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On the universality and isotopy-isomorphy
of (r, s, t)-inverse quasigroups and loops

with applications to cryptography

Richard Ilemobade, Olufemi George and Tèmító. pé. Gbó. láhàn Jaíyéo. lá

Abstract. This paper introduced a condition called R-condition under which (r, s, t)-
inverse quasigroups are universal. Middle isotopic (r, s, t)-inverse loops, satisfying the
R-condition and possessing a trivial set of r-weak inverse permutations were shown to be
isomorphic; isotopy-isomorphy for (r, s, t)-inverse loops. Isotopy-isomorphy for (r, s, t)-
inverse loops was generally characterized. With the R-condition, it was shown that for
positive integers r, s and t, if there is a (r, s, t)-inverse quasigroup of order 3k with an
inverse-cycle of length gcd(k, r+s+t) > 1, then there exists an (r, s, t)-inverse quasigroup
of order 3k with an inverse-cycle of length gcd

(
k(r+ s+ t), (r+ s+ t)2

)
. The procedure

of application of such (r, s, t)-inverse quasigroups to cryptography was described and
explained, while the feasibility of such (r, s, t)-inverse quasigroups was illustrated with
sample values of k, r, s and t.

1. Introduction

Weak inverse property quasigroups (loops) and cross inverse property
quasigroups (loops) are among the most studied loops with variation of in-
verse property. They have been studied in relation to Basarab loops by
Jaiyéo. lá and Effiong [16]. Weak and cross inverse property loops have been
generalized by Karklin and Karklin to m-inverse loops. m-inverse quasi-
groups were introduced by Keedwell and Shcherbacov [19] and applications
of this structure to cryptography was studied. They further generalized the
concept of m-inverse quasigroup by defining (r, s, t)-inverse quasigroup and
loop in [20], where r, s, and t are integers, and this include as special cases

2020 Mathematics Subject Classification: 20N02, 20N05.
Keywords: weak inverse, cross inverse, m-inverse, (r, s, t)-inverse quasigroups and
loops, R-condition, isotopy-isomorphy, long inverse cycle, cryptography.



54 R. Ilemobade, O. George and T. G. Jaíyéo. lá

all WIP-,CI- and m-inverse loops (and quasigroups). Thus some of the re-
sults on (r, s, t)-inverse loops and quasigroups generalizes some known ones
on WIP-,CI- and m-inverse loops (and quasigroups).

Jaiyéo. lá [7] investigated some isotopy-isomorphy conditions form-inverse
quasigroups and loops. There have been various studies of these two vari-
eties of loops (with peculiar interest in their applications in cryptography)
in the recent past and present. Among these are Jaiyéo. lá [6, 7, 9, 10, 12],
Jaiyéo. lá and Adeniran [14], Jaiyéo. lá and Smarandache [17], Oyebo et al.
[25]. A universal WIPL is an Osborn loop. Application of Osborn loops
to cryptography was reported by Jaiyéo. lá and Adéníran [15] and Jaiyéo. lá
[11, 13]. Shcherbacov [27] has a chapter dedicated to the application of
quasigroups in cryptology.

This present paper generalizes some results of Jaiyéo. lá [7] on m-inverse
loops and quasigroups to (r, s, t)-inverse loops and quasigroups. It also
discusses their application to cryptography.

2. Definitions and notations

Let Q be a non-empty set. Let (·) be a binary operation on Q such that
x · y ∈ Q ∀ x, y ∈ Q. Then (Q, ·) is called a groupoid. If in addition, the
equations a · x = b and y · a = b have unique solutions (x, y) ∈ Q × Q,
then (Q, ·) is called a quasigroup. A quasigroup with an element (identity
element) e such that x · e = e · x = x ∀ x ∈ Q is called a loop. For brevity,
sometimes, we shall write xy for x · y. The permutations Jρ : Q −→ Q and
Jλ : Q → Q defined by Jρ : x 7→ xρ and Jλ : x 7→ xλ are called the right
and left inverse maps respectively and such that x · xρ = e and xλ · x = e.

If there is a permutation J of elements of a quasigroup (Q, ·) such that
∀ x, y ∈ Q

(xy)Jr · xJs = yJ t,

where r, s and t are integers, then (Q, ·) is called an (r, s, t)-inverse quasi-
group. If r = t = m and s = m+ 1, we have

(xy)Jm · xJm+1 = yJm.

Hence, we have an m-inverse quasigroup. If in addition, (Q, ·) is a loop and
the permutation J is such that x · xJ = e, where e is the identity element
in Q, then (Q, ·) is an m-inverse loop (or generally an (r, s, t)-inverse loop).

Let (G, ·) and (H, ◦) be groupoids (quasigroups, loops). Let A, B and C
be three bijections, that maps G onto H. The triple α = (A,B,C) : G→ H
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is called an isotopism of (G, ·) onto (H, ◦) if

xA ◦ yB = (xy)C ∀ x, y ∈ G.

If

• α = (A,B,B), then the triple is called a left isotopism and the
groupoids (quasigroups, loops) are called left isotopes.

• α = (A,B,A), then the triple is called a right isotopism and the
groupoids (quasigroups, loops) are called right isotopes.

• α = (A,A,B), then the triple is called a middle isotopism and the
groupoids (quasigroups, loops) are called middle isotopes.

If (G, ·) = (H, ◦), the triple α = (A,B,C) is called an autotopism. Such
triples form a group ATP (G, ·) called autotopism group of (G, ·). If A =
B = C, then α = (A,B,C) = (A,A,A) = A is called an automorphism.
Such bijections form an automorphism group AUT (G, ·) of (G, ·).

Definition 2.1. (cf. [7]) A bijection β of a loop (Q, ·), for which the identity
xJr = [(xβ)Jr]β holds, where J is such that x · xJ = e is called an r-weak
inverse permutation.

Definition 2.2. A property of a quasigroup is said to be isotopic invariant
if the quasigroup possesses the property and all it isotopes also possess it.
Hence, such quasigroup is said to be universal (or universal relative to a
property).

Definition 2.3. (cf. [2]) In a loop (L, ·) with unit element e, let J be the
bijection defined by x 7→ xJ , x · xJ = e. If n is the least positive integer
for which xJn = x, then {x, xJ, . . . , xJn−1} is called an inverse-cycle of
length n

Definition 2.4. (cf. [19, 20]) Let Q be a m-inverse quasigroup or (r, s, t)-
inverse quasigroup. Consider the permutation J of Q with finite sequence
x1, x2, · · · , xn such that xkJ ≡ xk+1 (mod n). This sequence is called cycles
of inverses (or inverse cycles) of lenght n.

For the purpose of applying CIPQs to cryptography, Keedwell [18] con-
structed CIPQs with long inverse cycles. The author gave examples and
detailed explanation and procedures of the use of these CIPQs for cryptog-
raphy. Cross inverse property quasigroups have been found appropriate for
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cryptography because they give rise to what is called ’cycle of inverses’ or
’inverse cycles’ or simply ’cycles’ i.e finite sequence. The origin of the idea of
cycles can be traced back to Artzy [1, 2] where he also found their existence
in WIPLs apart form CIPLs. Keedwell and Shcherbacov [19] investigated
the existence of m-inverse quasigroups and loops with long inverse cycle
such that m > 1. Likewise, Keedwell and Shcherbacov [21] proved the ex-
istence of (r, s, t)-inverse quasigroups for specified values of r, s and t. We
present them below.

Theorem 2.5. (see [21])

1. There exist (r, s, t)-inverse quasigroups of every order 3n such that n
is not relatively prime to r + s+ t with inverse cycles of length equal
to the GCD of n and r + s+ t.

2. There exist (r, s, t)-inverse quasigroups of order 3(r+s+t) with inverse
cycles of length r + s+ t.

3. (r, s, t)-inverse quasigroups exist for every choice of positive integers
r, s and t.

Keedwell and Shcherbacov [20] were able to construct (r, s, t)-IQs using
T -quasigroups. After the results of Keedwell and Shcherbacov [19, 20, 21] on
existence (and non-existence) of finitem-inverse quasigroup of certain orders
and the construction of (r, s, t)-inverse quasigroup with long inverse cycles,
Looney [23] was able to further establish the existence (and non-existence)
of finite m-inverse quasigroup of certain orders which earlier authors could
not address.

The results on the holomorph of left and right key laws were shown by
Ogunrinade et al. [24] to be applicable to symmetric cryptography (secret
key cryptosystem) while Isere et al. [5] built cipher algorithms for cryptog-
raphy in some peculiar circumstances using some quasi-Latin quandles.

In what follows, we shall employ the use of the bijections J , Lx : y 7→ xy
and Rx : y 7→ yx for quasigroup (G, ·), while J∗, L∗

x : y 7→ x ◦ y and
R∗
x : y 7→ y ◦ x will be used for quasigroup isotope (H, ◦) of it.

Definition 2.6 (R-condition). Let (G, ·) and (H, ◦) be isotopic quasi-
groups under the isotopism (A,B,C). (G, ·) is said to satify theR-condition
relative to (H, ◦) if for integers r, s, and t, we have

J∗r = C−1JrA, J∗s = A−1JsB, J∗t = B−1J tC.
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It is worth to note that whenever it is mentioned that (G, ·) is an R-
conditioned quasigroup, then it is so relative to some isotope (H, ◦) of (G, ·).
Note that if (G, ·) is an R-conditioned quasigroup (relative to (H, ◦)), then
(H, ◦) is also R-conditioned (relative to (G, ·)).

See [3, 4, 8, 26, 27] for a general overview on quasigroups and loops.

Lemma 2.7. (cf. [20]) Let (G, ·) be a quasigroup. Then the following are
equivalent to each other.

1. (G, ·) is a (r, s, t)-inverse quasigroup.

2. LxJ
rRxJs = J t ∀ x ∈ G.

3. RxJ
−tLxJ−s = J−r ∀ x ∈ G.

Lemma 2.8. (cf. [19]) An (r, s, t)-inverse loop (G, ·) with identity element
e in which x · xJ = e ∀ x ∈ G is an r-inverse loop.

Lemma 2.9. (cf. [20]) Jr+s+t is an automorphism of an (r, s, t)-inverse
quasigroup.

3. Main results

Theorem 3.1. Let (G, ·) be a quasigroup that satisfies the R-condition
relative to an isotope (H, ◦). (G, ·) is an (r, s, t)-inverse quasigroup if and
only if (H, ◦) is an (r, s, t)-inverse quasigroup.

Proof. Necessary condition: Let (A,B,C) : G −→ H be an isotopism from
(G, ·) onto (H, ◦). Then, we have that xA ◦ yB = (xy)C ∀ x, y ∈ G. Now,
xA ◦ yB = (xy)C ⇒ yBL∗

xA = yLxC ⇒ Lx = BL∗
xAC

−1. Also, xA ◦ yB
= (xy)C ⇒ xAR∗

yB = xRyC ⇒ Ry = AR∗
yBC

−1. Since (G, ·) is an (r, s, t)-
inverse quasigroup, from Lemma 2.7, we have that LxJrRxJs = J t. Apply-
ing the isotopism to LxJrRxJs = J t, we obtain BL∗

xAC
−1JrAR∗

xJsBC
−1 =

J t. Hence, L∗
xAC

−1JrAR∗
xJsB = B−1J tC. By the assumption that (G, ·)

is R-conditioned, we have L∗
xAJ

∗rR∗
xAJ∗s = J∗t. Therefore, by Lemma 2.7,

(H, ◦) is an (r, s, t)-inverse quasigroup.
Sufficient condition: Recall that if (G, ·) is a R-conditioned quasigroup

(relative to (H, ◦)), then (H, ◦) is also R-conditioned (relative to (G, ·)).
Hence, assume that (H, ◦) is an (r, s, t)-inverse quasigroup and the proof
follows by a similar argument like the necessity part.
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Remark 3.2. Theorem 3.1 shows that under the R-condition, the (r, s, t)-
inverse property is isotopic invariant. Hence, under theR-condition, (r, s, t)-
inverse quasigroups are universal.

Theorem 3.3. Let (G, ·) and (H, ◦) be loops satisfying the R-condition,
under a middle isotopism, such that x ·xJ = eG and u ◦ uJ∗ = eH , where
eG and eH are the identity elements in G and H respectively, for all x ∈ G
and u ∈ H. (G, ·) is an (r, s, t)-inverse loop if and only if (H, ◦) is an
(r, s, t)-inverse loop. Furthermore, either of the loops has an r-weak inverse
permutation.

Proof. The first part follows from Theorem 3.1. Now, from Lemma 2.8, we
can put s = r + 1 and t = r so that the R-condition becomes

J∗r = C−1JrA = B−1JrC,

J∗r+1 = A−1Jr+1B.

From (1), C−1JrA = B−1JrC so that BC−1JrAC−1 = Jr. Since A = B
(consequence of the middle isotopism), we have that BC−1JrBC−1 = Jr. It
follows from Definiton 2.1 that β = BC−1 is an r-weak inverse permutation
of (G, ·) . Similar reasoning can be used to show the existence of an r-weak
inverse permutation for (H, ◦). The proof is complete.

Remark 3.4. It is interesting to note that if (G, ·) in Theorem 3.3 has a
trivial set of r-weak inverse permutations, then β = BC−1 = I, where I is
the identity map on G. Hence, B = C. Consequently, (G, ·) is isomorphic
to (H, ◦). Therefore, we have the following theorem.

Theorem 3.5. If two loops are R-conditioned under a middle isotopism
and any of them is an (r, s, t)-inverse loop and has a trivial set of r-weak
inverse permutations, then the two loops are both (r, s, t)-inverse loops that
are isomorphic.

Remark 3.6. Theorem 3.5 gives some conditions for isotopy-isomorphy for
(r, s, t)-inverse loops.

Lemma 3.7. If (G, ·) and (H, ◦) are isotopic (r, s, t)-inverse quasigroup
under the triple α = (A,B,C), then JrRxJsJ−tB = CJ∗rR∗

xAJ∗sJ∗−t and
J−tLxJ−sJrA = CJ∗−tL∗

xBJ∗−sJ
∗r.
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Proof. Since (A,B,C) : G → H is an isotopism from (G, ·) onto (H, ◦),
then

xA ◦ yB = (xy)C ∀ x, y ∈ G. (1)

Consequently, we have the identities

Lx = BL∗
xAC

−1 ⇔ Rx = AR∗
xBC

−1. (2)

If (G, ·) is an (r, s, t)-inverse quasigroup, then

LxJ
rRxJs = J t ⇔ RxJ

−tLxJ−s = J−r. (3)

Hence,
Lx = J tR−1

xJsJ
−r ⇔ Rx = J−rL−1

xJ−sJ
t ∀ x ∈ G. (4)

Similarly, If (H, ◦) is an (r, s, t)-inverse quasigroup, then

L∗
u = J∗tR∗−1

uJ∗sJ
∗−r ⇔ R∗

u = J∗−rL∗−1
uJ∗−sJ

∗t ∀ u ∈ H (5)

Applying (4) and (5) to (2), we obtain

J tR−1
xJsJ

−r= BJ∗tR∗−1
xAJsJ

∗−rC−1 ⇔ J−rL−1
xJ−sJ

t= AJ∗−rL∗−1
xBJ∗−sJ

∗tC−1.
(6)

Taking inverse of both sides of the identities, we have

JrRxJsJ−t= CJ∗rR∗
xAJsJ∗−tB−1⇔ J−tLxJ−sJr= CJ∗−tL∗

xBJ∗−sJ
∗rA−1.

(7)
Therefore,

JrRxJsJ−tB = CJ∗rR∗
xAJ∗sJ∗−t ⇔J−tLxJ−sJrA = CJ∗−tL∗

xBJ∗−sJ
∗r. (8)

The result follows immediately

Theorem 3.8. Let (G, ·) and (H, ◦) be isotopic (r, s, t)-inverse loops, with
identity elements eG and eH respectively, under the isotopism (A,B,C) :
G→ H, then

1. (G, ·) ∼= (H, ◦) ⇔ (J−rL−1
bJ−sJ

t, J tR−1
aJsJ−r, CJ∗t−rC−1) ∈ ATP(G, ·)

where a = eHA
−1 and b = eHB

−1 are in G.

2. (G, ·) ∼= (H, ◦)⇔ (J∗−rL∗
bJ∗−sJ

∗r, J∗rR∗
aJ∗sJ∗−t, C−1Jr−tC) ∈ ATP(H, ◦)

where a = eGA and b = eGB are in H.
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Proof. Put x = eHA
−1 ∈ G in JrRxJsJ−tB = CJ∗rR∗

xAJ∗sJ∗−t of equa-
tion (8) of Lemma 3.7. Therefore, JrReHA−1JsJ−tB = CJ∗r−t ⇔ B =
J tR−1

aJsJ−rCJ∗r−t, where a=eHA−1.Now, put x=eHB−1 in J−tLxJ−sJrA =
CJ∗−tL∗

xBJ∗−sJ
∗r in (8) of Lemma 3.7, to obtain J−tLeHB−1J−sJrA =

CJ∗r−t ⇔ A = J−rL−1
bJ−sJ

tCJ∗r−t. Therefore, the isotopism (A,B,C) :
G→ H becomes

(A,B,C) = (J−rL−1
bJ−sJ

tCJ∗r−t, J tR−1
aJsJ

−rCJ∗r−t, C).

Observe that (1) can be decomposed into

(A,B,C) = (J−rL−1
bJ−sJ

t, J tR−1
aJsJ

−r, CJ∗t−rC−1)(CJ∗r−t, CJ∗r−t, CJ∗r−t).

Consequently, if (CJ∗r−t, CJ∗r−t, CJ∗r−t) is an isomorphism from (G, ·)
onto (H, ◦), then (J−rL−1

bJ−sJ
t, J tR−1

aJsJ−r, CJ∗t−rC−1) ∈ ATP(G, ·) and
conversely. This completes the first part.

The second result is approached similarly, but in this case, we put x = eG
in both identities in (8) of Lemma 3.7.

Remark 3.9. Theorem 3.8 characterizes isotopy-isomorphy in (r, s, t)-inver-
se loops.

Theorem 3.10. Let (G, ·) and (H, ◦) be two finite quasigroups, isotopic
under the triple (A,B,C) such that they obey the R-condition. If (G, ·)
is an (r, s, t)-inverse quasigroup with an inverse-cycle of length n, where n
is a positive integer, then (H, ◦) is an (r, s, t)-inverse quasigroup with an
inverse-cycle of length n(r + s+ t) and n is the order of an automorphism
of (H, ◦).

Proof. (G, ·) is an (r, s, t)-inverse quasigroup if and only if (H, ◦) is an
(r, s, t)-inverse quasigroup follows from Theorem 3.1. Now, (G, ·) has an
inverse-cycle of length n if and only if Jn = IG, where IG : G → G is
the identity map on G. From the R-condition, we therefore , have that
J∗(r+s+t) = C−1J (r+s+t)C. We proceed by induction on n ∈ Z+ as follows:

J∗2(r+s+t) = (C−1J (r+s+t)C)(C−1J (r+s+t)C) = C−1J2(r+s+t)C,

J∗3(r+s+t) = (C−1J2(r+s+t)C)(C−1J (r+s+t)C) = C−1J3(r+s+t)C.

Suppose for k ∈ Z, we have J∗k(r+s+t) = C−1Jk(r+s+t)C. Therefore,

J∗(k+1)(r+s+t) = (C−1Jk(r+s+t)C)(C−1J (r+s+t)C) = C−1J (k+1)(r+s+t)C
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Hence, by mathematical induction, J∗n(r+s+t) = C−1Jn(r+s+t)C ∀ n ∈ Z+.
But Jn = IG. So, J∗n(r+s+t) = C−1Jn(r+s+t)C = C−1C = IH , where
IH is the identity map on H. Therefore, (H, ◦) has an inverse-cycle of
length n(r + s + t). Observe that IH = J∗n(r+s+t) = (J∗(r+s+t))n. From
Lemma 2.9, J∗(r+s+t) is an automorphism of (H, ◦). Thus we conclude that
n is the order of J∗(r+s+t). The proof is complete.

Remark 3.11. It can be shown in a similar way as in Theorem 3.10 that
if (H, ◦) has an inverse-cycle of length n, then (G, ·) has an inverse-cycle
of length n(r + s + t) and n is the order of the automorphism J (r+s+t) of
(G, ·).

4. Applications to cryptography

In application, it is assumed that the message to be transmitted can be
represented as single element y of an (r, s, t)-inverse quasigroup (G, ·) and
that this is enciphered by pre-multiplying by another element x of G and
then compute (xy)Jr which gives the cipher text. At the receiving end, the
message is deciphered by post-multiplying by xJs to get yJ t from which
the plain text message y can be extracted.

Let (G, ·) be a (r, s, t)-inverse quasigroup of order |G| = 3k with an
inverse cycle of length n where n, k ∈ N. Let (H, ◦) be a quasigroup that
is isotopic to (G, ·) under the R condition. Then by Theorem 3.1, H is a
(r, s, t)-inverse quasigroup of order |H| = 3k and by Theorem 3.10, H has
an inverse cycle of length n(r + s+ t). Going by Theorem 2.5, the (r, s, t)-
inverse quasigroup G exists provided gcd(k, r + s + t) > 1 and the inverse
cycle of G is of length gcd(k, r + s + t). Thus, the inverse cycle of H is of
length (r + s + t) × gcd(k, r + s + t). Consequently, we have the result in
Corollary 4.1.

Corollary 4.1. Let (G, ·) and (H, ◦) be two finite quasigroups, isotopic
under the triple (A,B,C) such that they obey the R-condition. Let r, s
and t be positive integers. If (G, ·) is an (r, s, t)-inverse quasigroup of order
3k with an inverse-cycle of length gcd(k, r + s + t) > 1, then (H, ◦) is
an (r, s, t)-inverse quasigroup of order 3k with an inverse-cycle of length
gcd

(
k(r + s + t), (r + s + t)2

)
> 1. Moreover, gcd(k, r + s + t) > 1 is the

order of the automorphism J∗(r+s+t) of (H, ◦).

Theorem 3.1 is structured by the choice of the triple (A,B,C) being an
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isotopism of G onto H such that the R condition holds. So, the secret key
for the system is the pair {(A,B,C),R}.

Thus, whenever a set of information or messages is to be transmitted, the
sender will encrypt in an (r, s, t)-inverse quasigroup G (as described earlier
on) and then encrypt again with {(A,B,C),R} to get a (r, s, t)-inverse
quasigroup H which is the set of encrypted messages. At the receiving
end, the combined message H is decrypted by using an inverse isotopism
(i.e inverse key {(A−1, B−1, C−1),R}) to get G and then decrypt again (as
described earlier on) to get the plain texts. The secret key can be changed
over time.

In the light of Corollary 4.1, the codomain (r, s, t)-inverse quasigroup
(H, ◦) has an inverse cycle of longer length than the domain (r, s, t)-inverse
quasigroup (G, ·).

S/N k (r, s, t) LIC(G) LIC(H) Order
|G| = |H|

1 8 (2, 3, 5) 2 20 24
2 10 (2, 3, 7) 2 24 30
3 12 (2, 3, 4) 3 27 36
4 14 (2, 3, 5) 2 20 42
5 15 (2, 3, 4) 3 27 45
6 15 (2, 3, 7) 3 36 45
7 16 (2, 3, 5) 2 20 48
8 16 (2, 3, 7) 4 48 48
9 16 (2, 4, 6) 4 48 48
10 18 (2, 3, 5) 2 20 54
11 18 (2, 3, 10) 3 45 54
12 20 (2, 3, 7) 4 48 60
13 21 (2, 3, 4) 3 27 63
14 21 (2, 3, 7) 3 36 63
15 22 (2, 3, 5) 2 20 66
16 24 (2, 3, 4) 3 27 72
17 24 (2, 3, 10) 3 45 72
18 25 (2, 3, 5) 5 50 75
19 27 (2, 3, 4 ) 9 81 81
20 28 (2, 3, 15) 4 80 84
21 30 (2, 3, 7) 6 72 90

Possible orders of (r, s, t)-inverse quasigroups and their lengths of inverse cycles
based on Corollary 4.1
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