly 2 -prime ideal of S, as desired.
(3). Let $0 \neq a b \in P Q$ for some $a, b \in I$. Since $P Q \subseteq P$ and P is weakly prime ideal of S, we have either $a \in P \subseteq Q$ or $b \in P \subseteq Q$. Hence either $a^{2} \in P Q$ or $b^{2} \in P Q$. Consequently, $P Q$ is a weakly 2 -prime ideal of S, in particular, P^{2} is a weakly 2 -prime ideal of S.
(4). Since $\sqrt{\sqrt{I}}=I$ for any ideal I of S, it is clear.
(5). Let $a, b \in S$ and $x, y \in A$ such that $\frac{a}{x} \frac{b}{y} \in A^{-1} I-\left(A^{-1} I\right)^{n}$. Then there exists $u \in A$ such that $u a b \in I$. Again vab $\notin I^{n}$ for any $v \in A$ because if $v a b \in I^{n}$ then $\frac{a}{x} \frac{b}{y} \in A^{-1} I \subseteq\left(A^{-1} I\right)^{n}$, a contradiction. So $a b u \in I-I^{n}$, implies $a^{2} \in I$ or $b^{2} u^{2} \in I$, since I is a n-weakly 2 -prime ideal of S. Hence $\left(\frac{a}{x}\right)^{2} \in A^{-1} I$ or $\left(\frac{b}{y}\right)^{2} \in A^{-1} I$. Thus $A^{-1} I$ is a n-weakly 2 -prime ideal of $A^{-1} S$.

The following is a characterization of a semiring in which every proper ideal is weakly 2 -prime.

Theorem 4.5. Let S be a semiring. Then every proper ideal of S is weakly 2 -prime if and only if $\left(a^{2}\right) \subseteq(a b)$ or $\left(b^{2}\right) \subseteq(a b)$ or $a b=0$, for any $a, b \in S$ such that $(a b) \neq S$.

Proof. Let every proper ideal of a semiring S is weakly 2-prime and $a, b \in S$ such that $(a b) \neq S$. If $a b \neq 0$, then $0 \neq a b \in(a b)$ and $(a b)$ is weakly 2 -prime, hence $a^{2} \in(a b)$ or $b^{2} \in(a b)$. Consequently, $\left(a^{2}\right) \subseteq(a b)$ or $b^{2} \subseteq(a b)$.

Conversely, let I be a proper ideal of a semiring S and $0 \neq a b \in I$ for some $a, b \in S$. Then $0 \neq a b \in(a b) \subseteq I$ implies $a^{2} \in\left(a^{2}\right) \subseteq(a b) \subseteq I$ or $b^{2} \in\left(b^{2}\right) \subseteq(a b) \subseteq I$. Hence, I is weakly 2-prime ideal of S, as desired.

Theorem 4.6. Let I be a subtructive ideal of a semiring S with $I^{2} \nsubseteq I^{n}$. Then I is a 2-prime ideal of S if and only if I is a n-weakly 2 -prime ideal.

Proof. Let I be a subtructive n-weakly 2-prime ideal of S such that $I^{2} \subseteq I^{n}$ and $a b \in I$ for some $a, b \in S$. If $a b \notin I^{n}$, then $a^{2} \in I$ or $b^{2} \in I$, since I is n-weakly 2-prime. So we assume $a b \in I^{n}$. First we suppose $a I \nsubseteq I^{n}$. Then for some $i \in I$, ai $\notin I^{n}$ implies $a(b+i) \notin I^{n}$, since I is subtructive and $a b \in I^{n}$. Hence $a(b+i) \in I-I^{n}$ implies $a^{2} \in I$ or $b^{2} \in I$. So we can assume $a I \subseteq I^{n}$. Similarly we can assume $I b \subseteq I^{n}$. Now since $I^{2} \nsubseteq I^{n}$, there exists $a_{1}, b_{1} \in I$ such that $a_{1} b_{1} \notin I^{n}$. Hence $\left(a+a_{1}\right)\left(b+b_{1}\right) \in I-I^{n}$ because if $\left(a+a_{1}\right)\left(b+b_{1}\right) \in I^{n}$ then $a_{1} b_{1}=\left(a+a_{1}\right)\left(b+b_{1}\right)=\left(a b+a a_{1}+b b_{1}+a_{1} b_{1}\right) \in I^{n}$, which contradicts that $a_{1} b_{1} \notin I^{n}$. Hence $\left(a+a_{1}\right)^{2} \in I$ or $\left(b+b_{1}\right)^{2} \in I$, since I is n-weakly 2 -prime ideal of S. Therefore $a^{2} \in I$ or $b^{2} \in I$, since I is subtructive ideal of S, as desired. The other part is obvious.

Proposition 4.7. Let S be a semiring and $x \in S$. Then the following statements holds.
(1) If $S x$ is a subtructive ideal of S and $A n n(x) \subseteq S x$. Then $S x$ is a 2-prime ideal of S if and only if $S x$ is a n-weakly 2 -prime ideal.
(2) If $S x$ is a subtructive ideal of S and $\operatorname{Ann}(x) \subseteq x I$ for some subtrative ideal I of S. Then xI is a 2 -prime ideal of S if and only if $x I$ is a n-weakly 2 -prime ideal of S.

Proof. (1). Let $S x$ be a subtructive n-weakly 2-prime ideal of S and $a b \in S x$ for some $a, b \in S$. If $a b \notin(S x)^{n}$, then I is 2 -prime ideal, since $S x$ is n weakly 2 -prime ideal of S. So we assume $a b \in(S x)^{n}$. Clearly $a(b+x) \in S x$. If $a(b+x) \notin(S x)^{n}$, then $a^{2} \in S x$ or $b^{2} \in S x$, since $S x$ is n-weakly 2-prime ideal of S. So we assume $a(b+x) \in(S x)^{n}$. Since $a b \in(S x)^{n}$ and $(S x)^{n}$ is subtructive, we have $a x \in(S x)^{n}$ implies $a x=t x$ for some $t \in(S x)^{n} \subseteq S x$. Hence $a-t \subseteq A n n(x) \subseteq S x$ implies $a^{2} \in S x$. Consequently, $S x$ is a 2 -prime ideal of S. The converse part is obvious.
(2). Let $x I$ be a subtructive n-weakly 2 -prime ideal of S and $a b \in x I$ for some $a, b \in S$. If $a b \in(x I)^{n}$, then $x I$ is a 2-prime ideal of S. Hence we assume $a b \in(x I)^{n}$. Clearly, $a(b+x) \in x I$. If $a(b+x) \notin(x I)^{n}$, then $a^{2} \in x I$ or $b^{2} \in x I$, since $x I$ is subtructive n-weakly 2 -prime ideal of S. Hence $x I$ is n-weakly 2 -prime ideal of S. Now suppose $a(b+x) \in(x I)^{n}$. Since $a b \in(x I)^{n}$, we have $a x=y x$ for some $y \in(a I)^{n} \subseteq a I$. This implies $(a-y) x=0$. Hence $a-y \in \operatorname{Ann}(x) \subseteq x I$. Therefore $a^{2} \in x I$. Consequently, $x I$ is a 2-prime ideal of S.

Definition 4.8. A proper ideal I of a semiring S is said to be a strong ideal, if for each $a \in I$ there exists $b \in I$ such that $a+b=0$.

Proposition 4.9. Let $f: S \rightarrow S_{1}$ be an epimorphism of semirings such that $f(0)=0$ and I be a subtructive strong ideal of S. Then
(1) If I is a weakly 2-prime ideal of S such that ker $f \subseteq I$, then $f(I)$ is a weakly 2-prime ideal of S_{1}.
(2) If I is a 2-prime ideal of S such that $\operatorname{ker} f \subseteq I$, then $f(I)$ is a 2 -prime ideal of S_{1}.

Proof. (1). Let $a_{1}, b_{1} \in S_{1}$ be such that $0 \neq a_{1} b_{1} \in f(I)$. So there exists an element $p \in I$ such that $0 \neq a_{1} b_{1}=f(p)$. Also there exist $a, b \in S$ such that $f(a)=a_{1}, f(b)=b_{1}$, since f is an epimorphism. Since I is a strong ideal of S and $p \in I$, there exists $q \in I$ such that $p+q=0$. This implies $f(p+q)=0$, that is, $f(a b+q)=0$, implies $a b+q \in \operatorname{ker} f \subseteq I$, Hence $0 \neq a b \in I$, as I is a subtructive ideal of S and if $a b=0$, then $f(p)=0$, a contradiction. Thus $a^{2} \in I$ or $b^{2} \in I$, since I is a weakly 2 -prime ideal of S. Thus $a_{1}^{2} \in f(I)$ or $b_{1}^{2} \in f(I)$. Hence, $f(I)$ is a weakly 2-prime ideal of S.
(2). It is clear from (1).

Proposition 4.10. Let S_{1} and S_{2} be two semirings and I be a proper ideal of S_{1}. Then the followings are equivalent:
(1) I is a 2-prime ideal of S_{1}.
(2) $I \times S_{2}$ is a 2-prime ideals of $S_{1} \times S_{2}$.
(3) $I \times S_{2}$ is a weakly 2-prime ideals of $S_{1} \times S_{2}$.

Proof. (1) $\Rightarrow(2)$. Let $\left(a_{1}, b_{1}\right)\left(c_{1}, d_{1}\right) \in I \times S_{2}$ for some $\left(a_{1}, b_{1}\right) \in S_{1} \times S_{2}$ and $\left(c_{1}, d_{1}\right) \in S_{1} \times S_{2}$. Then $\left(a_{1} c_{1}, b_{1} d_{1}\right) \in I \times S_{2}$ implies $a_{1}^{2} \in I$ or $c_{1}^{2} \in I$, since I is a 2 -prime ideal of S_{1}. Now if $a_{1}^{2} \in I$, then $\left(a_{1}, b_{1}\right)^{2}=\left(a_{1}^{2}, b_{1}^{2}\right) \in I \times S_{2}$. Similarly if $c_{1}^{2} \in I$, then $\left(c_{1}, d_{1}\right)^{2}=\left(c_{1}^{2}, d_{1}^{2}\right) \in I \times S_{2}$. Consequently, $I \times S_{2}$ is a 2 -prime ideal of $S_{1} \times S_{2}$.
$(2) \Rightarrow(3)$ It is clear.
$(3) \Rightarrow(1)$. Let $a b \in I$ for some $a, b \in S$. Then $(0,0) \neq(a, 1)(b, 1) \in$ $I \times S_{2}$. This implies $\left(a^{2}, 1\right) \in I \times S_{2}$ or $\left(b^{2}, 1\right) \in I \times S_{2}$, since $I \times S_{2}$ is a 2-prime ideal of $S_{1} \times S_{2}$. Hence, $a^{2} \in I$ or $b^{2} \in I$, as desired.

Acknowledgments. We are thankful to the referee for several valuable suggestions which improve the presentation of the paper.

References

[1] Allen, P.J., Neggers, J., Ideal theory in commutative A-semirings, Kyngpook Math. J., 46(2006), 261 - 271.5
[2] Beddani, C., and Messirdi, W., 2-Prime ideals and their applications, J. Algebra Appl., 15(3)(2016), 1650051(11 pages). 5
[3] Dubey, M. K., and Aggarwal, P., On 2-absorbing ideals in a commutative rings with unity, Lobachevskii J. Math., 39(2)(2018), 185-190.
[4] Golan, J.S., Semirings and their applications, Dordrecht: Kluwer Academic Publ., (1999).
[5] Golan, J. S., Power algebras over semirings. With applications in mathematics and computer science, Dordrecht: Kluwer Academic Publ., (1999).
[6] Khanra, B., and Mandal, M., On 2-prime ideals in commutative semigroups, An. Ştiintr. Univ. Al. I. Cuza Iasi. Mat., 68 (2022), 49 - 60.
[7] Koc, S., On weakly 2-prime ideals in commutative rings, Commun. Algebra, (2021), 1 - 17.
[8] Nasehpour, P., Pseudocomplementation and minimal prime ideals in semirings, Algebra Universalis, 79(1)(2018), Paper No. 11.
[9] Nasehpour, P., Some remarks on ideals of commutative semirings, Quasigroups Relat. Syst., 26 (2018), 281 - 298.
[10] Nasehpour, P., Valuation semiring, J. Algebra Appl., 17 (2018) 1850073.
[11] Nasehpour, P., Some remarks on semirings and their ideals, Asian-Eur. J. Math., 13(1)(2020), Article ID 2050002 (14 pages).
[12] Nasehpour, P., Algebraic properties of expectation semirings, Afrika Mathematika 31(2020), 903 - 915 .
[13] Nikandish, R., Nikmehr, M. J. and Yassine, A., More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc., 57(1)(2020), 117-126.
[14] Subramanian, H., Von Neumann regularity in semirings, Math. Nachrichten, 45 (1970), $73-76$.
[15] Zariski, O., and Samuel, P., Commutative Algebra, Vol II, Van Nostrand, New York, 1960.

Received October 14, 2021

Department of Mathematics, Jadavpur University, Kolkata-700032, India
E-mails: biswaranjanmath91@gmail.com (B. Khanra)
m.haddadi@semnan.ac.ir, haddadi_1360@yahoo.com M. (Mandal)
jumathsampad@gmail.com (S. Das)

