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A note on 2-prime and n-weakly 2-prime ideals
of semirings

Biswaranjan Khanra, Manasi Mandal and Sampad Das

Abstract. We introduce and study the concepts of 2-prime and n-weakly 2-prime
(resp. weakly 2-prime) ideals in a commutative semiring. We prove that an integral
semidomain S is a valuation semiring if and only if every proper ideal of S is 2-prime and
in a principal ideal semidomain the concepts of primary, quasi-primary and 2-prime ideals
coincide. We characterize semirings where 2-prime ideals are prime and also characterize
semirings where every proper ideal is n-weakly 2-prime (resp. weakly 2-prime).

1. Introduction

A commutative semiring is a commutative semigroup (S, ·) and a commu-
taive monoid (S,+, 0S) in which 0S is the additive identity and 0S .x =
x.0S = 0S for all x ∈ S, both are connected by ring like distribuitivity. We
say S is a semiring with identity if the multiplicative semigroup (S, ·) has
identity element. Throughout this paper, unless otherwise mentioned, all
semirings are commutative with identity element 1 6= 0, in particular S will
denote such a semiring.

A nonempty subset I of S is called an ideal of S if a, b ∈ I and r ∈ S,
then a+ b ∈ I and ra ∈ I. We define radical of an ideal I as

√
I = {x ∈ S :

xn ∈ I} and residual of I by a ∈ S as (I : a) = {s ∈ S : sa ∈ I}. Annihilator
of an element a in a semiring S is defined as Ann(a) = {x ∈ S : ax = 0}.
For an element x of S, (x) = Sx is the principal ideal of S generated by x.
An ideal I of a semiring S is said to be subtructive (or k-ideal) if a, a+b ∈ I,
b ∈ S then b ∈ I. A nonzero element a of S is said to be a zero divisor if
ab = 0 for some nonzero b ∈ S. For an ideal I of S, ZdS(I) = {s ∈ S : sr ∈ I
for some r 6∈ I} and 2

√
I = {x ∈ S : x2 ∈ I}. An ideal I of a semiring S

is said to be proper if I 6= S and an ideal generated by nth powers of
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elements of I is denoted as In = ({xn : x ∈ I}) [?]. A semiring S is called
a semidomain if ab = ac implies b = c for any b, c ∈ S and for all nonzero
a ∈ S. Similarly to the concept of field of fractions in ring theory, one can
define the semifield of fractions F (S) of a semidomain S ([5], p. 22). Let A
be a multiplicatively closed subset of a semiring S. The relation is defined
on the set S × A by (s, a) ∼ (t, b) ⇔ xsb = xat for some a ∈ A is an
equivalence relation and the equivalence class of (s, a) ∈ S ×A denoted by
s/a. The set of all equivalence classes of S×A under “∼” denoted by A−1S.
The addition and multiplication are defined s/a + t/b = (sb + ta)/ab and
(s/a)(t/b) = st/ab. The semiring A−1S is called quotient semiring S by A.
Suppose that S is a commutative semiring, A be a multiplicatively closed
subset and I be an ideal. The set A−1I = {a/b : a ∈ I, b ∈ A} is an ideal
of A−1S. A proper ideal I of a semiring is said to be prime (resp. weakly
prime) if for a, b ∈ S such that ab ∈ I (resp. 0 6= ab ∈ I) implies either a ∈ I
or b ∈ I. An ideal I of S is said to be primary if ab ∈ I for some a, b ∈ S
implies a ∈ I or b ∈

√
I and quasiprimary if

√
I is a prime ideal of S. The

notion of 2-prime (resp. weakly 2-prime ideal) as a generalisations of prime
(resp. weakly prime) ideals in a commutative ring was introduced in [2, 7]
and in a commutative semigroup in [6]. Moreover, rings in which concept
of 2-prime, primary ideals coincide and rings in which 2-prime ideals are
prime has been studied in [13]. These observations tempted us to study
2-prime (resp. weakly 2-prime) ideals in a commutative semiring.

In this article, firstly we define 2-prime ideals in a commutative semir-
ing and state its relations with prime and quasi-primary ideals. Then we
prove that every maximal ideal of a semiring without unity is 2-absorbing
(Theorem 2.6). We define valuation ideal in a semiring and prove that a
semidomain is a valuation semiring if and only if every proper ideal of the
semidomain is 2-prime (Theorem 2.11). Also we prove that in a principal
ideal semidomain the concepts of 2-prime, primary, quasi-primary ideals
coincide (Theorem 2.15). In section 3, we characterize semirings in which
2-prime ideals are prime, defined as 2-P -semiring. In section 4, we define
n-weakly 2-prime (resp. weakly 2-prime) ideals in a semiring. Then we
characterize semirings in which every proper ideal is weakly 2-prime (The-
orem 4.5) (resp. n-weakly 2-prime) (Theorem 4.6) and also studied some
further properties of these ideals.

Before going to main work, we discuss some necessary preliminaries.

Theorem 1.1. (cf. [8]) Let I ⊆ P be ideals of a semiring S, where P is
prime. Then the following statements are equivalent:
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(1) P is a minimal prime ideal of I.
(2) For each x ∈ P , there is a y /∈ P and a nonnegative integer i such

that yxi ∈ I.

2. 2-prime ideals

Definition 2.1. A proper ideal I of a semiring S is said to be a 2-prime
ideal if xy ∈ I for some x, y ∈ S implies either x2 ∈ I or y2 ∈ I.

The following lemmas are obvious, hence we omit the proof.

Lemma 2.2.
(1) Every prime ideal of S is a 2-prime ideal of S.
(2) Every 2-prime ideal of S is a quasi-primry ideal of S. Therefore

if I is a 2-prime ideal of S, then
√
I = P is a prime ideal of S.

Remark 2.3. For a 2-prime ideal I of a semiring S, we refer to the prime
ideal P =

√
I as the associated prime ideal of I and I is referred to as a

P -2-prime ideal of S.

The following examples show that converses of above lemmas are not
true.

Example 2.4. Consider the ideal I = {m ∈ N ∪ {0} : m > 3} in the
semiring S = {N ∪ {0},+, ·}. Clearly, I is 2-prime but not a prime ideal of
S, since 2.2 ∈ I but 2 /∈ I.

Example 2.5. Consider the ideal I = ({Xn
n}∞n=1) in the semiring S =

Z2[{Xi}∞i=1]. Clearly I is quasiprimary ideal of S, since
√
I is a prime ideal

of S. But I is not a 2-prime ideal of S, as X2
6 ·X4

6 = X6
6 ∈ I and neither

(X2
6 )

2 /∈ I nor (X4
6 )

2 /∈ I.

If S is a semiring with unity, then every maximal ideal of S is prime
([1], Theorem 11) and hence 2-prime. If S is a semiring without unity then
maximal ideal of S need not be prime for example see ([1], Example 12)
but there is a relation between maximal and 2-prime ideal of S, as follows

Theorem 2.6. Let S be semiring without unity and assume maximal ideal
exists. Then every maximal ideal of S is a 2-prime ideal of S.
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Proof. Let xy ∈M with x2 /∈M for some x, y ∈ S, where M is a maximal
ideal of S. If y2 /∈ M , then clearly x, y ∈ S − M . Hence M + (x) =
M + (y) = S. Since x ∈ S, x2 = (p + s1x + n1x)(q + s2y + n2y) for some
p, q ∈ M , s1, s2 ∈ S and n1, n2 ∈ Z, implies x2 ∈ M , a contradiction.
Consequently, y2 ∈M . Hence M is a 2-prime ideal of S.

Proposition 2.7. Let I be an ideal of a semiring S.
(1) If I is a 2-prime ideal of S, then there is exactly one prime ideal of

S that is minimal over I.
(2) If I is a prime ideal of S, then I2 is a 2-prime ideal of S.
(3) An ideal I of S is prime if and only if it is both 2-prime and semi-

prime.
(4) If I is a 2-prime ideal of S and J1, J2,. . . , Jn are ideals of S such

that
⋂
Ji ⊆

√
I, then Ji ⊆

√
I for some i ∈ {1, 2, . . . , n}.

In particular, if
⋂
Ji =

√
I, then Ji =

√
I for some i ∈ {1, 2, . . . , n}.

(5) If I is a P -2-prime ideal of S, then (I : a2) is a 2-prime ideal of S,
for all a ∈ S such that a2 /∈ I.
In particular (I : a2) is a P -2-prime ideal of S for all a ∈ S −

√
I.

(6) If I is a 2-prime ideal of S and (I : a) = (I : a2) for all a ∈ S − I,
then (I : a) is a 2-prime ideal of S.

(7) I is a proper ideal of S and A be a multiplicatively closed subset of
S, then the following statements hold.
(i) If I is a 2-prime ideal of S such that I ∩A = φ, then A−1I is a

2-prime ideal of A−1S.
(ii) If A−1I is a 2-prime ideal of A−1S with ZdS(I) ∩ S = φ, then

I is a 2-prime ideal of S.
(8) If I is a P -primary ideal for some prime ideal P of S such that

P 2 ⊆ I. Then I is a 2-prime ideal of S.

Proof. (1). If possible, let J1 and J2 be two distinct prime ideal that are
minimal over I. Hence there exists j1 ∈ J1 − J2 and j2 ∈ J2 − J1. By
Theorem 1.1 there is a1 /∈ J1 and a2 /∈ J2 such that a1jn1 ∈ I and a2jm2 ∈ I
for some integer m, n > 1. Since j1, j2 /∈ I ⊆ J1 ∩ J2 and I is 2-prime ,
hence a21 ∈ I ⊆ J1 ∩ J2 and a22 ∈ I ⊆ J1 ∩ J2. Therefore a21 ∈ J1. Since J1
is prime so a1 ∈ J1, a contradiction. Similarly if a22 ∈ J2 then a2 ∈ J2, a
contradiction. Hence there is exactly one prime ideal minimal over I.

(2). Since I2 ⊆ I for any ideal I of S, it is clear.
(3). If an ideal I is prime, then clearly it is 2-prime and semiprime.
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Conversely, let ab ∈ I for some a, b ∈ S. Since I is 2-prime we have
a2 ∈ I or b2 ∈ I, which implies a ∈ I or b ∈ I, since I is semprime also.
Consequently I is a prime ideal of S.

(4). Let Ji *
√
I for all i ∈ {1, 2, . . . , n}. Then there exists ai ∈ Ji but

ai /∈
√
I for all i ∈ {1, 2, . . . , n}. Let x = a1a2 · · · an. Then x ∈

⋂
Ji but

x /∈
√
I, since

√
I is a prime ideal of S, a contradiction . Hence Ji ⊆

√
I

for some i ∈ {1, 2, . . . , n}.
Again if,

⋂
Ji =

√
I, then

√
I ⊆ Ji for all i ∈ {1, 2, . . . , n}. Hence Ji =

√
I

for some i ∈ {1, 2, . . . , n}.
(5). Let xy ∈ (I : a2) with x2 /∈ (I : a2) for x, y ∈ S. Then xya2 =

(xa)(ya) ∈ I. Hence (ya)2 = y2a2 ∈ I, since I is a 2-prime ideal of S and
x2a2 /∈ I. Consequently (I : a2) is a 2-prime ideal of S.
Again let a ∈ S − P and x ∈ (I : a2). Then a2x ∈ I ⊆ P . Hence x2 ∈ I,
since a /∈ P and I is a 2-prime ideal of S. Thus I ⊆ (I : a2) ⊆ P , which
implies P =

√
I ⊆

√
(I : a2) ⊆

√
P = P . Consequently (I : a2) is a

P -2-prime ideal of S.
(6). Clearly follows from (5).
(7). (i) Let (a/s)(b/t) ∈ A−1I for some a, b ∈ S and s, t ∈ A. Then

there exists u ∈ A such that abu ∈ I. Then a2 ∈ I or b2u2 ∈ I, since I
is a 2-prime ideal of S. If a2 ∈ I, then (a/s)2 = (ua2/us2) ∈ A−1I and if
b2u2 ∈ I then (b/s)2 = (b2u2/s2u2) ∈ A−1I. Therefore A−1I is a 2-prime
ideal of A−1S.

(ii) Let xy ∈ I for some x, y ∈ S. Then x
1
y
1 ∈ A

−1I implies x2

1 ∈ A
−1I

or y2

1 ∈ A−1I. Hence ax2 ∈ I or by2 ∈ I for some a, b ∈ S. Since
A ∩ ZdS(I) = φ, we have either x2 ∈ I or y2 ∈ I, as desired.

(8). Let ab ∈ I for some a, b ∈ S, where I is a P -primary ideal of S
such that P 2 ⊆ I. Then either a ∈ I or b ∈

√
I = P . If a ∈ I then a2 ∈ I2

and if b ∈ P then b2 ∈ P 2 ⊆ I. Consequently I is a 2-prime ideal of S.

Theorem 2.8. Let P be a proper ideal of a semiring S. Then the following
statements are equivalent:

(1) P is a 2-prime ideal of S.
(2) for any ideals J , K of S with JK ⊆ P implies either J2 ⊆ P or

K2 ⊆ P , where J2 = ({x2 : x ∈ J}) and K2 = ({k2 : k ∈ K}).
(3) For every s ∈ S, either (s) ⊆ (P : s) or (P : s) ⊆ 2

√
P .

(4) For any ideals A and B of S with AB ⊆ P implies either A2 ⊆ P
or B ⊆ 2

√
P .

(5) For every s ∈ S, either s2 ∈ P or (P : s)2 ⊆ P .
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Proof. (1)⇒ (2). Let P be a 2-prime ideal of a semiring S and JK ⊆ P for
some ideal J , K of S with J2 * P . Then there exists an element p ∈ J such
that p2 /∈ P . Since pK ⊆ P and p2 /∈ P , we conclude K2 ⊆ P (Proposition
2.7 ????).

(2) ⇒ (1). Let ab ∈ P for some a,b ∈ S and a2 /∈ P . Let J = (a) and
K = (b). Then JK ⊆ P and J2 * P , otherwise a2 ∈ P . Hence K2 ⊆ P
implies b2 ∈ P . Consequently, P is a 2-prime ideal of S.
(1) ⇒ (3) Let s ∈ S. If s2 ∈ P , then s ∈ (P : s) implies (s) ⊆ (P : s). Let
s2 /∈ P and r ∈ (P : s) for some r ∈ S. Hence rs ∈ P implies r2 ∈ P , since
P is 2-prime and s2 /∈ P . Consequently, (P : s) ⊆ 2

√
P .

(3)⇒ (4). Let AB ⊆ P for some ideals A, B of S. Let B * 2
√
P . Then

there exists b ∈ B − 2
√
P and ab ∈ P for all a ∈ A. Since b ∈ (P : a)− 2

√
P ,

we have (P : a) * 2
√
P . Hence by hypothesis, (a) ⊆ (P : a) implies a2 ∈ P .

Consequently A2 ⊆ P .
(4)⇒ (5). Let s ∈ S. If s2 ∈ P , there is nothing to prove. So let s2 /∈ P

and A = (P : s), B = (s). Then AB = (P : s)(s) ⊆ P . Since B * 2
√
P , we

have A2 = (P : s)2 ⊆ P .
(5)⇒ (1). Let xy ∈ P with x2 /∈ P for some x, y ∈ S. Then y ∈ (P : x).

Hence by hypothesis, y2 ∈ (P : s)2 ⊆ P , as desired.

The concept of valuation semiring has been defined by P. Nasehpour in
[10], here we define valuation ideal of a semiring, as follows

Definition 2.9. Let S be a semidomain and K be its semifield of fractions.
Then an ideal I in S is a valuation ideal if I is the intersection of S with
an ideal of a valuation semiring Sv containing S. Moreover if v is the
corresponding M -valuation we say I is a valuation ideal associated with the
M -valuation v or I is a v-ideal.

Lemma 2.10. Let v be an M -valuation on K and I an ideal of a semido-
main S. Then the followings are equivalent

(1) I is a valuation ideal.
(2) For each x ∈ S, y ∈ I, the inequality v(x) > v(y) implies x ∈ I.
(3) I is of the form I = SvI ∩ S.

Proof. The proof is similar to ([15], page 340).

Theorem 2.11. Let S be a semidomain. Then the following are equivalent
(1) Every ideal of S is 2-prime.
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(2) Every principal ideal of S is 2-prime.
(3) S is a valuation semiring.

Proof. (1)⇒ (2). It is clear.
(2) ⇒ (3). Let x ∈ K − {0}, where K is the semifield of fractions of

S. Then x = a
b for some a, b ∈ S − {0}. Let I = (ab) be a principal

ideal of S so 2-prime and since ab ∈ (ab) = I, we have a2 ∈ I or b2 ∈ I.
If a2 ∈ I, then there exists an element c ∈ S such that a2 = cab, hence
x = a

b = c ∈ S. Similarly, if b2 ∈ I, we have x−1 ∈ S. Consequently, S is a
valuation semiring ([10], Theorem 2.4).

(3) ⇒ (1). Let I be a v-ideal on S where v is a valuation on S. Let
xy ∈ I for some x, y ∈ S. If v(x) > v(y), we get v(x2) > v(xy) and as I is a
v-ideal we have x2 ∈ I. Similarly, v(y) > v(x) implies y2 ∈ I. Consequently
I is a 2-prime ideal of S.

The following lemmas are obvious, hence we omit the proof

Lemma 2.12. Let S be a semidomain and a, b ∈ S − {0}. Then a and b
are associates if and only if (a) = (b).

Lemma 2.13. Let S be a semidomain and p ∈ S − {0}. Then p is an
irreducible element of S if and only if (p) is a maximal ideal of S.

Lemma 2.14. Let I be a P -primary ideal of a semiring S. Then P is the
unique minimal prime ideal of I in S.

Proof. Let Q be another minimal prime of I in S. Then I ⊆ Q implies
P =
√
I⊆
√
Q=Q. Hence P is the unique minimal prime ideal of I in S.

Theorem 2.15. Let I be a proper ideal of a principal ideal semidomain S.
Then the followings are equivalent

(1) I is a quasi-primary ideal of S.
(2) I is a primary ideal of S.
(3) I is of the form (pn), where n is a postitive integer and p = 0 or an

irreduicible element of S.
(4) I is a 2-prime ideal of S.

Proof. (1) ⇒ (2). Since every nonzero prime ideal of a principal ideal
semidomain S is a maximal ideal ([11], Proposition 2.1), it follows claerly
from ([1], Theorem 40).
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(2)⇒ (1). It is obvious.
(2)⇒ (3). Let I be a nonzero primary ideal of S. Then I = (a) for some

nonzero nonunit element a ∈ S. Since every principal ideal semidomain is
a unique factorization semidomain ([11], Theorem 3.2), a can written as a
product of irreduicible elements of S. If a were divisible by two irreduicible
elements x and y of S, which are not associates, then by Lemma 2.12
and 2.13 (x) and (y) would be distinct maximal ideal of S, they would
both minimal prime ideal of (a), which contradicts Lemma 2.14. Hence
I = {(pn) : p = 0 or p is an irreduicible elements of S and n ∈ N}.

(3) ⇒ (2). Since S is a semidomain, {0} is prime and hence primary.
Let p be an irreduicible element of S and n ∈ N, then by Lemma 2.13 (pn)
is a power of a maximal ideal so is a primary ideal of S ([1], Theorem 40).

(3)⇔ (4) The proof is similar as that of ([13], Theorem 2.3).

Example 2.16. Let I be an ideal of a von neuman regular semiring S.
Then I = I2 =

√
I ([14], Proposition 1). Hence the concepts of prime,

primary, 2-prime and quasiprimary ideal coincide in a regular semiring S.

If R and S are semirings then a function f : R −→ S is said to be a
morphism of semirings ([4], p. 105) if (i)) f(0R) = 0S , (ii) f(1R) = 1S and
(iii) f(r1 + r2) = f(r1) + f(r2) and f(r1r2) = f(r1)f(r2) for all r1, r2 ∈ R.

Theorem 2.17. Let f : S1 → S2 be a morphism of semirings. Then the
following statements holds:

(1) If J is a 2-prime ideal of S2, then f−1(J) is a 2-prime ideal of S1.

(2) If f is onto steady morphism such that kerf ⊆ I and I is a 2-prime
k-ideal of S1, then f(I) is a 2-prime k-ideal of S2.

Proof. (1). Let ab ∈ f−1(J) for some a, b ∈ S1. Then f(ab) ∈ J , hence
f(a2) ∈ J or f(b2) ∈ J , since f is a morphism and J is a 2-prime of S2.
Therefore a2 ∈ f−1(J) or b2 ∈ f−1(J). Consequently, f−1(J) is a 2-prime
ideal of S1.

(2). Let xy ∈ f(I) for some x, y ∈ S2. Then there exists a, b ∈ S1
such that f(a) = x and f(b) = y. Then xy = f(a)f(b) = f(ab) ∈ f(I).
Hence f(ab) = f(r) for some r ∈ I. So we have ab + s = r + t for some s,
t ∈ I, since f is steady. Hence ab ∈ I, since kerf ⊆ I and I is a k-ideal of
S1. Hence either a2 ∈ I or b2 ∈ I, since I is a 2-prime ideal of S1. Thus
either f(a2)∈ f(I) or f(b2)∈ f(I). Consequently, f(I) is a 2-prime k-ideal
of S2.
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Corollary 2.18. If S ⊆ R is an extension of semiring and I is a 2-prime
ideal of R, then I ∩ S is a 2-prime ideal of S.

Theorem 2.19. Let S = S1×S2 and I = I1× I2, where Ii are ideals of Si
for i = 1, 2. Then the following are equivalent

(1) I is a 2-prime ideal of S.
(2) I1 = S1 and I2 is a 2-prime ideal of S2 or I2 = S2 and I1 is a

2-prime ideal of S1.

Proof. (1) ⇒ (2). Let I be a 2-prime ideal of S. Then
√
I =

√
I1 ×

√
I2,

is a prime ideal of S. Hence either I1 = S1 or I2 = S2. Let I2 = S2 and
ab ∈ I1 for some a, b ∈ S1. Then (a, 1)(b, 1) ∈ I. Hence (a, 1)2 ∈ I or
(b, 1)2 ∈ I, since I is a 2-prime ideal of S. This implies a2 ∈ I1 or b2 ∈ I1.
Consequently, I1 is a 2-prime of S1. Similarly, if I1 = S1, we can show that
I2 is a 2-prime ideal of S2.

(2) ⇒ (1). Assume I1 = S1 and I2 is a 2-prime ideal of S2. Let
(a, x)(b, y) ∈ I for some a, b ∈ S1 and x, y ∈ S2. Then xy ∈ I2 and this
implies x2 ∈ I2 or y2 ∈ I2. Hence (a, x)2 ∈ I or (b, y)2 ∈ I, as desired. In a
similar way, one can prove the other case.

Corollary 2.20. Let S = S1 × S2 × . . . × Sn and I = I1 × I2 × . . . × In,
where Ii are ideals of Si and n ∈ N. Then the following are equivalent

(1) I is a 2-prime ideals of S.
(2) Ii is a 2-prime ideal of Si for some i∈{1, 2, . . . , n} and Ij = Sj for

all j 6= i.

Proof. By using Theorem 2.19 and induction on n, the proof is straightfor-
ward.

Let S be a semiring and M an S-semimodule. Then S ×M equipped
with the following two operations (s1,m1) + (s2,m2) = (s1 + s2,m1 +m2)
and (s1,m1)(s2,m2) = (s1s2, s1m2 + s2m1), forms a semiring, denoted by
S
⊕̃
M , is called the expectation semiring of the S-semimodule M ([12],

Proposition 1.1).
If I is an ideal of S and N is an S-subsemimodule of M , then I

⊕̃
N is

an ideal of S
⊕̃
M if and only if IM ⊆ N ([12], Theorem 1.6(2)).

Theorem 2.21. Let M be a S-semimodule, I a proper ideal of S and N 6=
M an S-subsemimodule of M . Then

(1) If I
⊕̃
N is a 2-prime ideal of S

⊕̃
M , then I is a 2-prime ideal of S.
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(2) If the ideal I of S is 2-prime and 2
√
IM ⊆ N , then I

⊕̃
N is a 2-pri-

me ideal of S
⊕̃
M .

Proof. (1). Let ab ∈ I with a2 /∈ I for some a, b ∈ S. Then (a, 0)(b, 0) ∈
I
⊕̃
N while (a, 0)2 /∈ I

⊕̃
N . Hence (b, 0)2 ∈ I

⊕̃
N , since I

⊕̃
N is a 2-prime

ideal of S
⊕̃
M . Consequently, b2 ∈ I, as desired.

(2). Let (a,m)(b, n) ∈ I
⊕̃
N for some a, b ∈ S, m, n ∈ M . This

implies ab ∈ I implies a2 ∈ I or b2 ∈ I. If a2 ∈ I, then am ∈ 2
√
IM ⊆ N

and this yields (a,m)2 = (a2, 2am) ∈ I
⊕̃
N . Again if b2 ∈ I we have

(b,m)2 ∈ I
⊕̃
N . Consequently, I

⊕̃
N is a 2-prime ideal of S

⊕̃
N .

3. 2-P -semiring

Definition 3.1. A semiring S is said to be a 2-P -semiring if 2-prime ideals
of S are prime.

Example 3.2. Clearly every idempotent semiring is a 2-P -semiring.

Theorem 3.3. A semiring S is 2-P -semiring if and only if one of the
following conditions holds:

(1) 2-prime ideals are semiprime.
(2) Prime ideals are idempotent and every 2-prime ideal is of the form

A2, where A is a prime ideal of S.

Proof. (1). If S is a 2-P -semiring, clearly 2-prime ideals are semiprime.
Converse follows easily from Proposition 2.7(3).

(2). Let P be a prime ideal of a 2-P -semiring S. Then P 2 is a prime ideal
of S (Proposition 2.7(2)) and hence P ⊆ P 2. Clearly P 2 ⊆ P . Therefore
prime ideals of S are idempotent. Again, let I be a 2-prime ideal of S.
Then I is prime and hence I = I2.

Conversely, let I be a 2-prime ideal of S. Then I = P 2 = P for some
prime ideal P of S. Consequently, S is a 2-P semiring.

Lemma 3.4. Let (S,M) be a local semiring. Then for every prime ideal I
of S, IM is a 2-prime ideal of S. Furthermore, IM is prime if and only if
IM = I

Proof. Let xy ∈ IM ⊆ I. Then either x ∈ I or y ∈ I, since I is a prime
ideal of S. Let x ∈ I implies x2 ∈ IM , since I ⊆M . Hence IM is a 2-prime
ideal of S.
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Definition 3.5. Let I be an ideal of a semiring S. We define a 2-prime
ideal P to be a minimal 2-prime ideal over I if there is not a 2-prime ideal
K of S such that I ⊆ K ⊂ P . We denote the set of minimal 2-prime ideals
over I by 2-MinS(I).

Theorem 3.6. Let S be a subtructive semiring with unique maximal ideal
M such that (

√
I)2 ⊆ I for every 2-prime ideal I of S. Then the following

statements are equivalent.

(1) S is a 2-P -semiring.

(2) If P is the minimal prime ideal over a 2-prime ideal I, then IM = P .

(3) For every prime ideal P of S, 2-MinS(P
2) = {P}.

Proof. (1)⇒ (2). Let P be the minimal prime ideal over a 2-prime ideal I
of a 2-P -semiring S. Then clearly IM = P (Lemma 3.4).

(2) ⇒ (1). Let I be a 2-prime ideal of a subtructive semiring S with
unique maximal ideal M and P is the minimal prime ideal over I such that
IM = P . Then I ⊆ P = IM ⊆ I ∩M = I implies I = P . Hence S is a
2-P -semiring.

(2)⇒ (3) Let P be a prime ideal of S and I be a 2-prime ideal of S such
that I ∈ 2-MinS(P 2). Let J be a prime ideal of S such that I ⊆ J ⊆ P .
Clearly, P 2 ⊆ I ⊆ J ⊆ P . Let a ∈ P then a2 ∈ P 2. Therefore a2 ∈ J
implies a ∈ J , since J is prime. Hence J = P . Now by hypothesis, IM = P
implies P = IM ⊆ I ⊆ P . Consequently, 2-MinS(P 2) = {P}.

(3) ⇒ (2). Let P is the minimal prime ideal over a 2-prime ideal I
of S. Then

√
I = P . Hence by hypothesis P 2 ⊆ I ⊆ P . Therefore 2-

MinS(P 2) = {P}. Clearly I = P implies IM is 2-prime (Lemma 3.4). Now
P 2 ⊆ PM ⊆ P so IM = PM = P .

Theorem 3.7. Let S ⊆ R be an extension of semiring and spec(S)=spec(R),
where spec(S) and spec(R) denotes set of all prime ideals of S and R re-
spectively. If S is a 2-P -semiring, then R is 2-P -semiring.

Proof. Let I be a 2-prime ideal of R. Then
√
I = P ∈ spec(R) = spec(S).

Clearly I ⊆ P . Also I ∩ S is a 2-prime ideal of S (Corollary 2.18), hence
prime, since S is 2-P -semiring. Therefore I ∩ S =

√
I ∩ S = P and P 2 ⊆

I ∩ S. Let x ∈ P . Then x2 ∈ P 2 ⊆ I ∩ S ∈ spec(A). Hence x ∈ I ∩ S ⊆ I.
Consequently, I = P , as desired.



252 B. Khanra, M. Mandal and S. Das

4. n-weakly 2-prime ideal

Definition 4.1. A proper ideal I of a semiring S is said to be n-weakly
2-prime if for a, b ∈ S, ab ∈ I − In implies that a2 ∈ I or b2 ∈ I.

Definition 4.2. A proper ideal I of a semiring S is said to be a weakly
2-prime ideal of S if 0 6= xy ∈ I for some x, y ∈ S implies x2 ∈ I or y2 ∈ I.

The following lemmas are obvious, hence we omit the proof.

Lemma 4.3.
(1) Every 2-prime ideal of S is a weakly 2-prime ideal of S.
(2) Every weakly prime ideal of S is a weakly 2-prime ideal of S.
(3) Every weakly 2-prime ideal of S is a n-weakly 2-prime ideal of S.
(4) An n-weakly 2-prime is a (n−1)-weakly 2-prime ideal, for all n > 3.

Proposition 4.4. Let I be a subtructive ideal of a semiring S. Then
(1) If I is weakly 2-prime but not a 2-prime ideal of S, then

(i) I2 = 0.
(ii)
√
I =
√
0.

(2) Let (S,M) be a local semiring with M2 = 0. Then every proper
subtructive ideal of S is a weakly prime and hence weakly 2-prime
ideal of S.

(3) Let P be a weakly prime ideal of S and Q be an ideal of S containg
P , then PQ is a weakly 2-prime ideal of S. In particular, for every
weakly prime ideal P of S, P 2 is a weakly 2-prime ideal of S.

(4)
√
I is a prime (resp. weakly prime) ideal of S if and only if

√
I is a

2-prime (resp. weakly 2-prime) ideal of S.
(5) Let I be a n-weakly 2-prime ideal of S and A be a multiplicatively

closed subset of S with A ∩ I = φ and A−1In ⊆ (A−1I)n. Then
A−1I is a n-weakly 2-prime ideal of A−1S.

Proof. (1)(i). We first show that if ab = 0 for some a, b ∈ S − I, then we
have aI = bI = 0. Let ai 6= 0 for some i ∈ I. Then 0 6= a(b + i) ∈ I.
Since I is a subtructive weakly 2-prime ideal of S, either a2 ∈ I or b2 ∈ I,
a contradiction. Therefore aI = 0. Similarly we can show Ib = 0. Now
let xy 6= 0 for some x, y ∈ I and ab = 0 for some a, b 6∈ I. Then we have
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(a + x)(b + y) = xy 6= 0. Since I is subtructive weakly 2-prime ideal of S,
either a2 ∈ I or b2 ∈ I, a contradiction. Hence I2 = 0.

(ii). By (i), I2 = {0}. So we have I ⊆
√
0 implies

√
I ⊆
√
0. Also we

have
√
0 ⊆
√
I. Therefore

√
I =
√
0.

(2). Let I be a proper ideal of a local semiring (S,M) such thatM2 = 0
and 0 6= ab ∈ I for some a, b ∈ S. Then either a ∈M or b ∈M but both a,
b does not belongs to M , otherwise ab ∈ M2 = 0, a contradiction. Hence
a or b must be semi-unit, let a be a semi-unit of S. Then there exists p,
q ∈ S such that 1+pa = qa implies b+pab = qab ∈ I. Also pab ∈ I implies
b ∈ I, since I is a subtructive ideal of S. Similarly if b is a semi-unit then
a ∈ I. Consequently I is a weakly 2-prime ideal of S, as desired.

(3). Let 0 6= ab ∈ PQ for some a, b ∈ I. Since PQ ⊆ P and P is weakly
prime ideal of S, we have either a ∈ P ⊆ Q or b ∈ P ⊆ Q. Hence either
a2 ∈ PQ or b2 ∈ PQ. Consequently, PQ is a weakly 2-prime ideal of S, in
particular, P 2 is a weakly 2-prime ideal of S.

(4). Since
√√

I = I for any ideal I of S, it is clear.
(5). Let a, b ∈ S and x, y ∈ A such that a

x
b
y ∈ A

−1I − (A−1I)n. Then
there exists u ∈ A such that uab ∈ I. Again vab /∈ In for any v ∈ A because
if vab ∈ In then a

x
b
y ∈ A

−1I ⊆ (A−1I)n, a contradiction. So abu ∈ I − In,
implies a2 ∈ I or b2u2 ∈ I, since I is a n-weakly 2-prime ideal of S. Hence
(ax)

2 ∈ A−1I or ( by )
2 ∈ A−1I. Thus A−1I is a n-weakly 2-prime ideal of

A−1S.

The following is a characterization of a semiring in which every proper
ideal is weakly 2-prime.

Theorem 4.5. Let S be a semiring. Then every proper ideal of S is weakly
2-prime if and only if (a2) ⊆ (ab) or (b2) ⊆ (ab) or ab = 0, for any a, b ∈ S
such that (ab) 6= S.

Proof. Let every proper ideal of a semiring S is weakly 2-prime and a, b ∈ S
such that (ab) 6= S. If ab 6= 0, then 0 6= ab ∈ (ab) and (ab) is weakly 2-prime,
hence a2 ∈ (ab) or b2 ∈ (ab). Consequently, (a2) ⊆ (ab) or b2 ⊆ (ab).

Conversely, let I be a proper ideal of a semiring S and 0 6= ab ∈ I for
some a, b ∈ S. Then 0 6= ab ∈ (ab) ⊆ I implies a2 ∈ (a2) ⊆ (ab) ⊆ I or
b2 ∈ (b2) ⊆ (ab) ⊆ I. Hence, I is weakly 2-prime ideal of S, as desired.

Theorem 4.6. Let I be a subtructive ideal of a semiring S with I2 * In.
Then I is a 2-prime ideal of S if and only if I is a n-weakly 2-prime ideal.
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Proof. Let I be a subtructive n-weakly 2-prime ideal of S such that I2 ⊆ In
and ab ∈ I for some a, b ∈ S. If ab /∈ In, then a2 ∈ I or b2 ∈ I, since I is
n-weakly 2-prime. So we assume ab ∈ In. First we suppose aI * In. Then
for some i ∈ I, ai /∈ In implies a(b + i) /∈ In, since I is subtructive and
ab ∈ In. Hence a(b+ i) ∈ I−In implies a2 ∈ I or b2 ∈ I. So we can assume
aI ⊆ In. Similarly we can assume Ib ⊆ In. Now since I2 * In, there exists
a1, b1 ∈ I such that a1b1 /∈ In. Hence (a + a1)(b + b1) ∈ I − In because if
(a+a1)(b+b1) ∈ In then a1b1 = (a+a1)(b+b1) = (ab+aa1+bb1+a1b1) ∈ In,
which contradicts that a1b1 /∈ In. Hence (a + a1)

2 ∈ I or (b + b1)
2 ∈ I,

since I is n-weakly 2-prime ideal of S. Therefore a2 ∈ I or b2 ∈ I, since I
is subtructive ideal of S, as desired. The other part is obvious.

Proposition 4.7. Let S be a semiring and x ∈ S. Then the following
statements holds.

(1) If Sx is a subtructive ideal of S and Ann(x) ⊆ Sx. Then Sx is a
2-prime ideal of S if and only if Sx is a n-weakly 2-prime ideal.

(2) If Sx is a subtructive ideal of S and Ann(x) ⊆ xI for some subtra-
tive ideal I of S. Then xI is a 2-prime ideal of S if and only if xI
is a n-weakly 2-prime ideal of S.

Proof. (1). Let Sx be a subtructive n-weakly 2-prime ideal of S and ab ∈ Sx
for some a, b ∈ S. If ab /∈ (Sx)n, then I is 2-prime ideal, since Sx is n-
weakly 2-prime ideal of S. So we assume ab ∈ (Sx)n. Clearly a(b+x) ∈ Sx.
If a(b+ x) /∈ (Sx)n, then a2 ∈ Sx or b2 ∈ Sx, since Sx is n-weakly 2-prime
ideal of S. So we assume a(b+ x) ∈ (Sx)n. Since ab ∈ (Sx)n and (Sx)n is
subtructive, we have ax ∈ (Sx)n implies ax = tx for some t ∈ (Sx)n ⊆ Sx.
Hence a − t ⊆ Ann(x) ⊆ Sx implies a2 ∈ Sx . Consequently, Sx is a
2-prime ideal of S. The converse part is obvious.

(2). Let xI be a subtructive n-weakly 2-prime ideal of S and ab ∈ xI
for some a, b ∈ S. If ab ∈ (xI)n, then xI is a 2-prime ideal of S. Hence
we assume ab ∈ (xI)n. Clearly, a(b + x) ∈ xI. If a(b + x) /∈ (xI)n, then
a2 ∈ xI or b2 ∈ xI, since xI is subtructive n-weakly 2-prime ideal of S.
Hence xI is n-weakly 2-prime ideal of S. Now suppose a(b + x) ∈ (xI)n.
Since ab ∈ (xI)n, we have ax = yx for some y ∈ (aI)n ⊆ aI. This implies
(a−y)x = 0. Hence a−y ∈ Ann(x) ⊆ xI. Therefore a2 ∈ xI. Consequently,
xI is a 2-prime ideal of S.

Definition 4.8. A proper ideal I of a semiring S is said to be a strong
ideal, if for each a ∈ I there exists b ∈ I such that a+ b = 0.
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Proposition 4.9. Let f : S → S1 be an epimorphism of semirings such
that f(0) = 0 and I be a subtructive strong ideal of S. Then

(1) If I is a weakly 2-prime ideal of S such that kerf ⊆ I, then f(I) is
a weakly 2-prime ideal of S1.

(2) If I is a 2-prime ideal of S such that kerf ⊆ I, then f(I) is a
2-prime ideal of S1.

Proof. (1). Let a1, b1 ∈ S1 be such that 0 6= a1b1 ∈ f(I). So there exists
an element p ∈ I such that 0 6= a1b1 = f(p). Also there exist a, b ∈ S such
that f(a) = a1, f(b) = b1, since f is an epimorphism. Since I is a strong
ideal of S and p ∈ I, there exists q ∈ I such that p + q = 0. This implies
f(p + q) = 0, that is, f(ab + q) = 0, implies ab + q ∈ kerf ⊆ I, Hence
0 6= ab ∈ I, as I is a subtructive ideal of S and if ab = 0, then f(p) = 0, a
contradiction. Thus a2 ∈ I or b2 ∈ I, since I is a weakly 2-prime ideal of S.
Thus a21 ∈ f(I) or b21 ∈ f(I). Hence, f(I) is a weakly 2-prime ideal of S.

(2). It is clear from (1).

Proposition 4.10. Let S1 and S2 be two semirings and I be a proper ideal
of S1. Then the followings are equivalent:

(1) I is a 2-prime ideal of S1.
(2) I × S2 is a 2-prime ideals of S1 × S2.
(3) I × S2 is a weakly 2-prime ideals of S1 × S2.

Proof. (1)⇒ (2). Let (a1, b1)(c1, d1) ∈ I×S2 for some (a1, b1) ∈ S1×S2 and
(c1, d1) ∈ S1×S2. Then (a1c1, b1d1) ∈ I×S2 implies a21 ∈ I or c21 ∈ I, since
I is a 2-prime ideal of S1. Now if a21 ∈ I, then (a1, b1)

2 = (a21, b
2
1) ∈ I × S2.

Similarly if c21 ∈ I, then (c1, d1)
2 = (c21, d

2
1) ∈ I × S2. Consequently, I × S2

is a 2-prime ideal of S1 × S2.
(2)⇒ (3) It is clear.

(3) ⇒ (1). Let ab ∈ I for some a, b ∈ S. Then (0, 0) 6= (a, 1)(b, 1) ∈
I × S2. This implies (a2, 1) ∈ I × S2 or (b2, 1) ∈ I × S2, since I × S2 is a
2-prime ideal of S1 × S2. Hence, a2 ∈ I or b2 ∈ I, as desired.
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